
School of Computer Science

© Eric Xing @ CMU, 2005-2014 1

Probabilistic Graphical Models

Approximate Inference:
Advanced Topics in MCMC

Eric Xing
Lecture 18, March 24, 2014

Recap of MCMC
 Markov Chain Monte Carlo methods use adaptive proposals

Q(x’|x) to sample from the true distribution P(x)

 Metropolis-Hastings allows you to specify any proposal Q(x’|x)
 But choosing a good Q(x’|x) requires care

 Gibbs sampling sets the proposal Q(x’|x) to the conditional
distribution P(x’|x)
 Acceptance rate always 1!
 But remember that high acceptance usually entails slow exploration
 In fact, there are better MCMC algorithms for certain models

 Knowing when to halt burn-in is an art
© Eric Xing @ CMU, 2005-2014 2

Auxiliary Variables
 Advanced MCMC algorithms rely on auxiliary variables

 Auxiliary variables are extra r.v.s not from the original model
 They are random-valued intermediate quantities that allow us to sample

model r.v.s in creative ways

 Suppose x is an r.v. and v is an a.v.. Generally, we use a.v.s
when:
 P(x|v) and P(v|x) have simple forms
 P(x,v) is easy to navigate

© Eric Xing @ CMU, 2005-2014 3

Slice Sampling
 Slice sampling is an auxiliary variable MCMC algorithm

 Key idea: uniformly sample the area under P’(x) = aP(X), instead of P(x)
 Never evaluate expensive P(x), only evaluate cheap P’(x)

© Eric Xing @ CMU, 2005-2014 4

P’(x)
h

x

P(x)

Slice Sampling
 When is Slice sampling useful?

 Ex: Markov Random Fields where P(x) = (1/a) * exp(bx)
 Normalizer (1/a) usually intractable to evaluate!
 Slice sampling only requires (easy) evaluation of P’(x) = exp(bx)

© Eric Xing @ CMU, 2005-2014 5

P’(x)
h

x

P(x)

Slice Sampling
 Slice sampling uses an a.v. h (in addition to the r.v. x)

 The pair (x,h) is the position of the sampler in the area under P’(x)

 We only need to know P’(x) = aP(x) for some unknown a
 The algorithm iterates between two steps:

 Step 1: sample h from

 Step 2: sample x from

© Eric Xing @ CMU, 2005-2014 6

)](',0[)|(xPUniformxhQ 

)|(hxQ
1

0

hxP )('

otherwise

if

P’(x)
h

x

(x,hold)

(x,h)

P’(x)
h

x

(x,h) (xold,h)

Step 1 Step 2

(uniform dist. on
all x s.t. P’(x)≥h)

Slice Sampling
 The algorithm iterates between two steps:

 Step 1: sample h from

 Step 2: sample x from

 Step 2 requires finding the set {x s.t. P’(x)≥h}
 Alternative 1: rejection sampling (reject whenever we get x s.t. P’(x)<h)
 Alternative 2: “Bracketing” technique (to be presented shortly)

© Eric Xing @ CMU, 2005-2014 7

)](',0[)|(xPUniformxhQ 

)|(hxQ
1

0

hxP )('

otherwise

if

P’(x)
h

x

(x,hold)

(x,h)

P’(x)
h

x

(x,h) (xold,h)

Step 1 Step 2

(uniform dist. on
all x s.t. P’(x)≥h)

Why does this work?
 At convergence, the samples (x,h) will be uniformly distributed

under the area of P’(x)
 If we marginalize out h, we get samples from P(x) = (1/a)P’(x)

 Never needed to evaluate normalizer (1/a)!

© Eric Xing @ CMU, 2005-2014 8

P’(x)
h

x

P(x)

Samples from P(x)

Why does this work?
 How to marginalize out h?

 We have samples (x1,h1), (x1,h2), (x2,h2), (x2,h3), …
 Marginalization is just dropping h from the samples
 After dropping h, left with x1, x2, x3, … which are samples from P(x)!

© Eric Xing @ CMU, 2005-2014 9

P’(x)
h

x

P(x)

Samples from P(x)

Handling difficult Q(x|h)
 Step 2 (sampling Q(x|h)) may not be easy

 For complex distributions, cannot analytically find {x s.t. P’(x) ≥ h}
 However, we can still easily evaluate P’(x) at any x…

 Solution: “bracketing” strategy
1. Draw a random bracket width w, and place the bracket on (xold,h)
2. Expand the bracket until the endpoints a, b are “above P’(x)”: i.e. P’(a) < h and P’(b) < h
3. Uniformly sample from within the bracket (reject samples x s.t. P’(x) < h)

© Eric Xing @ CMU, 2005-2014 10

P’(x)
h

x

w

(xold,h)

Satisfies detailed balance, but
not as efficient because the

brackets can miss other modes

How to Sample from Different
Model Spaces?
 Detailed Balance

 Why we need detailed balance?

 Stationary distribution !
 Then how can such a handle the following case?

11

)|()()|()(xxTxxxTx  

© Eric Xing @ CMU, 2005-2014

2 clusters 3 clusters

)(x
)(x

Reversible Jump MCMC
 An MCMC algorithm that allows for model selection

 Examples: choosing # clusters K, or even switching between two
completely different models P1(x) and P2(x)

© Eric Xing @ CMU, 2005-2014 12

2 clusters 3 clusters

RJMCMC
 Definitions:

 x – model r.v.s (the number of x’s can change depending on the model)
 u – auxiliary variables used to perform “dimension matching”
 m – an indicator representing which model we are currently using
 P(x|m) – probability distribution for r.v.s x assuming model m

 RJMCMC uses two types of proposal distribution:
 j(m’|m) – model proposal; switches from model m to m’. Must be

reversible!
 q(x’,u’|m→m’,x,u) – data proposal; proposes (x’,u’) under the new model

m’, starting from (x,u) under the previous model m

 RJMCMC also requires a mapping function:
 hm,m’(x,u) – explains how (x,u) under model m maps to (x’,u’) under m’

© Eric Xing @ CMU, 2005-2014 13

The mapping function h()
 Properties of hm,m’(x,u):

 Is deterministic (non-random)
 Takes a vector (x,u) as input, and outputs a vector (x’,u’)

 Dimension of x is usually different from x’ (and likewise for u,u’)
 Must be bijective (one-to-one) so that its inverse is well-defined

 Simple example: switching from 2 clusters to 3 clusters
 Let x1, x2 be the first 2 cluster centers
 Randomly draw an a.v. u to be the 3rd cluster center
 Then

 i.e. h2,3() maps a 2-cluster model to a 3-cluster model by setting the 3rd

cluster center x3’ to u (dimension matching)
© Eric Xing @ CMU, 2005-2014 14






















ux
xx
xx

uxxh

3

22

11

213,2),,(

RJMCMC Algorithm
1. Initialize x,u,m
2. Repeat until convergence:

1. Propose a new model m’ using j(m’|m)
2. Propose a new model state (x’,u’) using q(x’,u’|m→m’,x,u)
3. Compute the acceptance probability:

© Eric Xing @ CMU, 2005-2014 15

Ratio of model probs.

Inv. ratio of model proposals
Inv. ratio of data proposals

Absolute value of the determinant
of the Jacobian of h()

Equivalent to MH algorithm’s inv. ratio of proposals Q(x|x’)/Q(x’|x)
























 

),(
),(

det
),,|,(
),,|,(

)|(
)|(

)|(
)|(,1min),,|,,(,

ux
uxh

uxmmuxq
uxmmuxq

mmj
mmj

mxP
mxPuxmuxmA mm

The abs-det-Jacobian term

 A “Jacobian” is a matrix of all 1st derivatives
 Example: 2-clusters to 3-clusters; recall

© Eric Xing @ CMU, 2005-2014 16

),(
),(

det ,

ux
uxh mm


 











































100
010
001

///
///
///

),,(
),,(

32313

22212

12111

21

213,2

uxxxxx
uxxxxx
uxxxxx

uxx
uxxh






















ux
xx
xx

uxxh

3

22

11

213,2),,(

The Jacobian is

thus 1
),,(

),,(
det

21

213,2 



uxx

uxxh In general, we construct h() so that the
abs-det-Jacobian term is trivial (e.g. 1)

The Jacobian term
 Why do we need the Jacobian?

 It arises from a change of variables during integration!
 Consider the detailed balance equation; take integrals on both sides:

 g() combines the model proposal j() and the data proposal q()
 For simplicity, we omit the model indicator m, because the dimensionality

of (x,u) completely identifies which model m the system is in
 Now perform a change of variables from (x’,u’) to (x,u) on the RHS:

 The equation above holds if, for all x,x’,u,u’,

© Eric Xing @ CMU, 2005-2014 17

),(
),(

det ,

ux
uxh mm


 

  udxduxuxAuxuxgxPdxduuxuxAuxuxgxP),|,(),|,()(),|,(),|,()(

 


  dxdu

ux
uxh

uxuxAuxuxgxPdxduuxuxAuxuxgxP uxux

),(
),(

det),|,(),|,()(),|,(),|,()(),(),,(

),(
),(

det),|,(),|,()(),|,(),|,()(),(),,(

ux
uxh

uxuxAuxuxgxPuxuxAuxuxgxP uxux




 

The Jacobian term
 Why do we need the Jacobian?

 The detailed balance condition holds if, for all x,x’,u,u’,

 We can now construct an acceptance probability that satisfies detailed
balance (see previous lecture, MH algorithm):

 Restoring the model indicator m, we get

© Eric Xing @ CMU, 2005-2014 18

),(
),(

det ,

ux
uxh mm


 

),(
),(

det),|,(),|,()(),|,(),|,()(),(),,(

ux
uxh

uxuxAuxuxgxPuxuxAuxuxgxP uxux




 





















 

),(
),(

det
),|,(
),|,(

)(
)(,1min),|,(),(),,(

ux
uxh

uxuxg
uxuxg

xP
xPuxuxA uxux
























 

),(
),(

det
),,|,(
),,|,(

)|(
)|(

)|(
)|(,1min),,|,,(,

ux
uxh

uxmmuxq
uxmmuxq

mmj
mmj

mxP
mxPuxmuxmA mm

Question:
 What is our stationary distribution in our RJMCMC?

© Eric Xing @ CMU, 2005-2014 19

RJMCMC Example: Clustering
 Models: Let m = 1,2,3,… denote the number of clusters

 P(x,c|m) - probability of (observed) data x and (unknown) cluster centers
c, assuming m clusters
 Can be a Gaussian mixture model or any other clustering model. For this

example, we don’t need to know its exact form.

 Proposal distributions:
 j(m’|m) – switches from m to m’ clusters, where m’ = {m-1,m,m+1}

 m’ = m-1 is used to decrease the number of clusters
 m’ = m+1 is used to increase the number of clusters
 m’ = m is used to change cluster centers c

 q(x’,c’,u’|m→m’,x,c,u) – form differs depending on m’ and m
 hm,m’(c,u) – again, form differs depending on m’ and m
 abs-det-Jacobian – turns out that this is always 1!

© Eric Xing @ CMU, 2005-2014 20

RJMCMC Example: Clustering

© Eric Xing @ CMU, 2005-2014 21

x1 x2 xn…

c1 cm-1… cm

x3

x1 x2 xn…

c1 cm-1… cm

x3

m’=m-1 m’=m m’=m+1

Remove cluster (e.g. cm)
Change cluster
center(e.g. c1) Add cluster

x1 x2 xn…

c1 cm-1… cm

x3

cm+1

Starting state: m cluster centers

x1 x2 xn…

c1 cm-1…

x3

cm

RJMCMC Example: Clustering
 We set j() as follows:

 For q(), h() and the Jacobian, consider the 3 cases
separately:
 m’ = m (change cluster center):

 u, u’ are used to change the value of some ci

 First, pick a cluster center i in {1,…,m} to change assignment (at uniform)
 Next, draw a new cluster center u according to some proposal qcenter(u)
 Finally, set c’i = u

© Eric Xing @ CMU, 2005-2014 22















1 if5.0
 if2

1 if5.0
)|(

mmp
mmp

mmp
mmj

“Explore cluster centers c 2p of the time,
change the number of clusters 1-2p of the time”

)(1),,,|,,(uq
m

ucxmmucxq center































u
c

c
c

uch

m

mmmi 
2

1

,,),(where c’j = cj if j ≠ i, and c’i = u, and u’ = ciand

Notice that reverse moves have the
same probability as forward moves

RJMCMC Example: Clustering
 For q(), h() and the Jacobian, consider the 3 cases

separately:
 m’ = m (change cluster center):

 What does the abs-det-Jacobian look like?
 Recall that hi,m,m’=m(c,u) sets c’j = cj for all j ≠ i, and c’i = u, and u’ = ci

 Let’s say we’re changing ci, where i = m

© Eric Xing @ CMU, 2005-2014 23
























































 

0100
1000

0010
0001

////
////

////
////

),(
),(

21

21

222212

112111

,,













uucucucu
uccccccc

uccccccc
uccccccc

uc
uch

m

mmmmm

m

m

mmmmi

11
),(

),(
det ,, 


 

uc
uch mmmmiTherefore In fact, the abs-det-Jacobian is 1 for any choice of i!

RJMCMC Example: Clustering
 For q(), h() and the Jacobian, consider the 3 cases

separately:
 m’ = m-1 (remove a cluster):

 u is empty, and u’ matches the cluster to be removed
 Pick a cluster center i in {1,…,m} to remove (at uniform)

© Eric Xing @ CMU, 2005-2014 24

m
ucxmmucxq 1),,,|,,(



































u
c

c
c

uch

m

mmmi

1

2

1

1,,),( where c’j = cj if j < i, and c’j = cj+1 if j > i, and u’ = ciand

RJMCMC Example: Clustering
 For q(), h() and the Jacobian, consider the 3 cases

separately:
 m’ = m-1 (remove a cluster):

 For the Jacobian, let’s assume we’re removing cluster ci where i = m
 Thus we set c’j = cj for all j < m, and u’ = cm

© Eric Xing @ CMU, 2005-2014 25




































































1000
0100

0010
0001

////
////

////
////

),(
),(

121

112111

2122212

1112111

1,,













mm

mmmmmm

mm

mm

mmmmi

cucucucu
cccccccc

cccccccc
cccccccc

uc
uch

11
),(

),(
det 1,, 


 

uc
uch mmmmiTherefore Again, the abs-det-Jacobian is 1 for any choice of i!

RJMCMC Example: Clustering
 For q(), h() and the Jacobian, consider the 3 cases

separately:
 m’ = m+1 (add a cluster):

 u is the center of the cluster to be added, and u’ is empty
 We draw a cluster center u according to some proposal qcenter(u)

© Eric Xing @ CMU, 2005-2014 26

)(),,,|,,(uqucxmmucxq center



































1

2

1

1,,),(

m

m

mmmi

c
c

c
c

uch  where c’j = cj for all j ≤ m, and c’m+1 = uand

RJMCMC Example: Clustering
 For q(), h() and the Jacobian, consider the 3 cases

separately:
 m’ = m+1 (add a cluster):

 For the Jacobian, recall we set c’j = cj for all j ≤ m, and c’m+1 = u

© Eric Xing @ CMU, 2005-2014 27






























































1000
0100

0010
0001

////
////

////
////

),(
),(

112111

21

222212

112111

1,













uccccccc
uccccccc

uccccccc
uccccccc

uc
uch

mmmmm

mmmmm

m

m

mmm

11
),(

),(
det 1, 


 

uc
uch mmmTherefore

RJMCMC Example: Clustering
 Notice the following important properties:

 All model changes j(m’|m) are all reversible
 We can get to any number of clusters m
 We can change the location of any cluster i
 This ensures we converge to the stationary distribution

 abs-det-Jacobian is always 1
 We designed our r.v. mappings h() to make this true!

 Take note:
 For most mixture models, we can’t simply use P(x,c|m). We need to

introduce hidden cluster assignment variables z for each data point x,
and incorporate them into the proposals.
 The basic principle of RJMCMC remains the same, though

© Eric Xing @ CMU, 2005-2014 28

Large-scale MCMC
 Modern datasets can be very large

 Millions of data points
 Require Gigabytes of memory
 E.x. Yahoo web graph has ~1.4 billion nodes and 6.6 billion edges

 So far, we have not explained how to take advantage of
parallelism in MCMC
 Without parallelism, we cannot use large datasets!

 In the rest of this lecture, we will cover techniques that permit
multiple CPUs/cores to be used with MCMC

© Eric Xing @ CMU, 2005-2014 29

Taking Multiple Chains
 Proper use of MCMC actually requires parallelism

 To determine convergence, you need to take multiple MCMC chains
 Chains are independent, so you can run one chain per CPU
 Once converged, you can combine samples from all chains

© Eric Xing @ CMU, 2005-2014 30

Chain on core 1

Chain on core 2

Chain on core 3

Not converged Converged

Taking Multiple Chains
 Taking multiple chains doesn’t solve all issues, though

 If burn-in is long, then all chains will take a long time to converge!
 We need a way to take each sample faster…

© Eric Xing @ CMU, 2005-2014 31

Chain on core 1

Chain on core 2

Chain on core 3

Not converged Converged

Parallel Gibbs Sampling
 Recall that in MRFs, we Gibbs sample by sampling from

P(x|MB(x)), the conditional distribution of x given its Markov
Blanket MB(x)
 For MRFs, the Markov Blanket of x is just its neighbors
 In the MRF below, the red node’s Markov Blanket consists of the blue

nodes

© Eric Xing @ CMU, 2005-2014 32

Parallel Gibbs Sampling
 Observe that we can Gibbs sample the two green nodes

simultaneously
 Neither node is part of the other’s Markov Blanket, so their conditional

distributions do not depend on each other
 Sampling one of the green nodes doesn’t change the conditional

distribution of the other node!

© Eric Xing @ CMU, 2005-2014 33

Parallel Gibbs Sampling
 How do we generalize this idea to the whole graph?

 Find subsets of nodes, such that all nodes in a given subset are not in
each other’s Markov Blankets, and the subsets cover the whole graph
 The subsets should be as large as possible

 Because we can Gibbs sample all nodes in a subset at the same time

 At the same time, we want as few subsets as possible
 The Markov Blankets of different subsets overlap, so they cannot be sampled at the

same time. We must process the subsets sequentially.

© Eric Xing @ CMU, 2005-2014 34

Parallel Gibbs Sampling
 We can find these covering subsets with k-coloring algorithms

(Gonzales et al., 2011)
 A k-coloring algorithm colors a graph using k colors, such that:

 Every node gets one color
 No edge has two nodes of the same color

 Trees always admit a 2-coloring (e.g. below)
 Assign one color to some node, and alternate colors as you move away

© Eric Xing @ CMU, 2005-2014 35

Parallel Gibbs Sampling
 Bipartite graphs are always 2-colorable

 Color each side of the bipartite graph with opposite colors
 e.x. Latent Dirichlet Allocation model is bipartite

 However, not all graphs have k-colorings for all k ≥ 2
 In the worst case, a graph with n nodes can require n colors

 The full clique is one such graph
 Determining if a graph is k-colorable for k > 2 is NP-complete
 In practice, we employ heuristics to find k-colorings

 Instead of using k-colorings, why not just Gibbs sample all
variables at the same time?
 The Markov Chain may become non-ergodic, and is no longer

guaranteed to converge to the stationary distribution!
© Eric Xing @ CMU, 2005-2014 36

Online MCMC
 In “online” algorithms, we need to process new data points

one-at-a-time
 Moreover, we have to “forget” older data points because memory is finite

 For such applications to be viable, we can only afford
constant time work per new data point
 Otherwise we will reach a point where new data can no longer be

processed in a reasonable amount of time

 What MCMC techniques can we use to make an online
algorithm?

© Eric Xing @ CMU, 2005-2014 37

Sequential Monte Carlo
 SMC is a generalization of Particle Filters

 Recall that PFs incrementally sample P(Xt|Y1:t), where the Xs are latent
r.v.s and the Ys are observations under a state-space model

 SMC does not assume the GM is a state-space model, or has any
particular structure at all

 Suppose we have n r.v.s x1,…,xn
 SMC first draws samples from the marginal distribution P(x1), then

P(x1:2), and so on until P(x1:n)
 Key idea: Construct proposals such that we sample from P(x1:k+1) in

constant time, given samples from P(x1:k)
 Like other MCMC algorithms, we only require that we can evaluate

P’(x1:n) = aP(x1:n) for some unknown a

© Eric Xing @ CMU, 2005-2014 38

Sequential Importance Sampling
 SIS is the foundation of Sequential Monte Carlo

 It allows new variables to be sampled in constant time, without
resampling older variables

 SIS uses proposal distributions with the following structure:

 Notice we can propose xk+1 if we’ve already drawn x1:k, without having to
redraw x1:k

© Eric Xing @ CMU, 2005-2014 39











n

k
kkk

nnnnnnn

xxqxq

xxqxqxq

2
1:111

1:11:11:1

)|()(

)|()()(

Sequential Importance Sampling
 In normalized importance sampling, recall how the sample

weights wi are defined:

 In SIS, the unnormalized weights r can be rewritten as a
telescoping product:

© Eric Xing @ CMU, 2005-2014 40


i

ii
P

wxfXf)()(

)(
)(

i

i
i

xQ
xPr







j

j

i
i

r
rwwhere and






















n

k
kk

nnnn

nnnnn

nn

nn

nn

nn

nn
n

xxr

xxr
xxqxP

xP
xq
xP

xq
xPxr

2
:111

:11:11

1:11:11

:1

1:11

1:11

:1

:1
:1

)()(

)()(
)|()(

)(
)(
)(

)(
)()(




)|()(

)()(
1:11:11

:1
:1





nnnnn

nn
nn xxqxP

xPxwhere

Sequential Importance Sampling

 This means the unnormalized weights r can be computed incrementally
 Compute αn and use it to update r(x1:n-1) to r(x1:n)

 NB: For this update to be constant time, we also require P’n(x1:n) to be computable
from P’n-1(x1:n-1) in constant time

 We remember the unnormalized weights r at each iteration, and compute
the normalized weights w as needed from r

 Thus, we can sample x AND compute the normalized weights w using
constant time per new variable xn

 So SIS meets the requirements for an online inference algorithm!

 Even better, the samples don’t depend on each other
 Assign one CPU core per sample to make the SIS algorithm parallel!

© Eric Xing @ CMU, 2005-2014 41





n

k
kkn xxrxr

2
:111:1)()()(

)|()(
)()(

1:11:11

:1
:1





nnnnn

nn
nn xxqxP

xPxwhere

Sequential Importance Sampling
 SIS algorithm:

 At time n = 1
 Draw samples xi

1 ~ q1(x1)
 Compute unnormalized weights
 Compute normalized weights wi

1 by normalizing ri
1

 At time n ≥ 2
 Draw samples xi

n ~ qn(xn|xi
1:n-1)

 Compute unnormalized weights

 Compute normalized weights wi
n by normalizing ri

n

© Eric Xing @ CMU, 2005-2014 42

)(/)(11111
iii xqxPr 

)|()(
)()(

1:11:11

:1
1:11 i

n
i
nn

i
nn

i
nni

n
i
nn

i
n

i
n xxqxP

xPrxrr


 


 

Sequential Importance Sampling
 But we are not done yet!

 Unfortunately, SIS suffers from a severe drawback: the
variance of the samples increases exponentially with n!
 See eq (31) of Doucet’s SMC tutorial for an example

 Resampling at each iteration will decrease the sample
variance!
 Similar to weighted resampling from the first MC lecture!

© Eric Xing @ CMU, 2005-2014 43

Multinomial Resampling
 Suppose we have m samples x1,…,xm with corresponding

importance weights w1,…,wm

 Construct a categorical distribution from these samples:
 This distribution has m categories (choices)
 The probability of drawing category k is wk

 Drawing category k gets us xk

 To resample, just draw N times from this distribution
 Note that N can be greater/less than m!

 For more advanced strategies such as systematic and
residual resampling, refer to page 13 of Doucet’s SMC tutorial

© Eric Xing @ CMU, 2005-2014 44

Why Resample?
 Apart from decreasing variance, there are other reasons…

 Resampling removes samples xk with low weights wk

 Low-weight samples come from low-probability regions of P(x)
 We want to focus computation on high-probability regions of P(x)

 Notice that each sample gets an equal amount of computation,
regardless of its weight wk

 Resampling ensures that more computation is spent on samples xk that
come from high-probability regions of P(x)

 Resampling prevents a small number of samples xk from
dominating the empirical distribution
 Resampling resets all weights wk to 1/N

 This prevents sample weights wk from growing until they reach 1
© Eric Xing @ CMU, 2005-2014 45

Sequential Monte Carlo
 The SMC algorithm is just SIS with resampling:

 At time n = 1
 Draw samples xi

1 ~ q1(x1)
 Compute unnormalized weights
 Compute normalized weights wi

1 by normalizing ri
1

 Resample wi
1, xi

1 into N equally-weighted particles xi
1

 At time n ≥ 2
 Draw samples xi

n ~ qn(xn|xi
1:n-1)

 Compute unnormalized weights

 Compute normalized weights wi
n by normalizing ri

n

 Resample wi
n,xi

1:n into N equally-weighted particles xi
1:n

© Eric Xing @ CMU, 2005-2014 46

)(/)(11111
iii xqxPr 

)|()(
)()(

1:11:11

:1
1:11 i

n
i
nn

i
nn

i
nni

n
i
nn

i
n

i
n xxqxP

xPrxrr


 


 

Summary
 Slice sampling

 Samples from area under P(x)

 Reverse Jump MCMC
 Allows us to switch between different models P(x)

 Parallel Gibbs sampling
 Exploit graph colorings to sample same-colored nodes in parallel

 Sequential Monte Carlo
 Uses incremental proposal distributions
 Provides a framework for designing online, parallel MCMC algorithms

© Eric Xing @ CMU, 2005-2014 47

