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Reading: see class homepage
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Questions ? 
 Scribers ?
 Waiting list 
 Reading: required vs suggested
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 Representation: what is the joint probability dist. on multiple 
variables?

 How many state configurations in total? --- 28

 Are they all needed to be represented?
 Do we get any scientific/medical insight?

 Factored representation: the chain-rule

 This factorization is true for any distribution and any variable ordering
 Do we save any parameterization cost?

 If Xi's are independent: (P(Xi|·)= P(Xi))
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 Directed edges give causality relationships (Bayesian 
Network or Directed Graphical Model):

 Undirected edges simply give correlations between 
variables (Markov Random Field or Undirected Graphical 
model):

Two types of GMs

Receptor A

Kinase C

TF F

Gene G Gene H

Kinase EKinase D

Receptor BX1 X2

X3 X4 X5

X6

X7 X8

Receptor A

Kinase C

TF F

Gene G Gene H

Kinase EKinase D

Receptor BX1 X2

X3 X4 X5

X6

X7 X8

X1 X2

X3 X4 X5

X6

X7 X8

Receptor A

Kinase C

TF F

Gene G Gene H

Kinase EKinase D

Receptor BX1 X2

X3 X4 X5

X6

X7 X8

Receptor A

Kinase C

TF F

Gene G Gene H

Kinase EKinase D

Receptor BX1 X2

X3 X4 X5

X6

X7 X8

X1 X2

X3 X4 X5

X6

X7 X8

P(X1, X2, X3, X4, X5, X6, X7, X8)

= P(X1) P(X2) P(X3| X1) P(X4| X2) P(X5| X2)
P(X6| X3, X4) P(X7| X6) P(X8| X5, X6)

P(X1, X2, X3, X4, X5, X6, X7, X8)

= 1/Z exp{E(X1)+E(X2)+E(X3, X1)+E(X4, X2)+E(X5, X2)
+ E(X6, X3, X4)+E(X7, X6)+E(X8, X5, X6)}
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Notation
 Variable, value and index 

 Random variable

 Random vector

 Random matrix

 Parameters
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 Representation of directed GM
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Example: The Dishonest Casino

© Eric Xing @ CMU, 2005-2014

A casino has two dice:
 Fair die

P(1) = P(2) = P(3) = P(5) = P(6) = 1/6
 Loaded die

P(1) = P(2) = P(3) = P(5) = 1/10
P(6) = 1/2

Casino player switches back-&-forth 
between fair and loaded die once every 
20 turns

Game:
1. You bet $1
2. You roll (always with a fair die)
3. Casino player rolls (maybe with fair die, 

maybe with loaded die)
4. Highest number wins $2
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Puzzles regarding the dishonest 
casino 

GIVEN: A sequence of rolls by the casino player

1245526462146146136136661664661636616366163616515615115146123562344

QUESTION
 How likely is this sequence, given our model of how the casino 

works?
 This is the EVALUATION problem

 What portion of the sequence was generated with the fair die, and 
what portion with the loaded die?
 This is the DECODING question

 How “loaded” is the loaded die? How “fair” is the fair die? How often 
does the casino player change from fair to loaded, and back?
 This is the LEARNING question
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Knowledge Engineering
 Picking variables

 Observed
 Hidden

 Picking structure
 CAUSAL 
 Generative
 Coupling 

 Picking Probabilities
 Zero probabilities
 Orders of magnitudes
 Relative values 
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Hidden Markov Model
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A AA AX2 X3X1 XT

Y2 Y3Y1 YT... 

... The sequence:

The underlying 
source:

Phonemes

Speech signal

DNA sequence 

dice
genome function

sequence of rolls 
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Probability of a parse
 Given a sequence x = x1……xT

and a parse y = y1, ……, yT,
 To find how likely is the parse:

(given our HMM and the sequence)

p(x, y) = p(x1……xT, y1, ……, yT) (Joint probability)
= p(y1) p(x1 | y1) p(y2 | y1) p(x2 | y2) … p(yT | yT-1) p(xT | yT)
= p(y1) P(y2 | y1) … p(yT | yT-1) × p(x1 | y1) p(x2 | y2) … p(xT | yT)
= p(y1, ……, yT) p(x1……xT | y1, ……, yT)

 Marginal probability:

 Posterior probability:

 We will learn how to do this explicitly (polynomial time)
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Bayesian Network:
 A BN is a directed graph whose nodes represent the random 

variables and whose edges represent direct influence of one 
variable on another.

 It is a data structure that provides the skeleton for representing a 
joint distribution compactly in a factorized way;

 It offers a compact representation for a set of conditional 
independence assumptions about a distribution;

 We can view the graph as encoding a generative sampling process
executed by nature, where the value for each variable is selected by 
nature using a distribution that depends only on its parents. In other 
words, each variable is a stochastic function of its parents.
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Bayesian Network: Factorization Theorem

 Theorem: 
Given a DAG, The most general form of the probability 
distribution that is consistent with the graph factors according 
to “node given its parents”:

where      is the set of parents of Xi, d is the number of nodes 
(variables) in the graph.
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Specification of a directed GM
 There are two components to any GM:

 the qualitative specification
 the quantitative specification
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Qualitative Specification
 Where does the qualitative specification come from?

 Prior knowledge of causal relationships
 Prior knowledge of modular relationships
 Assessment from experts
 Learning from data
 We simply link a certain architecture (e.g. a layered graph) 
 …
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Local Structures & 
Independencies
 Common parent

 Fixing B decouples A and C
"given the level of gene B, the levels of A and C are independent"

 Cascade
 Knowing B decouples A and C

"given the level of gene B, the level gene A provides no 
extra prediction value for the level of gene C"

 V-structure
 Knowing C couples A and B

because A can "explain away" B w.r.t. C
"If A correlates to C, then chance for B to also correlate to B will decrease"

 The language is compact, the concepts are rich!

A CB
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A

B

C
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A simple justification

A

B

C
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I-maps
 Defn : Let P be a distribution over X. We define I(P) to be the 

set of independence assertions of the form (X  Y | Z) that 
hold in P (however how we set the parameter-values).

 Defn : Let K be any graph object associated with a set of 
independencies I(K). We say that K is an I-map for a set of 
independencies I, if I(K)  I.

 We now say that G is an I-map for P if G is an I-map for I(P), 
where we use I(G) as the set of independencies associated.

© Eric Xing @ CMU, 2005-2014 18



Facts about I-map
 For G to be an I-map of P, it is necessary that G does not 

mislead us regarding independencies in P: 

any independence that G asserts must also hold in P. Conversely, P may have 
additional independencies that are not reflected in G

 Example:

P1

P2
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What is in I(G) ---
local Markov assumptions of BN

A Bayesian network structure G is a directed acyclic graph whose 
nodes represent random variables X1, . . . ,Xn. 

local Markov assumptions

 Defn : 
Let PaXi denote the parents of Xi in G, and NonDescendantsXi denote the 
variables in the graph that are not descendants of Xi. Then G encodes the 
following set of local conditional independence assumptions Iℓ(G):

Iℓ(G): {Xi  NonDescendantsXi | PaXi :  i),

In other words, each node Xi is independent of its nondescendants given its 
parents.
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Graph separation criterion
 D-separation criterion for Bayesian networks (D for Directed 

edges):

Defn: variables x and y are D-separated (conditionally 
independent) given z if they are separated in the moralized 
ancestral graph

 Example:
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Active trail
 Causal trail X → Z → Y : active if and 

only if Z is not observed.

 Evidential trail X ← Z ← Y : active if 
and only if Z is not observed.

 Common cause X ← Z → Y : active if 
and only if Z is not observed.

 Common effect X → Z ← Y : active if 
and only if either Z or one of Z’s 
descendants is observed

Definition : Let X, Y , Z be three sets of nodes in G. We say that X and Y
are d-separated given Z, denoted d-sepG(X;Y | Z), if there is no active trail 
between any node X  X and Y  Y given Z.
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What is in I(G) ---
Global Markov properties of BN
 X is d-separated (directed-separated) from Z given Y if we can't 

send a ball from any node in X to any node in Z using the "Bayes-
ball" algorithm illustrated bellow (and plus some boundary 
conditions):

• Defn: I(G)all independence 
properties that correspond to d-
separation:

• D-separation is sound and 
complete
(more details later)

 );(dsep:)(I YZXYZXG G
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Example: 
 Complete the I(G) of this 

graph:

x1

x2

x4

x3
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Toward quantitative specification of 
probability distribution

 Separation properties in the graph imply independence 
properties about the associated variables

 The Equivalence Theorem
For a graph G,
Let D1 denote the family of all distributions that satisfy I(G),
Let D2 denote the family of all distributions that factor according to 
G,

Then D1≡D2.

 For the graph to be useful, any conditional independence 
properties we can derive from the graph should hold for the 
probability distribution that the graph represents
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a0 0.75
a1 0.25

b0 0.33
b1 0.67

a0b0 a0b1 a1b0 a1b1

c0 0.45 1 0.9 0.7
c1 0.55 0 0.1 0.3

A B

C

P(a,b,c.d) = 
P(a)P(b)P(c|a,b)P(d|c)

D
c0 c1

d0 0.3 0.5
d1 07 0.5

Conditional probability tables 
(CPTs)
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A B

C

P(a,b,c.d) = 
P(a)P(b)P(c|a,b)P(d|c)

D

A~N(μa, Σa) B~N(μb, Σb)

C~N(A+B, Σc)

D~N(μd+C, Σd)
D

C

P(
D
| 
C)

Conditional probability density 
func. (CPDs)
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Summary of BN semantics

 Defn : A Bayesian network is a pair (G, P) where P factorizes 
over G, and where P is specified as set of CPDs associated 
with G’s nodes.

 Conditional independencies imply factorization

 Factorization according to G implies the associated conditional independencies.

 Are there other independences that hold for every distribution P that factorizes 
over G?
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Soundness and completeness 
D-separation is sound and "complete" w.r.t. BN factorization law

Soundness:
Theorem: If a distribution P factorizes according to G, then I(G)  I(P).

"Completeness":
"Claim": For any distribution P that factorizes over G, if (X  Y | Z) I(P) 
then d-sepG(X; Y | Z). 

Contrapositive of the completeness statement 

 "If X and Y are not d-separated given Z in G, then X and Y are dependent in all 
distributions P that factorize over G."

 Is this true?
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Distributional equivalence and I-
equivalence

 All independence in Id(G) will be captured in If(G), is the reverse 
true?

 Are "not-independence" from G all honored in Pf ?  
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Soundness and completeness
 Contrapositive of the completeness statement 

 "If X and Y are not d-separated given Z in G, then X and Y are dependent in all 
distributions P that factorize over G."

 Is this true?

 No. Even if a distribution factorizes over G, it can still contain 
additional independencies that are not reflected in the structure

 Example: graph A->B, for actually independent A and B 
(the independence can be captured by some subtle way 
of parameterization) 

 Thm: Let G be a BN graph. If X and Y are not d-separated given Z in 
G, then X and Y are dependent in some distribution P that factorizes 
over G.
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 Theorem : For almost all distributions P that factorize over 
G, i.e., for all distributions except for a set of "measure zero" 
in the space of CPD parameterizations, we have that I(P) = 
I(G)
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Uniqueness of BN
 Very different BN graphs can actually be equivalent, in that 

they encode precisely the same set of conditional 
independence assertions.

(X  Y | Z).
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I-equivalence
 Defn : Two BN graphs G1 and G2 over X are I-equivalent if I(G1) = 

I(G2). 

 The set of all graphs over X is partitioned into a set of mutually exclusive and 
exhaustive I-equivalence classes, which are the set of equivalence classes 
induced by the I-equivalence relation.

 Any distribution P that can be factorized over one of these graphs can be 
factorized over the other. 

 Furthermore, there is no intrinsic property of P that would allow us associate it 
with one graph rather than an equivalent one. 

 This observation has important implications with respect to our ability to 
determine the directionality of influence. 
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Detecting I-equivalence
 Defn : The skeleton of a Bayesian network graph G over V is an 

undirected graph over V that contains an edge {X, Y} for every edge 
(X, Y) in G.

 Thm : Let G1 and G2 be two graphs over V. If G1 and G2 have the 
same skeleton and the same set of v-structures then they are I-
equivalent.

 graph equivalence 
 Same trail
 But not necessarily active 
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Minimum I-MAP
 Complete graph is a (trivial) I-map for any distribution, yet it 

does not reveal any of the independence structure in the 
distribution.
 Meaning that the graph dependence is arbitrary, thus by careful parameterization 

an dependencies can be captured
 We want a graph that has the maximum possible I(G), yet still  I(P)

 Defn : A graph object G is a minimal I-map for a set of 
independencies I if it is an I-map for I, and if the removal of 
even a single edge from G renders it not an I-map.
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Minimum I-MAP is not unique
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Simple BNs: 
Conditionally Independent Observations

y1



Data

Model parameters

y2 yn-1 yn
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The “Plate” Micro

yi

i=1:n



Data = {y1,…yn}

Model parameters

Plate = rectangle in graphical model

variables within a plate are replicated
in a conditionally independent manner
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Hidden Markov Model: 
from static to dynamic mixture models

Dynamic mixture

A AA AX2 X3X1 XT

Y2 Y3Y1 YT... 

... 

Static mixture

AX1

Y1

N
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Definition (of HMM)
 Observation space

Alphabetic set:
Euclidean space:

 Index set of hidden states

 Transition probabilities between any two states

or

 Start probabilities

 Emission probabilities associated with each state

or in general:

A AA Ax2 x3x1 xT

y2 y3y1 yT... 

... 
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Probability of a parse
 Given a sequence x = x1……xT

and a parse y = y1, ……, yT,
 To find how likely is the parse:

(given our HMM and the sequence)

p(x, y) = p(x1……xT, y1, ……, yT) (Joint probability)
= p(y1) p(x1 | y1) p(y2 | y1) p(x2 | y2) … p(yT | yT-1) p(xT | yT)
= p(y1) P(y2 | y1) … p(yT | yT-1) × p(x1 | y1) p(x2 | y2) … p(xT | yT)
= p(y1, ……, yT) p(x1……xT | y1, ……, yT)

A AA Ax2 x3x1 xT

y2 y3y1 yT... 

... 
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Summary
 Defn (3.2.5): A Bayesian network is a pair (G, P) where P 

factorizes over G, and where P is specified as set of local 
conditional probability dist. CPDs associated with G’s nodes.

 A BN capture “causality”, “generative schemes”, “asymmetric 
influences”, etc., between entities

 Local and global independence properties identifiable via d-
separation criteria (Bayes ball)

 Computing joint likelihood amounts multiplying CPDs 
 But computing marginal can be difficult
 Thus inference is in general hard

 Important special cases:
 Hidden Markov models
 Tree models
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