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Classical Predictive Models
• Input and output space:

• Predictive function         :   

• Examples:

• Learning: 

where       represents a convex loss, and          is a regularizer preventing overfitting

– Logistic Regression
• Max-likelihood (or MAP) estimation

• Corresponds to a Log loss with L2 R

– Support Vector Machines (SVM)
• Max-margin learning

• Corresponds to a hinge loss with L2 R
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Classical Predictive Models
• Input and output space:

• Learning: 

where       represents a convex loss, and          is a regularizer preventing overfitting

– Logistic Regression
• Max-likelihood (or MAP) estimation

• Corresponds to a Log loss with L2 R

– Support Vector Machines (SVM)
• Max-margin learning

• Corresponds to a hinge loss with L2 R

Advantages:
1. Full probabilistic semantics
2. Straightforward Bayesian or direct 

regularization  
3. Hidden structures or generative hierarchy 

Advantages:
1. Dual sparsity: few support vectors
2. Kernel tricks
3. Strong empirical results
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Structured Prediction Problem

“Do you want sugar in it?”     <verb pron verb noun prep pron>

 Unstructured prediction

 Structured prediction
 Part of speech tagging

 Image segmentation
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OCR example
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Image Segmentation

 Jointly segmenting/annotating 
images

 Image-image matching, image-
text matching

 Problem:
 Given structure (feature), learning
 Learning sparse, interpretable, 

predictive structures/features
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Challenge: 
Structured outputs, and globally constrained to be a valid tree

Dependency parsing of 
Sentences
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Structured Prediction Graphical 
Models

 Conditional Random Fields 
(CRFs) (Lafferty et al 2001)
– Based on a Logistic Loss (LR)
– Max-likelihood estimation (point-

estimate)

 Max-margin Markov Networks 
(M3Ns) (Taskar et al 2003)
– Based on a Hinge Loss (SVM)
– Max-margin learning (point-estimate) 

• Markov properties are encoded in the 
feature functions 

• Input and output space:

L(D;w) , log
X
y0

exp(w>f(x;y0))

¡w>f(x;y)

L(D;w) , log max
y0

w>f(x;y0)

¡w>f(x;y) + `(y0;y)
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Structured Prediction Graphical 
Models

Challenges: 
• SPARSE “Interpretable” prediction model
• Prior information of structures
• Latent structures/variables
• Time series and non-stationarity
• Scalable to large-scale problems (e.g., 104 input/output dimension)

+R(w)

 Conditional Random Fields 
(CRFs) (Lafferty et al 2001)
– Based on a Logistic Loss (LR)
– Max-likelihood estimation (point-

estimate)

 Max-margin Markov Networks 
(M3Ns) (Taskar et al 2003)
– Based on a Hinge Loss (SVM)
– Max-margin learning (point-estimate) 

L(D;w) , log
X
y0

exp(w>f(x;y0))

¡w>f(x;y)

L(D;w) , log max
y0

w>f(x;y0)

¡w>f(x;y) + `(y0;y)

+R(w)

9© Eric Xing @ CMU, 2005-2014



Comparing to unstructured 
predictive models

• Input and output space:

• Learning: 

where       represents a convex loss, and          is a regularizer preventing overfitting

– Logistic Regression
• Max-likelihood (or MAP) estimation

• Corresponds to a Log loss with L2 R

– Support Vector Machines (SVM)
• Max-margin learning

• Corresponds to a hinge loss with L2 R
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Structured models

space of feasible outputs

scoring function

Assumptions:  

linear combination of features

sum of part scores: 
• index p represents a part in the structure
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Large Margin Estimation
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 Given training example (x, y*), we want:

*Taskar et al. 03

 Maximize margin
 Mistake weighted margin:

# of mistakes in y



Large Margin Estimation
 Recall from SVMs: 

 Maximizing margin  is equivalent to minimizing the square of the L2-norm 
of the weight vector w:

 New objective function:
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OCR Example

 We want:
argmaxword wT f( , word) = “brace”

 Equivalently:
wT f( ,“brace”) > wT f(             ,“aaaaa”)
wT f( ,“brace”) > wT f(             ,“aaaab”)
…
wT f( ,“brace”) > wT f(              ,“zzzzz”)

a lot!
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 Brute force enumeration of constraints:

 The constraints are exponential in the size of the structure

 Alternative: min-max formulation 
 add only the most violated constraint

 Handles more general loss functions
 Only polynomial # of constraints needed 

Min-max Formulation
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Min-max Formulation

 Key step:  convert the maximization in the constraint from 
discrete to continuous
 This enables us to plug it into a QP 

 How to do this conversion?
 Linear chain example in the next slides 

discrete optim. continuous optim.
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y  z  map for linear chain structures
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y  z  map for linear chain structures

0 0 0 0

0 0 0 0

0 1 0 0

0 0 0 0

0

0

1

0

0 1 0 0 normalization

agreement

Rewriting the maximization function in terms of indicator variables:
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Min-max formulation
 Original problem:

 Transformed problem:

 Has integral solutions z for chains, trees
 Can be fractional for untriangulated networks
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Min-max formulation
 Using strong Lagrangian duality:

(beyond the scope of this lecture)

 Use the result above to minimize jointly over w and : 
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Min-max formulation

 Formulation produces compact QP for
 Low-treewidth Markov networks 
 Associative Markov networks
 Context free grammars
 Bipartite matchings
 Any problem with compact LP inference

© Eric Xing @ CMU, 2005-2014



Results: Handwriting Recognition
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Length: ~8 chars
Letter: 16x8 pixels 
10-fold Train/Test
5000/50000 letters
600/6000 words 

Models:
Multiclass-SVMs*
CRFs
M3 nets 

Crammer & Singer 01
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Results: Hypertext Classification
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 WebKB dataset
 Four CS department websites: 1300 pages/3500 links
 Classify each page: faculty, course, student, project, other
 Train on three universities/test on fourth

53% error reduction over SVMs
38% error reduction over RMNs

*Taskar et al 02
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MLE versus max-margin learning
 Likelihood-based estimation

– Probabilistic (joint/conditional likelihood 
model)

– Easy to perform Bayesian learning, 
and incorporate prior knowledge, latent 
structures, missing data

– Bayesian or direct regularization
– Hidden structures or generative 

hierarchy 

• Max-margin learning
– Non-probabilistic (concentrate on input-

output mapping)
– Not obvious how to perform Bayesian 

learning or consider prior, and missing data
– Support vector property, sound theoretical 

guarantee with limited samples
– Kernel tricks

• Maximum Entropy Discrimination (MED) (Jaakkola, et al., 1999)  
– Model averaging

– The optimization problem (binary classification)
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 Structured MaxEnt Discrimination (SMED):

 Feasible subspace of weight distribution:

 Average from distribution of M3Ns

Maximum Entropy Discrimination 
Markov Networks

p
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Solution to MaxEnDNet

 Theorem:
– Posterior Distribution:

– Dual Optimization Problem:
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Gaussian MaxEnDNet (reduction to 
M3N)

 Theorem
– Assume 

 Posterior distribution:
 Dual optimization:

 Predictive rule:

 Thus, MaxEnDNet subsumes M3Ns and admits all the merits 
of max-margin learning

 Furthermore, MaxEnDNet has at least three advantages …

M3N
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Three Advantages
 An averaging Model: PAC-Bayesian prediction error guarantee 

(Theorem 3)

 Entropy regularization: Introducing useful biases
 Standard Normal prior => reduction to standard M3N (we’ve seen it)

 Laplace prior => Posterior 
shrinkage effects (sparse M3N)

 Integrating Generative and Discriminative principles (next 
class)
 Incorporate latent variables and structures (PoMEN)
 Semisupervised learning (with partially labeled data)
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Laplace MaxEnDNet (primal sparse M3N)

 Laplace Prior:

 Corollary 4: 
 Under a Laplace MaxEnDNet, the posterior mean of parameter vector w is:

 The Gaussian MaxEnDNet and the regular M3N has no such 
shrinkage
 there, we have  

(Zhu and Xing, ICML 2009)
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LapMEDN vs. L2 and L1
regularization

L1 and L2 norms KL norms

 Corollary 5: LapMEDN corresponding to solving the 
following primal optimization problem:

 KL norm:
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Recall Primal and Dual Problems 
of M3Ns
 Primal problem:

 Algorithms
– Cutting plane
– Sub-gradient
– …

 Dual problem:

 Algorithms:
– SMO
– Exponentiated gradient
– …

• So, M3N is dual sparse!
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 Exact primal or dual function is hard to optimize

 Use the hierarchical representation of Laplace prior, we get:

 We optimize an upper bound:

 Why is it easier?
– Alternating minimization leads to nicer optimization problems

Keep         fixed Keep           fixed
- The effective prior is normal - Closed form solution of and its expectation

Variational Learning of LapMEDN
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Algorithmic issues of solving 
M3Ns
 Primal problem:

 Algorithms
– Cutting plane
– Sub-gradient
– …

 Dual problem:

 Algorithms:
– SMO
– Exponentiated gradient
– …

 Nonlinear Features with Kernels
 Generative entropic kernels  [Martins et al, JMLR 2009]
 Nonparametric RKHS embedding of rich distributions [on going]

 Approximate decoders for global features 
 LP-relaxed Inference (polyhedral outer approx.) [Martins et al, ICML 09, ACL 09]
 Balancing Accuracy and Runtime: Loss-augmented inference 
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Experimental results on OCR 
datasets
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 We randomly construct OCR100, OCR150, OCR200, and OCR250
for 10 fold CV.

Experimental results on OCR 
datasets

35© Eric Xing @ CMU, 2005-2014



Feature Selection
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Sensitivity to Regularization 
Constants

• L1-CRFs are much sensitive to regularization constants; 
the others are more stable

• LapM3N is the most stable one

 L1-CRF and L2-CRF:
- 0.001, 0.01, 0.1, 1, 4, 9, 16

 M3N and LapM3N:
- 1, 4, 9, 16, 25, 36, 49, 64, 81
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Summary: 
Margin-based Learning Paradigms

Structured prediction

Structured prediction

Bayes
learning

Bayes
learning
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Open Problems
 Unsupervised CRF learning and MaxMargin Learning

 Only X, but not Y (sometimes part of Y), is available 

 We want to recognize a pattern that 
is maximally different from the rest!

 What does margin or conditional likelihood mean in these cases?
Given only {Xn}, how can we define the cost function?

 Algorithmic challenge
 Stay tuned for lecture 29!
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Remember: Elements of Learning
 Here are some important elements to consider before you start:

 Task:
 Embedding? Classification? Clustering? Topic extraction? …

 Data and other info:
 Input and output (e.g., continuous, binary, counts, …) 
 Supervised or unsupervised, of a blend of everything?
 Prior knowledge? Bias? 

 Models and paradigms:
 BN? MRF? Regression? SVM?
 Bayesian/Frequents ?  Parametric/Nonparametric?

 Objective/Loss function:
 MLE? MCLE? Max margin?
 Log loss, hinge loss, square loss? …

 Tractability and exactness trade off:
 Exact inference? MCMC? Variational? Gradient? Greedy search?  
 Online? Batch? Distributed? 

 Evaluation:
 Visualization? Human interpretability? Perperlexity? Predictive accuracy? 

 It is better to consider one element at a time!
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