
School of Computer Science

  

© Eric Xing @ CMU, 2005-2014 

 
 
 

1 

Probabilistic Graphical Models  

Approximate Inference: 
Parallel MCMC 

 
 

Eric Xing 
Lecture XX, April 23rd, 2014 



Recap of MCMC 
l  Markov Chain Monte Carlo methods use adaptive proposals 

Q(x’|x) to sample from the true distribution P(x) 

l  Metropolis-Hastings allows you to specify any proposal Q(x’|x) 
l  But choosing a good Q(x’|x) requires care 

l  Gibbs sampling sets the proposal Q(x’|x) to the conditional 
distribution P(x’|x) 
l  Acceptance rate always 1! 
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Parallel MCMC for Large Scales 
l  Datasets and models can be very large 

l  Millions to billions of data points 
l  Millions to billions of random variables 
l  Compute time measured in CPU-years 
l  Need GBs to TBs of memory 
l  E.x. Yahoo web graph has ~1.4 billion nodes and 6.6 billion edges 

l  Imagine doing a Markov Random Field on that network 

l  Without parallelism, we cannot use large datasets and 
models! 
l  Today: how to use multiple CPUs and machines in MCMC 
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Taking Multiple Chains 
l  Proper use of MCMC actually requires parallelism 

l  To determine convergence, you need to take multiple MCMC chains 
l  Chains are independent, so you can run one chain per CPU 
l  Once converged, you can combine samples from all chains 
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Taking Multiple Chains 
l  Taking multiple chains doesn’t solve all issues, though 

l  If burn-in is long, then all chains will take a long time to converge! 
l  We need a way to take each sample faster… 
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Idea: Run Gibbs Sampling in 
Parallel? 

l  Recall the alarm network 
l  Initialize all variables at t = 0 to False 
l  Idea: parallel Gibbs sample all variables at step t conditioned on t-1 
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Naïve Parallel Gibbs Sampling 

l  Sampling P(B|A,E) at t = 1: Using Bayes Rule, 

l  (A,E) = (F,F), so we compute the following, and sample B = F 
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Naïve Parallel Gibbs Sampling 

l  Sampling P(E|A,B): Using Bayes Rule, 

l  (A,B) = (F,F), so we compute the following, and sample E = T 
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Naïve Parallel Gibbs Sampling 

l  Notice the difference 
l  Normal Gibbs sampling: compute P(E|A,B) based on Bt=1, At=0 

l  Naïve Parallel GS: compute P(E|A,B) based on Bt=0, At=0 

l  At step t, always condition on t-1 instead of most recently sampled value 
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Naïve Parallel Gibbs Sampling 

l  Sampling P(A|B,E,J,M): Using Bayes Rule, 

l  (B,E,J,M) = (F,F,F,F), so we compute the following, and sample A = F 
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Naïve Parallel Gibbs Sampling 

l  Sampling P(J|A): No need to apply Bayes Rule 

l  A = F, so we compute the following, and sample J = T 
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Naïve Parallel Gibbs Sampling 

l  Sampling P(M|A): No need to apply Bayes Rule 

l  A = F, so we compute the following, and sample M = F 
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Naïve Parallel Gibbs Sampling 

l  We just finished sampling variables t=1 
l  Why is the sampling parallelizable? 

l  We only conditioned on variable state at t=0, which is known in advance! 
l  We can sample B,E,A,J,M on separate processors, without having to 

send information between processors 
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Naïve Parallel Gibbs Sampling 
l  In practice, works very well for some graphical models 

l  E.g. collapsed Gibbs Sampling for LDA 

l  Just assign different zi’s to different processors or machines 

l  But there’s a problem… 
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Where Naïve Parallel GS Fails 
l  Naïve Parallel GS may not converge to the stationary 

distribution 

l  Consider the following Bayes Net: 

l  Essentially an XOR relation between (A,B) and (A,C) 
l  Joint distribution P(A,B,C) has only 8 states, so we can compute the 

stationary distribution. It is dominated by 2 equally-probable states: 
l  (A,B,C) = (T,F,T) and (A,B,C) = (F,T,F) 
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Where Naïve Parallel GS Fails 

l  Let’s initialize (A,B,C) = (F,F,F) and see what happens when 
we naively Gibbs sample in parallel… 
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Where Naïve Parallel GS Fails 

l  Sampling P(A|B,C): 

l  (B,C) = (F,F) so we sample A = T 
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Where Naïve Parallel GS Fails 

l  Sampling P(B|A): No need to apply Bayes Rule 

l  A = F so we sample B = T 
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Where Naïve Parallel GS Fails 

l  Sampling P(C|A): No need to apply Bayes Rule 

l  A = F so we sample C = T 
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Where Naïve Parallel GS Fails 

l  Easy to see that at t=2, we will get (A,B,C) = (F,F,F) 

 
 
 

20 

t A B C 
0 F F F 
1 T T T 
2 F F F 
3 
4 

  

© Eric Xing @ CMU, 2005-2014 

B 

A 

C 
A P(B) 

T 0.0001 

F 0.9999 

A P(C) 

T 0.0001 

F 0.9999 



Where Naïve Parallel GS Fails 

l  Easy to see that at t=2, we will get (A,B,C) = (F,F,F) 
l  At t=3, (A,B,C) = (T,T,T) 
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Where Naïve Parallel GS Fails 

l  Easy to see that at t=2, we will get (A,B,C) = (F,F,F) 
l  At t=3, (A,B,C) = (T,T,T) 
l  At t=4, (A,B,C) = (F,F,F) 
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Where Naïve Parallel GS Fails 

l  Easy to see that at t=2, we will get (A,B,C) = (F,F,F) 
l  At t=3, (A,B,C) = (T,T,T) 
l  At t=4, (A,B,C) = (F,F,F) 
l  Can you see the problem? 
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Where Naïve Parallel GS Fails 
l  We know the stationary distribution is [(F,T,F), (T,F,T)] 

l  But naïve parallel GS gets stuck in [(T,T,T), (F,F,F)] 

l  Naïve parallel GS performs poorly on near-discrete distributions 

l  What is the correct way to Gibbs sample in parallel? 
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Correct Parallel Gibbs Sampling 
l  Recall that in MRFs, we Gibbs sample by sampling from P(x|

MB(x)), the conditional distribution of x given its Markov 
Blanket MB(x) 
l  For MRFs, the Markov Blanket of x is just its neighbors 
l  In the MRF below, the red node’s Markov Blanket consists of the blue 

nodes 
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Correct Parallel Gibbs Sampling 
l  Observe that we can correctly Gibbs sample the two green 

nodes simultaneously 
l  Neither node is part of the other’s Markov Blanket, so their conditional 

distributions do not depend on each other 
l  Sampling one of the green nodes doesn’t change the conditional 

distribution of the other node! 
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Correct Parallel Gibbs Sampling 
l  How do we generalize this idea to the whole graph? 

l  Find subsets of nodes, such that all nodes in a given subset are not in 
each other’s Markov Blankets, and the subsets cover the whole graph 
l  The subsets should be as large as possible 

§  Because we can Gibbs sample all nodes in a subset at the same time 

l  At the same time, we want as few subsets as possible 
§  The Markov Blankets of different subsets overlap, so they cannot be sampled at the 

same time. We must process the subsets sequentially. 
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Correct Parallel Gibbs Sampling 
l  We can find these covering subsets with k-coloring algorithms 

(Gonzales et al., 2011) 
l  A k-coloring algorithm colors a graph using k colors, such that: 

l  Every node gets one color 
l  No edge has two nodes of the same color 

l  Trees always admit a 2-coloring (e.g. below) 
l  Assign one color to some node, and alternate colors as you move away 
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Correct Parallel Gibbs Sampling 
l  Bipartite graphs are always 2-colorable 

l  Color each side of the bipartite graph with opposite colors 
l  e.x. Latent Dirichlet Allocation model is bipartite 

l  However, not all graphs have k-colorings for all k ≥ 2 
l  In the worst case, a graph with n nodes can require n colors 

l  The full clique is one such graph 
l  Determining if a graph is k-colorable for k > 2 is NP-complete 
l  In practice, we employ heuristics to find k-colorings 

l  Instead of using k-colorings, why not just Gibbs sample all 
variables at the same time? 
l  The Markov Chain may become non-ergodic, and is no longer 

guaranteed to converge to the stationary distribution! 
© Eric Xing @ CMU, 2005-2014 

 
 
 

29 

  



Online Parallel MCMC 
l  In “online” algorithms, we need to process new data points 

one-at-a-time 
l  Moreover, we have to “forget” older data points because memory is finite 

l  For such applications to be viable, we can only afford constant 
time work per new data point 
l  Otherwise we will reach a point where new data can no longer be 

processed in a reasonable amount of time 

l  We also want the algorithm to be parallel for scaling up 

l  What MCMC techniques can we use to make an online 
parallel algorithm? 
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Sequential Monte Carlo 
l  SMC is a generalization of Particle Filters 

l  Recall that PFs incrementally sample P(Xt|Y1:t), where the Xs are latent 
r.v.s and the Ys are observations under a state-space model 

l  SMC does not assume the GM is a state-space model, or has any 
particular structure at all 

l  Suppose we have n r.v.s x1,…,xn 
l  SMC first draws samples from the marginal distribution P(x1), then 

P(x1:2), and so on until P(x1:n) 
l  Key idea: Construct proposals such that we sample from P(x1:k+1) in 

constant time, given samples from P(x1:k) 
l  Like other MCMC algorithms, we only require that we can evaluate 

P’(x1:n) = aP(x1:n) for some unknown a 

© Eric Xing @ CMU, 2005-2014 

 
 
 

31 

  



Sequential Importance Sampling 
l  SIS is the foundation of Sequential Monte Carlo 

l  It allows new variables to be sampled in constant time, without 
resampling older variables 

l  SIS uses proposal distributions with the following structure: 

l  Notice we can propose xk+1 if we’ve already drawn x1:k, without having to 
redraw x1:k 
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Sequential Importance Sampling 
l  In normalized importance sampling, recall how the sample 

weights wi are defined: 

l  In SIS, the unnormalized weights r can be rewritten as a 
telescoping product: 
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Sequential Importance Sampling 

l  This means the unnormalized weights r can be computed incrementally 
l  Compute αn and use it to update r(x1:n-1) to r(x1:n) 

§  NB: For this update to be constant time, we also require P’n(x1:n) to be computable 
from P’n-1(x1:n-1) in constant time 

l  We remember the unnormalized weights r at each iteration, and compute 
the normalized weights w as needed from r 

l  Thus, we can sample x AND compute the normalized weights w using 
constant time per new variable xn 

l  So SIS meets the requirements for an online inference algorithm! 

l  Even better, the samples don’t depend on each other 
l  Assign one CPU core per sample to make the SIS algorithm parallel! 
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Sequential Importance Sampling 
l  SIS algorithm: 

l  At time n = 1 
l  Parallel draw samples xi

1 ~ q1(x1) 
l  Parallel compute unnormalized weights 

l  Compute normalized weights wi
1 by normalizing ri

1 
§  Although this step is sequential, it takes almost no time to perform 

l  At time n ≥ 2 
l  Parallel draw samples xi

n ~ qn(xn|xi
1:n-1) 

l  Parallel compute unnorm. wgts. 

l  Compute normalized weights wi
n by normalizing ri

n 
§  Although this step is sequential, it takes almost no time to perform 
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Sequential Importance Sampling 
l  But we are not done yet! 

l  Unfortunately, SIS suffers from a severe drawback: the 
variance of the samples increases exponentially with n! 
l  See eq (31) of Doucet’s SMC tutorial for an example 

l  Resampling at each iteration will decrease the sample 
variance! 
l  Similar to weighted resampling from the first MC lecture! 
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Multinomial Resampling 
l  Suppose we have m samples x1,…,xm with corresponding 

importance weights w1,…,wm 

l  Construct a categorical distribution from these samples: 
l  This distribution has m categories (choices) 
l  The probability of drawing category k is wk 

l  Drawing category k gets us xk 

l  To resample, just draw N times from this distribution 
l  Note that N can be greater/less than m! 

l  For more advanced strategies such as systematic and 
residual resampling, refer to page 13 of Doucet’s SMC tutorial 
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Why Resample? 
l  Apart from decreasing variance, there are other reasons… 

l  Resampling removes samples xk with low weights wk 

l  Low-weight samples come from low-probability regions of P(x) 
l  We want to focus computation on high-probability regions of P(x) 

l  Notice that each sample gets an equal amount of computation, 
regardless of its weight wk 

l  Resampling ensures that more computation is spent on samples xk that 
come from high-probability regions of P(x) 

l  Resampling prevents a small number of samples xk from 
dominating the empirical distribution 
l  Resampling resets all weights wk to 1/N 

l  This prevents sample weights wk from growing until they reach 1 
© Eric Xing @ CMU, 2005-2014 
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Sequential Monte Carlo 
l  The SMC algorithm is just SIS with resampling: 

l  At time n = 1 
l  Parallel draw samples xi

1 ~ q1(x1) 
l  Parallel compute unnormalized weights 

l  Compute normalized weights wi
1 by normalizing ri

1 

l  Parallel resample wi
1, xi

1 into N equally-weighted particles xi
1 

l  At time n ≥ 2 
l  Parallel draw samples xi

n ~ qn(xn|xi
1:n-1) 

l  Parallel compute unnorm. wgts. 

l  Compute normalized weights wi
n by normalizing ri

n 

l  Parallel resample wi
n,xi

1:n into N equally-weighted particles xi
1:n 
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Summary 
l  Parallel Gibbs sampling 

l  Naïve strategy: sample all variables at the same time 
l  Correct strategy: perform graph colorings and sample same-colored 

nodes in parallel 

l  Sequential Monte Carlo 
l  Uses incremental proposal distributions 
l  Provides a framework for designing online, parallel MCMC algorithms 
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Parallel Inference for Bayesian 
Nonparametric 

l  Dirichlet Process Mixture Model (recap) 
l  Inference schemes (recap) 
l  Parallel inference schemes 
l  Results 
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Finite Mixture Model:- Restaurant 
Perspective 
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Finite Mixture Model:- Restaurant 
Perspective 

l  Table: 
l  Cluster 

l  People: 
l  Items to be clustered 

l  Parameters: 
l  Dish/color on each table 

l  Center of each cluster 

l  Hidden Variable: 
l  Assignment of people to each table 
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Finite Mixture Model:- Restaurant 
Perspective 
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Which clustering algorithm will it lead to? 



Finite Mixture Model:- Restaurant 
Perspective 
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People sit on the table with the most preferred dish/color  

Which clustering algorithm will it lead to? 

Hard Kmeans 



Finite Mixture Model:- Restaurant 
Perspective 
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Finite Mixture Model:- Restaurant 
Perspective 
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People sit on the table proportional to appreciation of dish/color  

Which clustering algorithm will it lead to? 

Soft Kmeans 



Soft Kmeans Generative Model 
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Finite Mixture Model:- Restaurant 
Perspective 
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People sit on the table proportional to appreciation of dish/color and 
number of people sitting on the table  

Which clustering algorithm will it lead to? 

Dirichlet Distribution 
Mixture Model 



Finite MM Generative Model 
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Finite Mixture Model:- Restaurant 
Perspective 
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People sit on the table proportional to appreciation of dish/color and 
number of people sitting on the table  

Which clustering algorithm will it lead to? 

Dirichlet Distribution 
Mixture Model 



Infinite Mixture Model:- 
Restaurant Perspective 
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People sit on the table proportional to appreciation of dish/color and 
number of people sitting on the table  



Infinite Mixture Model:- 
Restaurant Perspective 
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People sit on the table proportional to appreciation of dish/color and 
number of people sitting on the table  



Turning the definition 
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Stick Breaking Construction 
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Take a stick of unit length  

Step 2:- Break it into two parts 

Step 3:- Choose a dish 

Step 1:- 

Step 4:- Go to step 2 

Proportional 
to selecting a 
table 

Dish 



Stick Breaking Construction 
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Proportional 
to selecting a 
table 

Dish on the table 



Graphical Model Representation 
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Proportional to 
number of customer 
sitting on the table 

Which table each 
customer sit at 

Which dish is 
selected at each 
table 

Dirichlet Process Mixture 
Model 



Inference 
l  Gibbs Sampling:- 

l  Sample each of the variable given the rest. 
l  Variables to sample are table proportion Vk , table assignment to each 

customer (Z) and dish at each table η 
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Inference 
l  Gibbs Sampling:- 

l  Sample each of the variable given the rest. 
l  Variables to sample are table proportion Vk , table assignment to each 

customer (Z) and dish at each table η 
l  Parallel inference: Easy 
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Inference 
l  Gibbs Sampling:- 

l  Sample each of the variable given the rest. 
l  Variables to sample are table proportion Vk , table assignment to each 

customer (Z) and dish at each table η 
l  Parallel inference: Easy  
l  Poor mixing 
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Inference 
l  Collapsed Gibbs Sampler:-  

l  Integrate out Vk and ηk 
l  Leads to better mixing 
l  Parallel inference: Hard 
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Inference 
l  Collapsed Gibbs suffer from large computational cost 
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Running Example: 
10 million data 
points to be 
clustered. 



Inference 
l  Variational Inference 

l  Approximate the posterior with a distribution belonging to a more 
manageable family of distribution 

l  Parallel inference: Easy 
l  Search within a restricted class of models, looses the expressiveness  
l  Typically less accuracy than MCMC methods 
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Inference 
l  Sequential Monte Carlo Method:- 

l  Keep a pools of particles, approximate the distribution using  weighted 
combination of the pool  

l  Parallel inference: Easy 
l  High variance for naïve implementation, needs resampling (MCMC ) 
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Parallel MCMC 

l  Naïve  
l  Run collapsed sampler on individual core 
l  Combine the result approximately !! 
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Restaurant 1 

Restaurant P 



Parallel MCMC 
l  Naïve  

l  Run collapsed sampler on individual core 
l  Combine the result approximately !! 

l  How 
l  Why should two newly discovered clustered in two different processor be 

the same?  
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Parallel MCMC 
l  Idea: Dirichlet Mixture of Dirichlet processes are Dirichlet 

processes 

l  Skeptic  
(proof  coming) 
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Parallel MCMC 
l  Idea: Dirichlet Mixture of Dirichlet processes are Dirichlet 

processes 
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Restaurant 1 

Restaurant P 



Parallel MCMC 
l  Idea: Dirichlet Mixture of Dirichlet processes are Dirichlet 

processes 
 

  

© Eric Xing @ CMU, 2005-2014 

 
 
 

69 

Restaurant 1 

Restaurant P 



Parallel MCMC 
l  Idea: Dirichlet Mixture of Dirichlet processes are Dirichlet 

processes 
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Restaurant 1 

Restaurant P 



Auxiliary Variable Model For DP 
l  The generative process is as follows :- 
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Proof 
l  If                         and    Then posterior distribution is 

given by: 

l  If                and     ,  Then  
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Inference 
l  Conditioned on the Restaurant allocation  data are distributed 

according  to P independent Dirichlet process 
l  Perform local collapsed gibbs sampling on the independent 

DPs 
l  For the global parameters perform MH 

l  Select a cluster ‘c’ and a processor ‘p’  
l  Propose: move ‘c’ to ‘p’ 
l  Acceptance ratio depends on cluster size 

l  Can pass the indices of the cluster item. 
l  Can be done asynchronously without affecting the 

performance. 
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Result 
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Extension to HDP 
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Take home message 
l  Naïve parallel inference scheme does not always work 
l  Utilize structure of the problem: Conditional independence  
l  Exact parallel inference or bound on error 

  

© Eric Xing @ CMU, 2005-2014 

 
 
 

76 


