School of Computer Science
Carnegie Mellon

Probabilistic Graphical Models

Directed GMs: Bayesian Networks

Reading: see class homepage
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Questions ?

e Scribers ?
e \Waiting list
e Reading: required vs suggested
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Representing Multivariate Distribution

e Representation: what is the joint probability dist. on multiple

variables?
P(XU XZ’ X3’ X4’ X5’ Xé’ X7’ XS’)
e How many state configurations in total? --- 28 A
e Arethey all needed to be represented? )
e Do we get any scientific/medical insight?
[H)

e [Factored representation: the chain-rule

P(X1, X5, X5, X4, X5, X, X7, Xg)
= P(X)P(Xa | X)P(X5 [ Xy, Xo)P(Xg | X1y Xay X5)P (X5 | Xpy Koy X3y X4)P(Xg | Xy, X0 X5y X4y Xs)
P(X5 | X1, X5, X5, X4, Xs, X )P(Xg | Xp0 X0 X5, X4, X5, X, X7)

e This factorization is true for any distribution and any variable ordering
e Do we save any parameterization cost?

e If Xi's are independent: (P(Xi|-)= P(X)))
P(X,, X5, X5, Xy, X5, Xy X5, Xg) eWhat do we gain?
= P(X1)P(X2)P(X3)P(X4)P(x5)P(Xe)P(X7)P(X8):HP(Xi) eWhat do we lose?
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Two types of GMs oo

e Directed edges give causality relationships (Bayesian
Network or Directed Graphical Model):

P(Xy, Xp, Xay Xgs Xe, Xgr X Xo)

= P(X;y) P(X3) P(Xs] Xy) P(X4] X5) P(Xs| Xy)
P(Xgl X3, X4) P(X7] Xg) P(Xg| X5, Xo)

e Undirected edges simply give correlations between
variables (Markov Random Field or Undirected Graphical

model):
P(Xq, Xy, X3, Xy, X, Xg, X7, Xg)
(o )% [
= UZ exp{E(X)+EX)+E (X5, X)+E(Xy, X)+E(Xs, X)) Bar
+ E(Xg) Xg, Xg)+E(X, X)+E(Xg, Xs, Xo)} —
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Notation

e Variable, value and index

Random variable

Random vector

Random matrix

Parameters
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e Representation of directed GM

%
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Example: The Dishonest Casino 4

A casino has two dice:
e Fair die

P(1) = P(2) = P(3) = P(5) = P(6) = 1/6
e Loaded die

P(1)=P(2)=P(3)=P(5)=1/10
P(6)=1/2
Casino player switches back-&-forth

between fair and loaded die once every
20 turns

Game:
1. You bet $1
2. You roll (always with a fair die)

3. Casino player rolls (maybe with fair die,
maybe with loaded die)

4. Highest number wins $2
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Puzzles regarding the dishonest | 382

casino -

GIVEN: A sequence of rolls by the casino player

64621461461361266616646616366163661636165156 612356
QUESTION
e How likely is this sequence, given our model of how the casino
works?

e Thisis the EVALUATION problem

e \What portion of the sequence was generated with the fair die, and
what portion with the loaded die?
e Thisis the DECODING question

e How “loaded” is the loaded die? How “fair” is the fair die? How often
does the casino player change from fair to loaded, and back?
e Thisis the LEARNING question
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Knowledge Engineering

e Picking variables
e Observed
e Hidden

e Picking structure
e CAUSAL
e Generative
e Coupling

e Picking Probabilities
e Zero probabilities
e Orders of magnitudes
e Relative values
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Hidden Markov Model ot

The underlying
source;

Speech signal G @ @ e
genome function

dice

mesequence: 0 () () .. (O

Phonemes
DNA sequence
sequence of rolls
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000

0000

0000

.y ::0
Probability of a parse S

e Given a sequence X = Xj...... Xt
and aparsey =y, ...... . Y1 @ @ @ @
e To find how likely is the parse: @ @ @ @

(given our HMM and the sequence)

p(X,y)  =p(X...... X1y Vs cenneny Y1) (Joint probability)
= p(y1) Py | Y1) P2 [ Y1) POG [V2) - POYT | Yroa) PO [ Y7)
= p(y) P2 Y1) - POT | Yra) X PO [ Y1) POG [Y2) - P [ Y7)
=Py oo Y1) PXq- o X [ Y1 ey V)

e Marginal probability: p(x) = Zy p(x,y) = Zyl Zyz...ZyN 7Z'y1H ayH’ytH p(x |y,
e Posterior probability: o(y|x) = p(x,y)/ p(X) t=2 t=1

e We will learn how to do this explicitly (polynomial time)
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Bayesian Network: 4+

e A BN is a directed graph whose nodes represent the random
variables and whose edges represent direct influence of one
variable on another.

e |tis a data structure that provides the skeleton for representing a
joint distribution compactly in a factorized way;

e |t offers a compact representation for a set of conditional
Independence assumptions about a distribution;

e \We can view the graph as encoding a generative sampling process
executed by nature, where the value for each variable is selected by
nature using a distribution that depends only on its parents. In other
words, each variable is a stochastic function of its parents.
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Bayesian Network: Factorization Theorem | ¢

e Theorem:

Given a DAG, The most general form of the probability
distribution that is consistent with the graph factors according
to “node given its parents™:
P(X)=]]P(X 1X,)
i=1:d
where X is the set of parents of X;, d is the number of nodes
(variables) in the graph.

P(Xy, X5, X3, Xy, Xe, Xg, X7, Xg)

:> = P(Xy) P(Xp) P(X5| Xp) P(X,| X3) P(X5] X)
P(Xgl X3, X,) P(X7| Xg) P(Xg| X5, X¢)
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Specification of a directed GM

e There are two components to any GM:

e the qualitative specification
e the quantitative specification

© Eric Xing @ CMU, 2005-2014

14



Qualitative Specification

e Where does the qualitative specification come from?

e Prior knowledge of causal relationships

e Prior knowledge of modular relationships

e Assessment from experts

e Learning from data

e We simply link a certain architecture (e.g. a layered graph)
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Local Structures &
Independencies

e Common parent

e Fixing B decouples A and C @ CC O

"given the level of gene B, the levels of A and C are independent”

e (Cascade

e Knowing B decouples A and C CA_ DO CB_ > CC O

"given the level of gene B, the level gene A provides no
extra prediction value for the level of gene C"

e Knowing C couples A and B
because A can "explain away" B w.r.t. C CC D

"If A correlates to C, then chance for B to also correlate to B will decrease"

e The language is compact, the concepts are rich!
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A simple justification

i
A > &
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l-maps | :

e Defn : Let P be a distribution over X. We define |(P) to be the
set of independence assertions of the form (X LY | Z) that
hold in P (however how we set the parameter-values).

e Defn : Let K be any graph object associated with a set of
independencies |(K). We say that K is an I-map for a set of
independencies |, if [(K) c |.

e \We now say that G is an I-map for P if G is an I-map for I(P),
where we use |(G) as the set of independencies associated.
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Facts about I-map -

e For Gto be an I-map of P, it is necessary that G does not
mislead us regarding independencies in P:

any independence that G asserts must also hold in P. Conversely, P may have
additional independencies that are not reflected in G

e Example: X Y |PX.)Y)
z’ y° 0.08
0 ol 0.32
gl o0 0.12
rl gl 0.48

@ X Y |PX,)Y)
¥ Y 0.4

Yo Ux—y Oy — 20 ! 0.3
zl o0 0.2

xl oyl 0.1
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What is Iin I(G) --- 3
local Markov assumptions of BN o

A Bayesian network structure G is a directed acyclic graph whose
nodes represent random variables X, ... X..

\

local Markov assumptions

e Defn:

Let Pa,; denote the parents of X; in G, and NonDescendants,; denote the
variables in the graph that are not descendants of X;. Then G encodes the
following set of local conditional independence assumptions |/{G):

I{G): {X; L NonDescendants,; | Pa, : V i),

In other words, each node X; is independent of its nondescendants given its
parents.
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Graph separation criterion .o

e D-separation criterion for Bayesian networks (D for Directed
edges):

Defn: variables x and y are D-separated (conditionally

independent) given z if they are separated in the moralized
ancestral graph

e Example:

original graph ancestral moral ancestral
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Active trall ot

e Causal trail X - Z — Y : active if and
only if Z is not observed.

e Evidential trail X < Z « Y : active if
and only if Z is not observed.

e Common cause X «— Z — Y : active if
and only if Z is not observed.

e Common effect X - Z «— Y : active if
and only if either Z or one of Z’s
descendants is observed

Definition : Let X, Y, Z be three sets of nodes in G. We say that X and Y
are d-separated given Z, denoted d-sep(X;Y | Z), if there Is no active trail
between any node X € Xand Y € Y given Z.

© Eric Xing @ CMU, 2005-2014
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What is In I(G) --- eecs
Global Markov properties of BN o

e X is d-separated (directed-separated) from Z given Y if we can't
send a ball from any node in X to any node in Z using the "Bayes-
ball* algorithm illustrated bellow (and plus some boundary
conditions):

— « Defn: I(6)=all independence

@ 2 properties that correspond to d-
separation:
A @&
; ; ; ; 1G) = {X L Z|Y :dsepe (X;Z[V)}

(b)
%v/o % /Q « D-separation is sound and
ot \’O"/ complete
v (more details later)

(a) (b) © Eric Xing @ CMU, 2005-2014 23



0000
o000
:..
Example: -
X e Complete the I(G) of this
4 graph:
X1
X3
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Toward quantitative specification of 3
probability distribution oo

e Separation properties in the graph imply independence
properties about the associated variables

e The Equivalence Theorem

For a graph G,
Let 9, denote the family of all distributions that satisfy 1(G),
Let 9, denote the family of all distributions that factor according to

G,
P(X) =[] P(Xi[X,)

i=1:d

Then 9,=9,.

e Forthe graph to be useful, any conditional independence
properties we can derive from the graph should hold for the
probability distribution that the graph represents
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Conditional probability tables
(CPTs)

a® |0.75

al 10.25

bO

0.33

b1

0.67

P(@)P(b)P(c|a,b)P(d|c)

P(a,b,c.d) =

a%h0 aob’ a'bo a'b’
c? 0.45 1 0.9 0.7
c' 0.55 0 0.1 0.3
cO c'
d® (0.3 [0.5
d’ 07 |0.5
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Conditional probability density cece
func. (CPDs) oo

P(a,b,c.d) =
A~N(, £) B-~N(u,, £,) P(a)P(b)P(c|a,b)P(d|c)

y C~N(A+B, Z)

‘ D~N(u +C, Z,) 5 C
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Summary of BN semantics %

e Defn : A Bayesian network is a pair (G, P) where P factorizes
over G, and where P is specified as set of CPDs associated
with G’s nodes.

e Conditional independencies imply factorization
e Factorization according to G implies the associated conditional independencies.

e Are there other independences that hold for every distribution P that factorizes
over G?
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Soundness and completeness -

D-separation is sound and "complete" w.r.t. BN factorization law

Soundness:
Theorem: If a distribution P factorizes according to G, then I(G) < I(P).

"Completeness":

"Claim": For any distribution P that factorizes over G, if (X LY | Z) € I(P)
then d-seps(X; Y | Z).

Contrapositive of the completeness statement

e '"lfXandY are not d-separated given Z in G, then X and Y are dependent in all
distributions P that factorize over G."

e Is this true?
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Distributional equivalence and |- | $32¢
equivalence oo

e All independence in I (G) will be captured in I(G), is the reverse
true?

e Are "not-independence” from G all honored in P; ?
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Soundness and completeness -

e Contrapositive of the completeness statement

e '"If XandY are not d-separated given Z in G, then X and Y are dependent in all
distributions P that factorize over G."

e Is this true?

e No. Even if a distribution factorizes over G, it can still contain
additional independencies that are not reflected in the structure

e Example: graph A->B, for actually independent A and B ALY b
a" |04 0.6
al |04 0.6

(the independence can be captured by some subtle way
of parameterization)

e Thm: Let G be a BN graph. If X and Y are not d-separated given Z in
G, then X and Y are dependent in some distribution P that factorizes
over G.
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e Theorem : For almost all distributions P that factorize over
G, i.e., for all distributions except for a set of "measure zero"

in the space of CPD parameterizations, we have that I(P) =
I(G)

© Eric Xing @ CMU, 2005-2014
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Unigueness of BN 4+

e Very different BN graphs can actually be equivalent, in that
they encode precisely the same set of conditional
Independence assertions.

(a) (b) d)

XLY]|2)
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l-equivalence

e Defn : Two BN graphs G1 and G2 over X are l-equivalent if 1(G1) =
1(G2).

e The set of all graphs over X is partitioned into a set of mutually exclusive and
exhaustive l-equivalence classes, which are the set of equivalence classes

induced by the I-equivalence relation.
€ Y)
N,

(d)

(a) (b)

e Any distribution P that can be factorized over one of these graphs can be
factorized over the other.

e Furthermore, there is no intrinsic property of P that would allow us associate it
with one graph rather than an equivalent one.

e This observation has important implications with respect to our ability to

determine the directionality of influence.
© Eric Xing @ CMU, 2005-2014
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Detecting I-equivalence o°

e Defn : The skeleton of a Bayesian network graph G over V is an
undirected graph over V that contains an edge {X, Y} for every edge
(X,Y)in G.

O
(b)
e Thm : Let G1 and G, be two graphs over V. If G, and 62 have the

same skeleton and the same set of v-structures then they are I-
equivalent.

e graph equivalence
e Same trail
e But not necessarily active
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Minimum I-MAP ot

e Complete graph is a (trivial) I-map for any distribution, yet it
does not reveal any of the independence structure in the
distribution.

e Meaning that the graph dependence is arbitrary, thus by careful parameterization
an dependencies can be captured

e We want a graph that has the maximum possible I(G), yet still — I(P)

e Defn : A graph object G is a minimal I-map for a set of
independencies | if it is an [-map for I, and if the removal of
even a single edge from G renders it not an I-map.
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Minimum I-MAP Is not unique os

D\ Kﬁ ( D\—/

WA KL
(L
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Simple BNs: sect
Conditionally Independent Observations oo

Model parameters

@O-®D o~

© Eric Xing @ CMU, 2005-2014
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The “Plate” Micro oo

‘ Model parameters
|

Data ={yy,...yn}

I=1:n

Plate = rectangle in graphical model

variables within a plate are replicated
In a conditionally independent manner

© Eric Xing @ CMU, 2005-2014
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Hidden Markov Model: sess
from static to dynamic mixture models oo
Static mixture Dynamic mixture
A
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Definition (of HMM) o°
e Observation space

Alphabeticse'ta: C=1{¢c,,¢ 1 Ck | Q @ @ @

) ) & - &

Euclidean space:  RY
e Index set of hidden states
1={1,2,--,M}
e Transition probabilities between any two states
P(Yt' =1] Yti—1 =1) =a;
or  p(y, |y, =1)~ Multinomial(a, ;. a,,...,a, , ) Vi e L.
e Start probabilities
p(y,) ~ Multinomial(z,, z,,..., 7, )
e Emission probabilities associated with each state
p(x, |y, =1)~ Multinomial(b. ;b ,....b , ) Vi €.
or in general:
p(x, |y; =1)~ f(’|‘9i)’Vi el
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Probability of a parse

e Given a sequence X = Xj...... X1
and aparsey =y, ...... , YT @ @ @
e To find how likely is the parse: @ @ @

(given our HMM and the sequence)

p(X,y)  =p(X...... X1y Vs cenneny Y1) (Joint probability)
= p(y1) Py | Y1) P2 [ Y1) POG [V2) - POYT | Yroa) PO [ Y7)
= p(y) P2 Y1) - POT | Yra) X PO [ Y1) POG [Y2) - P [ Y7)
=Py oo Y1) PXq- o X [ Y1 ey V)
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Summary .

e Defn (3.2.5): A Bayesian network is a pair (G, P) where P
factorizes over G, and where P is specified as set of local
conditional probability dist. CPDs associated with G’s nodes.

7 13 7 13

e A BN capture “causality”, “generative schemes”, “asymmetric
influences”, etc., between entities

e Local and global independence properties identifiable via d-
separation criteria (Bayes ball)

e Computing joint likelihood amounts multiplying CPDs
e But computing marginal can be difficult
e Thus inference is in general hard

e Important special cases:
e Hidden Markov models
e Tree models
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