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Approximate Inference:
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Recap of MCMC
 Markov Chain Monte Carlo methods use adaptive proposals 

Q(x’|x) to sample from the true distribution P(x)

 Metropolis-Hastings allows you to specify any proposal Q(x’|x)
 But choosing a good Q(x’|x) requires care

 Gibbs sampling sets the proposal Q(x’|x) to the conditional 
distribution P(x’|x)
 Acceptance rate always 1!
 But remember that high acceptance usually entails slow exploration
 In fact, there are better MCMC algorithms for certain models

 Knowing when to halt burn-in is an art
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Auxiliary Variables
 Advanced MCMC algorithms rely on auxiliary variables

 Auxiliary variables are extra r.v.s not from the original model
 They are random-valued intermediate quantities that allow us to sample 

model r.v.s in creative ways

 Suppose x is an r.v. and v is an a.v.. Generally, we use a.v.s 
when:
 P(x|v) and P(v|x) have simple forms
 P(x,v) is easy to navigate
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Slice Sampling
 Slice sampling is an auxiliary variable MCMC algorithm

 Key idea: uniformly sample the area under P’(x) = aP(X), instead of P(x)
 Never evaluate expensive P(x), only evaluate cheap P’(x)
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Slice Sampling
 When is Slice sampling useful?

 Ex: Markov Random Fields where P(x) = (1/a) * exp(bx)
 Normalizer (1/a) usually intractable to evaluate!
 Slice sampling only requires (easy) evaluation of P’(x) = exp(bx)

© Eric Xing @ CMU, 2005-2014 5

P’(x)
h

x

P(x)



Slice Sampling
 Slice sampling uses an a.v. h (in addition to the r.v. x)

 The pair (x,h) is the position of the sampler in the area under P’(x)

 We only need to know P’(x) = aP(x) for some unknown a
 The algorithm iterates between two steps:

 Step 1: sample h from

 Step 2: sample x from
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Slice Sampling
 The algorithm iterates between two steps:

 Step 1: sample h from

 Step 2: sample x from

 Step 2 requires finding the set {x s.t. P’(x)≥h}
 Alternative 1: rejection sampling (reject whenever we get x s.t. P’(x)<h)
 Alternative 2: “Bracketing” technique (to be presented shortly)
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Why does this work?
 At convergence, the samples (x,h) will be uniformly distributed 

under the area of P’(x)
 If we marginalize out h, we get samples from P(x) = (1/a)P’(x)

 Never needed to evaluate normalizer (1/a)!
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Why does this work?
 How to marginalize out h?

 We have samples (x1,h1), (x1,h2), (x2,h2), (x2,h3), …
 Marginalization is just dropping h from the samples
 After dropping h, left with x1, x2, x3, … which are samples from P(x)!
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Handling difficult Q(x|h)
 Step 2 (sampling Q(x|h)) may not be easy

 For complex distributions, cannot analytically find {x s.t. P’(x) ≥ h}
 However, we can still easily evaluate P’(x) at any x…

 Solution: “bracketing” strategy
1. Draw a random bracket width w, and place the bracket on (xold,h)
2. Expand the bracket until the endpoints a, b are “above P’(x)”: i.e. P’(a) < h and P’(b) < h
3. Uniformly sample from within the bracket (reject samples x s.t. P’(x) < h)
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How to Sample from Different 
Model Spaces?
 Detailed Balance

 Why we need detailed balance?

 Stationary distribution          !
 Then how can such a             handle the following case?
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Reversible Jump MCMC
 An MCMC algorithm that allows for model selection

 Examples: choosing # clusters K, or even switching between two 
completely different models P1(x) and P2(x)
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RJMCMC
 Definitions:

 x – model r.v.s (the number of x’s can change depending on the model)
 u – auxiliary variables used to perform “dimension matching”
 m – an indicator representing which model we are currently using
 P(x|m) – probability distribution for r.v.s x assuming model m

 RJMCMC uses two types of proposal distribution:
 j(m’|m) – model proposal; switches from model m to m’. Must be 

reversible!
 q(x’,u’|m→m’,x,u) – data proposal; proposes (x’,u’) under the new model 

m’, starting from (x,u) under the previous model m

 RJMCMC also requires a mapping function:
 hm,m’(x,u) – explains how (x,u) under model m maps to (x’,u’) under m’
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The mapping function h()
 Properties of hm,m’(x,u):

 Is deterministic (non-random)
 Takes a vector (x,u) as input, and outputs a vector (x’,u’)

 Dimension of x is usually different from x’ (and likewise for u,u’)
 Must be bijective (one-to-one) so that its inverse is well-defined

 Simple example: switching from 2 clusters to 3 clusters
 Let x1, x2 be the first 2 cluster centers
 Randomly draw an a.v. u to be the 3rd cluster center
 Then

 i.e. h2,3() maps a 2-cluster model to a 3-cluster model by setting the 3rd

cluster center x3’ to u (dimension matching)
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RJMCMC Algorithm
1. Initialize x,u,m
2. Repeat until convergence:

1. Propose a new model m’ using j(m’|m)
2. Propose a new model state (x’,u’) using q(x’,u’|m→m’,x,u)
3. Compute the acceptance probability:
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The abs-det-Jacobian term

 A “Jacobian” is a matrix of all 1st derivatives
 Example: 2-clusters to 3-clusters; recall
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The Jacobian term
 Why do we need the Jacobian?

 It arises from a change of variables during integration!
 Consider the detailed balance equation; take integrals on both sides:

 g() combines the model proposal j() and the data proposal q()
 For simplicity, we omit the model indicator m, because the dimensionality 

of (x,u) completely identifies which model m the system is in
 Now perform a change of variables from (x’,u’) to (x,u) on the RHS:

 The equation above holds if, for all x,x’,u,u’,
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The Jacobian term
 Why do we need the Jacobian?

 The detailed balance condition holds if, for all x,x’,u,u’,

 We can now construct an acceptance probability that satisfies detailed 
balance (see previous lecture, MH algorithm):

 Restoring the model indicator m, we get
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Question: 
 What is our stationary distribution in our RJMCMC?
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RJMCMC Example: Clustering
 Models: Let m = 1,2,3,… denote the number of clusters

 P(x,c|m) - probability of (observed) data x and (unknown) cluster centers 
c, assuming m clusters
 Can be a Gaussian mixture model or any other clustering model. For this 

example, we don’t need to know its exact form.

 Proposal distributions:
 j(m’|m) – switches from m to m’ clusters, where m’ = {m-1,m,m+1}

 m’ = m-1 is used to decrease the number of clusters
 m’ = m+1 is used to increase the number of clusters
 m’ = m is used to change cluster centers c

 q(x’,c’,u’|m→m’,x,c,u) – form differs depending on m’ and m
 hm,m’(c,u) – again, form differs depending on m’ and m
 abs-det-Jacobian – turns out that this is always 1!
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RJMCMC Example: Clustering
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RJMCMC Example: Clustering
 We set j() as follows:

 For q(), h() and the Jacobian, consider the 3 cases 
separately:
 m’ = m (change cluster center):

 u, u’ are used to change the value of some ci

 First, pick a cluster center i in {1,…,m} to change assignment (at uniform)
 Next, draw a new cluster center u according to some proposal qcenter(u)
 Finally, set c’i = u
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RJMCMC Example: Clustering
 For q(), h() and the Jacobian, consider the 3 cases 

separately:
 m’ = m (change cluster center):

 What does the abs-det-Jacobian look like?
 Recall that hi,m,m’=m(c,u) sets c’j = cj for all j ≠ i, and c’i = u, and u’ = ci

 Let’s say we’re changing ci, where i = m
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RJMCMC Example: Clustering
 For q(), h() and the Jacobian, consider the 3 cases 

separately:
 m’ = m-1 (remove a cluster):

 u is empty, and u’ matches the cluster to be removed
 Pick a cluster center i in {1,…,m} to remove (at uniform)
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RJMCMC Example: Clustering
 For q(), h() and the Jacobian, consider the 3 cases 

separately:
 m’ = m-1 (remove a cluster):

 For the Jacobian, let’s assume we’re removing cluster ci where i = m
 Thus we set c’j = cj for all j < m, and u’ = cm
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RJMCMC Example: Clustering
 For q(), h() and the Jacobian, consider the 3 cases 

separately:
 m’ = m+1 (add a cluster):

 u is the center of the cluster to be added, and u’ is empty
 We draw a cluster center u according to some proposal qcenter(u)
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RJMCMC Example: Clustering
 For q(), h() and the Jacobian, consider the 3 cases 

separately:
 m’ = m+1 (add a cluster):

 For the Jacobian, recall we set c’j = cj for all j ≤ m, and c’m+1 = u
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RJMCMC Example: Clustering
 Notice the following important properties:

 All model changes j(m’|m) are all reversible
 We can get to any number of clusters m
 We can change the location of any cluster i
 This ensures we converge to the stationary distribution

 abs-det-Jacobian is always 1
 We designed our r.v. mappings h() to make this true!

 Take note:
 For most mixture models, we can’t simply use P(x,c|m). We need to 

introduce hidden cluster assignment variables z for each data point x, 
and incorporate them into the proposals.
 The basic principle of RJMCMC remains the same, though
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Large-scale MCMC
 Modern datasets can be very large

 Millions of data points
 Require Gigabytes of memory
 E.x. Yahoo web graph has ~1.4 billion nodes and 6.6 billion edges

 So far, we have not explained how to take advantage of 
parallelism in MCMC
 Without parallelism, we cannot use large datasets!

 In the rest of this lecture, we will cover techniques that permit 
multiple CPUs/cores to be used with MCMC
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Taking Multiple Chains
 Proper use of MCMC actually requires parallelism

 To determine convergence, you need to take multiple MCMC chains
 Chains are independent, so you can run one chain per CPU
 Once converged, you can combine samples from all chains
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Taking Multiple Chains
 Taking multiple chains doesn’t solve all issues, though

 If burn-in is long, then all chains will take a long time to converge!
 We need a way to take each sample faster…
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Parallel Gibbs Sampling
 Recall that in MRFs, we Gibbs sample by sampling from 

P(x|MB(x)), the conditional distribution of x given its Markov 
Blanket MB(x)
 For MRFs, the Markov Blanket of x is just its neighbors
 In the MRF below, the red node’s Markov Blanket consists of the blue 

nodes
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Parallel Gibbs Sampling
 Observe that we can Gibbs sample the two green nodes 

simultaneously
 Neither node is part of the other’s Markov Blanket, so their conditional 

distributions do not depend on each other
 Sampling one of the green nodes doesn’t change the conditional 

distribution of the other node!
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Parallel Gibbs Sampling
 How do we generalize this idea to the whole graph?

 Find subsets of nodes, such that all nodes in a given subset are not in 
each other’s Markov Blankets, and the subsets cover the whole graph
 The subsets should be as large as possible

 Because we can Gibbs sample all nodes in a subset at the same time

 At the same time, we want as few subsets as possible
 The Markov Blankets of different subsets overlap, so they cannot be sampled at the 

same time. We must process the subsets sequentially.
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Parallel Gibbs Sampling
 We can find these covering subsets with k-coloring algorithms 

(Gonzales et al., 2011)
 A k-coloring algorithm colors a graph using k colors, such that:

 Every node gets one color
 No edge has two nodes of the same color

 Trees always admit a 2-coloring (e.g. below)
 Assign one color to some node, and alternate colors as you move away
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Parallel Gibbs Sampling
 Bipartite graphs are always 2-colorable

 Color each side of the bipartite graph with opposite colors
 e.x. Latent Dirichlet Allocation model is bipartite

 However, not all graphs have k-colorings for all k ≥ 2
 In the worst case, a graph with n nodes can require n colors

 The full clique is one such graph
 Determining if a graph is k-colorable for k > 2 is NP-complete
 In practice, we employ heuristics to find k-colorings

 Instead of using k-colorings, why not just Gibbs sample all 
variables at the same time?
 The Markov Chain may become non-ergodic, and is no longer 

guaranteed to converge to the stationary distribution!
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Online MCMC
 In “online” algorithms, we need to process new data points 

one-at-a-time
 Moreover, we have to “forget” older data points because memory is finite

 For such applications to be viable, we can only afford 
constant time work per new data point
 Otherwise we will reach a point where new data can no longer be 

processed in a reasonable amount of time

 What MCMC techniques can we use to make an online 
algorithm?
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Sequential Monte Carlo
 SMC is a generalization of Particle Filters

 Recall that PFs incrementally sample P(Xt|Y1:t), where the Xs are latent 
r.v.s and the Ys are observations under a state-space model

 SMC does not assume the GM is a state-space model, or has any 
particular structure at all

 Suppose we have n r.v.s x1,…,xn
 SMC first draws samples from the marginal distribution P(x1), then 

P(x1:2), and so on until P(x1:n)
 Key idea: Construct proposals such that we sample from P(x1:k+1) in 

constant time, given samples from P(x1:k)
 Like other MCMC algorithms, we only require that we can evaluate 

P’(x1:n) = aP(x1:n) for some unknown a
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Sequential Importance Sampling
 SIS is the foundation of Sequential Monte Carlo

 It allows new variables to be sampled in constant time, without 
resampling older variables

 SIS uses proposal distributions with the following structure:

 Notice we can propose xk+1 if we’ve already drawn x1:k, without having to 
redraw x1:k
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Sequential Importance Sampling
 In normalized importance sampling, recall how the sample 

weights wi are defined:

 In SIS, the unnormalized weights r can be rewritten as a 
telescoping product:
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Sequential Importance Sampling

 This means the unnormalized weights r can be computed incrementally
 Compute αn and use it to update r(x1:n-1) to r(x1:n)

 NB: For this update to be constant time, we also require P’n(x1:n) to be computable 
from P’n-1(x1:n-1) in constant time

 We remember the unnormalized weights r at each iteration, and compute 
the normalized weights w as needed from r

 Thus, we can sample x AND compute the normalized weights w using 
constant time per new variable xn

 So SIS meets the requirements for an online inference algorithm!

 Even better, the samples don’t depend on each other
 Assign one CPU core per sample to make the SIS algorithm parallel!
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Sequential Importance Sampling
 SIS algorithm:

 At time n = 1
 Draw samples xi

1 ~ q1(x1)
 Compute unnormalized weights
 Compute normalized weights wi

1 by normalizing ri
1

 At time n ≥ 2
 Draw samples xi

n ~ qn(xn|xi
1:n-1)

 Compute unnormalized weights

 Compute normalized weights wi
n by normalizing ri

n
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Sequential Importance Sampling
 But we are not done yet!

 Unfortunately, SIS suffers from a severe drawback: the 
variance of the samples increases exponentially with n!
 See eq (31) of Doucet’s SMC tutorial for an example

 Resampling at each iteration will decrease the sample 
variance!
 Similar to weighted resampling from the first MC lecture!
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Multinomial Resampling
 Suppose we have m samples x1,…,xm with corresponding 

importance weights w1,…,wm

 Construct a categorical distribution from these samples:
 This distribution has m categories (choices)
 The probability of drawing category k is wk

 Drawing category k gets us xk

 To resample, just draw N times from this distribution
 Note that N can be greater/less than m!

 For more advanced strategies such as systematic and 
residual resampling, refer to page 13 of Doucet’s SMC tutorial

© Eric Xing @ CMU, 2005-2014 44



Why Resample?
 Apart from decreasing variance, there are other reasons…

 Resampling removes samples xk with low weights wk

 Low-weight samples come from low-probability regions of P(x)
 We want to focus computation on high-probability regions of P(x)

 Notice that each sample gets an equal amount of computation, 
regardless of its weight wk

 Resampling ensures that more computation is spent on samples xk that 
come from high-probability regions of P(x)

 Resampling prevents a small number of samples xk from 
dominating the empirical distribution
 Resampling resets all weights wk to 1/N

 This prevents sample weights wk from growing until they reach 1
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Sequential Monte Carlo
 The SMC algorithm is just SIS with resampling:

 At time n = 1
 Draw samples xi

1 ~ q1(x1)
 Compute unnormalized weights
 Compute normalized weights wi

1 by normalizing ri
1

 Resample wi
1, xi

1 into N equally-weighted particles xi
1

 At time n ≥ 2
 Draw samples xi

n ~ qn(xn|xi
1:n-1)

 Compute unnormalized weights

 Compute normalized weights wi
n by normalizing ri

n

 Resample wi
n,xi

1:n into N equally-weighted particles xi
1:n
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Summary
 Slice sampling

 Samples from area under P(x)

 Reverse Jump MCMC
 Allows us to switch between different models P(x)

 Parallel Gibbs sampling
 Exploit graph colorings to sample same-colored nodes in parallel

 Sequential Monte Carlo
 Uses incremental proposal distributions
 Provides a framework for designing online, parallel MCMC algorithms
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