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Nonparametric Graphical Models

How do we make a 
conditional probability 
table out of this?

 How to learn parameters?
 How to perform inference?

Hilbert Space 
Embeddings!!!!!
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Important Notation for this 
Lecture
 We will use the calligraphic P to denote that the probability is 

being treated as a matrix/vector/tensor

 Probabilities

 Probability Vectors/Matrices/Tensors
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Review: Embedding Distribution of 
One Variable[Smola et al. 2007]

densityThe Hilbert Space Embedding of X
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Review: Cross Covariance 
Operator [Smola et al. 2007]

Embed Joint Distribution of X and 
Y in the Tensor Product of two 
RKHS’s

Embedding of 
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Review: Auto Covariance 
Operator [Smola et al. 2007]

Only take expectation over these

Embedding of 
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Review: Conditional Embedding 
Operator [Song et al. 2009]

 Conditional Embedding Operator:

 Has Following Property:

 Analogous to “Slicing” a Conditional Probability Table in the 
Discrete Case:
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Slicing the Conditional 
Probability Matrix

©Eric Xing @ CMU, 2012-2014 8



“Slicing” the Conditional 
Embedding Operator

©Eric Xing @ CMU, 2012-2014 9



Why we Like Hilbert Space 
Embeddings

We will prove these now

We can marginalize and use chain rule in Hilbert Space too!!!

Sum Rule:

Chain Rule:

Sum Rule in RKHS:

Chain Rule in RKHS:
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Sum Rules
 The sum rule can be expressed in two ways:

 First way:

 Second way:

 What is special about the second way? Intuitively, it can be 
expressed elegantly as matrix multiplication 

Does not work in RKHS, 
since there is no “sum” 
operation for an operator

Works in RKHS!!!
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 Sum Rule

 Equivalent view using Matrix Algebra

Sum Rule (Matrix Form)
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 Chain Rule

 Equivalent view using Matrix Algebra

 Note how diagonal is used to keep Y from being marginalized 
out.

Chain Rule (Matrix Form)

Means on diagonal
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Example
 What about?

 Only if B and C are conditionally independent given A!!!
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 Let’s now derive the matrix sum rule differently.

 Let ࢏ࢾ	denote an indicator vector, that is 1 in the ݅௧௛ position.

Different Proof of Matrix Sum 
Rule with Expectations
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Random Variables?

Remember this is a probability vector. 
It is not a random variable.

Similarly, this is a function in an RKHS. 
It is not a random variable.

This is a random vector

This is a random function
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Expectation Proof of Matrix Sum 
Rule Cont.

This is a 
conditional 
probability matrix, 
so it is not a 
random variable 
(despite the 
misleading 
notation), and thus 
the Expectation 
can be pulled out

This is a random variable
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Proof of RKHS Sum Rule
 Now apply the same technique to the RKHS Case.

Move expectation outside

Property of conditional embedding

Property of Expectation

Definition of Mean Map
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 The idea is to replace the CPTs with RKHS 
operators/functions.

 Let’s do this for a simple example first.

 We would like to compute 

Kernel Graphical Models [Song et al. 2010, 
Song et al. 2011]
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Consider the Discrete Case
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Inference as Matrix Multiplication

Oops....we accidentally integrated out A
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Put A on Diagonal Instead
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Now it works
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Introducing evidence

 Introduce evidence with delta vectors 
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Now with Kernels
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Sum-Product with Kernels
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Sum-Product with Kernels
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 Consider just evaluating one random variable X at a particular 
evidence value using the Gaussian RBF Kernel:

 What does this looks like?

What does it mean to evaluate 
the mean map at a point?
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 Consider Kernel Density Estimate at point :

 And its empirical estimate:

 So evaluating the mean map at a point is like an unnormalized
kernel density estimate. To find the “MAP” assignment, we can 
evaluate on a grid of points, and then pick the one with the highest 
value.

Kernel Density Estimation!
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 Kernel Density Estimation with Gaussian RBF Kernel  in 
Multiple Variables is:

 Like evaluating a “Huge” Covariance Operator using 
Gaussian RBF Kernel (without normalization):

Multiple Variables
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What is the problem with this?

 The empirical estimate is very inaccurate because of curse of 
dimensionality

 Empirically computing the “huge” covariance operator will 
have the same problem.

 But then what is the point of Hilbert Space Embeddings?
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We can factorize the “Huge” 
Covariance Operator 
 Hilbert Space Embeddings allow us to factorize the huge 

covariance operator using the graphical model structure that 
kernel density estimation does not do.

Factorizes into smaller covariance/conditional 
embedding operators using the graphical model 
that are more efficient to estimate.
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Kernel Graphical Models: The 
Overall Picture

Naïve way to  represent joint 
distribution of discrete variables 
is to store and manipulate a 
“huge” probability table.

Naïve way to represent joint 
distribution for many 
continuous variables is to 
use multivariate kernel 
density estimation.

Discrete Graphical Models allow us 
to factorize the “huge” joint 
distribution table into smaller 
factors.

Kernel Graphical Models allow us to 
factorize joint distributions of 
continuous variables into smaller 
factors.
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Consider an Even Simpler 
Graphical Model

We are going to show how to estimate these operators from data.
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The Kernel Matrix

…
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Empirical Estimate Auto 
Covariance

Defined on next slide
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Conceptually,
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Conceptually,
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Conceptually,
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Rigorously,

is an operator that maps vectors in         to functions in

such that: 

Its adjoint (transpose)              can then be derived to be:
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Empirical Estimate Cross 
Covariance
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Getting the Kernel Matrix
 It can then be shown that,

 This is finite and easy to compute!! 

 However, note that the estimates of the covariance operators 
are not finite since:
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Intuition 1: Why the Kernel Trick 
works

This operator is 
infinite dimensional 
but it has at most 
rank N

The kernel matrix is 
N by N, and thus 
the kernel trick is 
exploiting the low 
rank structure
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Empirical Estimate of Conditional 
Embedding Operator

44

Sort of……
We need to regularize so that this 
is invertible

?

regularizer
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Return of Matrix Inversion 
Lemma
 Matrix Inversion Identity

 Using it we get,
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But Our estimates are still 
Infinite….

Lets do inference and see what  happens.

©Eric Xing @ CMU, 2012-2014 46



Running Inference
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Incorporating the Evidence
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Reparameterize the Model

A

B

C

Evidence:

Finite!!!!!
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Intuition 2: Why the Kernel Trick 
Works

…
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Intuition 2: Why the Kernel Trick 
Works

…
.

.
.  

.

.

.
…

.

.

.

Evaluating a feature function at the N data points!!!
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Intuition 2: Why the Kernel Trick 
Works
 Generally people interpret the kernel matrix to be a similarity 

matrix.

 However, we can also view each row of the kernel matrix as 
evaluating a function at the N data points.

 Although the function may be continuous and not easily 
represented analytically, we only really care about what its 
value is on the N data points.

 Thus, when we only have a finite amount of data, the 
computation should be inherently finite.
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Protein Sidechains

http://t3.gstatic.com/images?q=tbn:ANd9GcS_nfJy1o9yrDt3
7YlpK7i5s0f7QFqhPrG7-1CLm2AfWNt5wCE50pIKNZd0

Goal is to predict the 3D 
configuration of each 
sidechain
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 3D configuration of the sidechain is determined by two angles 
(spherical coordinates).

Protein Sidechains

http://www.math24.net/images/triple-int23.jpg
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The Graphical Model
 Construct a Markov Random Field.

 Each side-chain angle pair is a node. There is an edge 
between side-chains that are nearby in the protein.

Edge potentials are 
already determined by 
physics equations.
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 Goal is to find the MAP assignment of all the sidechain angle 
pairs.

 Note that this is not Gaussian. But it is easy to define a kernel 
between angle pairs:

 Can then run Kernel Belief Propagation 

The Graphical Model
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Supplemental: Kernel Belief 
Propagation on Trees
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Kernel Tree Graphical Models [Song et 
al. 2010]

 The goal is to somehow replace the CPTs with RKHS 
operators/functions.

 But we need to do this in a certain way so that we can 
still do inference.

?

?
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 We need to “matricize” message passing to apply the RKHS 
trick (but matrices are not enough, we need tensors  )

Message Passing/Belief 
Propagation

© Ankur Parikh, Eric Xing @ CMU, 2012-2013
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 Show how to represent discrete graphical models using higher 
order tensors

 Derive Tensor Message Passing

 Show how Tensor Message Passing can also be derived using 
Expectations

 Derive Kernel Message Passing [Song et al. 2010] using the 
intuition from Tensor Message Passing / Expectations

 (For simplicity, we will assume a binary tree – all internal nodes 
have 2 children).

Outline
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 Multidimensional arrays
 A Tensor of order N has N modes (N indices):

 Each mode is associated with a dimension. In the example, 
 Dimension of mode 1 is 4
 Dimension of mode 2 is 3
 Dimension of mode 3 is 4

Tensors

4

3

4

©Eric Xing @ CMU, 2012-2014 62



Diagonal Tensors
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Partially Diagonal Tensors
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 Multiplying a 3rd order tensor by a vector produces a matrix

Tensor Vector Multiplication
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Tensor Vector Multiplication 
Cont.
 Multiplying a 3rd order tensor by two vectors produces a 

vector
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Conditional Probability Table At 
Leaf is a Matrix
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CPT At Internal Node (Non-Root) 
is 3rd Order Tensor
 Note that we have 
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CPT At Root
 CPT at root is a matrix.
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The Outgoing Message as a 
Vector (at Leaf)

“bar” denotes 
evidence
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The Outgoing Message At 
Internal Node
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At the Root
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Kernel Graphical Models [Song et al. 2010, 
Song et al. 2011]

 The Tensor CPTs at each node are replaced with  RKHS 
functions/operators

Leaf:

Internal (non-root): 

Root:
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Conditional Embedding Operator 
for Internal Nodes

Embedding of 

What is ?
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Embedding of Cross Covariance 
Operator in Different RKHS

Embedding of 
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