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Recap of Monte Carlo
 Monte Carlo methods are algorithms that:

 Generate samples from a given probability distribution 
 Estimate expectations of functions            under a distribution

 Why is this useful?
 Can use samples of        to approximate        itself

 Allows us to do graphical model inference when we can’t compute
 Expectations             reveal interesting properties about

 e.g. means and variances of
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Limitations of Monte Carlo
 Direct sampling

 Hard to get rare events in high-dimensional spaces
 Infeasible for MRFs, unless we know the normalizer Z

 Rejection sampling, Importance sampling
 Do not work well if the proposal Q(x) is very different from P(x)
 Yet constructing a Q(x) similar to P(x) can be difficult

 Making a good proposal usually requires knowledge of the analytic form 
of P(x) – but if we had that, we wouldn’t even need to sample!

 Intuition: instead of a fixed proposal Q(x), what if we could use 
an adaptive proposal?

3© Eric Xing @ CMU, 2005-2014



Markov Chain Monte Carlo
 MCMC algorithms feature adaptive proposals

 Instead of Q(x’), they use Q(x’|x) where x’ is the new state being 
sampled, and x is the previous sample

 As x changes, Q(x’|x) can also change (as a function of x’)
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Metropolis-Hastings
 Let’s see how MCMC works in practice

 Later, we’ll look at the theoretical aspects

 Metropolis-Hastings algorithm
 Draws a sample x’ from Q(x’|x), where x is the previous sample
 The new sample x’ is accepted or rejected with some probability A(x’|x)

 This acceptance probability is

 A(x’|x) is like a ratio of importance sampling weights
 P(x’)/Q(x’|x) is the importance weight for x’, P(x)/Q(x|x’) is the importance weight for x
 We divide the importance weight for x’ by that of x
 Notice that we only need to compute P(x’)/P(x) rather than P(x’) or P(x) separately

 A(x’|x) ensures that, after sufficiently many draws, our samples will come 
from the true distribution P(x) – we shall learn why later in this lecture
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The MH Algorithm
1. Initialize starting state x(0), set t =0
2. Burn-in: while samples have “not converged”

 x=x(t)

 t =t +1,
 sample x* ~ Q(x*|x)  // draw from proposal
 sample u ~ Uniform(0,1) // draw acceptance threshold


- if

 x(t) = x*  // transition
- else

 x(t) = x // stay in current state 

 Take samples from P(x) =             : Reset t=0, for t =1:N
 x(t+1)  Draw sample (x(t))
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The MH Algorithm
 Example:

 Let Q(x’|x) be a Gaussian centered on x
 We’re trying to sample from a bimodal distribution P(x)
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The MH Algorithm
 Example:

 Let Q(x’|x) be a Gaussian centered on x
 We’re trying to sample from a bimodal distribution P(x)

8

P(x)











)|'()(
)'|()'(,1min)|'(

xxQxP
xxQxPxxA

Initialize x(0)

Draw, accept x1

x0

Q(x1|x0)

x1

© Eric Xing @ CMU, 2005-2014



The MH Algorithm
 Example:

 Let Q(x’|x) be a Gaussian centered on x
 We’re trying to sample from a bimodal distribution P(x)

9

P(x)











)|'()(
)'|()'(,1min)|'(

xxQxP
xxQxPxxA

Initialize x(0)
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The MH Algorithm
 Example:

 Let Q(x’|x) be a Gaussian centered on x
 We’re trying to sample from a bimodal distribution P(x)
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The MH Algorithm
 Example:

 Let Q(x’|x) be a Gaussian centered on x
 We’re trying to sample from a bimodal distribution P(x)
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Initialize x(0)

Draw, accept x1

Draw, accept x2

Draw but reject; set x3=x2

x0

Q(x3|x2)

x1 x2 x’ (rejected)
x3

We reject because P(x’)/Q(x’|x2) < 1 and
P(x2)/Q(x2|x’) > 1, hence A(x’|x2) is close to zero!
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The MH Algorithm
 Example:

 Let Q(x’|x) be a Gaussian centered on x
 We’re trying to sample from a bimodal distribution P(x)
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The MH Algorithm
 Example:

 Let Q(x’|x) be a Gaussian centered on x
 We’re trying to sample from a bimodal distribution P(x)
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The MH Algorithm
 Example:

 Let Q(x’|x) be a Gaussian centered on x
 We’re trying to sample from a bimodal distribution P(x)
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Initialize x(0)

Draw, accept x1

Draw, accept x2

Draw but reject; set x3=x2

Draw, accept x4

Draw, accept x5
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The adaptive proposal Q(x’|x) allows 
us to sample both modes of P(x)!
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Theoretical aspects of MCMC
 The MH algorithm has a “burn-in” period

 Why do we throw away samples from burn-in?

 Why are the MH samples guaranteed to be from P(x)?
 The proposal Q(x’|x) keeps changing with the value of x; how do we 

know the samples will eventually come from P(x)?

 What is the connection between Markov Chains and MCMC?
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Markov Chains
 A Markov Chain is a sequence of random variables 

x(1),x(2),…,x(n) with the Markov Property

 is known as the transition kernel
 The next state depends only on the preceding state – recall HMMs!
 Note: the r.v.s x(i) can be vectors

 We define x(t) to be the t-th sample of all variables in a graphical model
 X(t) represents the entire state of the graphical model at time t

 We study homogeneous Markov Chains, in which the 
transition kernel                            is fixed with time
 To emphasize this, we will call the kernel               , where x is the 

previous state and x’ is the next state
16
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MC Concepts
 To understand MCs, we need to define a few concepts:

 Probability distributions over states:              is a distribution over the 
state of the system x, at time t
 When dealing with MCs, we don’t think of the system as being in one 

state, but as having a distribution over states
 For graphical models, remember that x represents all variables

 Transitions: recall that states transition from x(t) to x(t+1) according to the 
transition kernel             . We can also transition entire distributions:

 At time t, state x has probability mass π(t)(x). The transition probability 
redistributes this mass to other states x’.

 Stationary distributions:           is stationary if it does not change under 
the transition kernel:
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MC Concepts
 Stationary distributions are of great importance in MCMC. To 

understand them, we need to define some notions:
 Irreducible: an MC is irreducible if you can get from any state x to any 

other state x’ with probability > 0 in a finite number of steps
 i.e. there are no unreachable parts of the state space

 Aperiodic: an MC is aperiodic if you can return to any state x at any time
 Periodic MCs have states that need ≥2 time steps to return to (cycles)

 Ergodic (or regular): an MC is ergodic if it is irreducible and aperiodic

 Ergodicity is important: it implies you can reach the stationary 
distribution          , no matter the initial distribution
 All good MCMC algorithms must satisfy ergodicity, so that you can’t 

initialize in a way that will never converge
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MC Concepts
 Reversible (detailed balance): an MC is reversible if there 

exists a distribution           such that the detailed balance 
condition is satisfied:

 Probability of x’→x and x→x’ can be different, but the joint of x amd x’ 
remain the same, no matter which direction to go

 Reversible MCs always have a stationary distribution! Proof:

 The last line is the definition of a stationary distribution!
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Why does Metropolis-Hastings 
work?
 Recall that we draw a sample x’ according to Q(x’|x), and then 

accept/reject according to A(x’|x).
 In other words, the transition kernel is

 We can prove that MH satisfies detailed balance
 Recall that

 Notice this implies the following:
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Why does Metropolis-Hastings 
work?

 Now suppose A(x’|x) < 1 and A(x|x’) = 1. We have

 The last line is exactly the detailed balance condition
 In other words, the MH algorithm leads to a stationary distribution P(x)
 Recall we defined P(x) to be the true distribution of x
 Thus, the MH algorithm eventually converges to the true distribution!
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Caveats
 Although MH eventually converges to the true distribution 

P(x), we have no guarantees as to when this will occur

 The burn-in period represents the un-converged part of the Markov 
Chain – that’s why we throw those samples away!

 Knowing when to halt burn-in is an art. We will look at some techniques 
later in this lecture.
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Gibbs Sampling
 Gibbs Sampling is an MCMC algorithm that samples each 

random variable of a graphical model, one at a time
 GS is a special case of the MH algorithm

 GS algorithms…
 Are fairly easy to derive for many graphical models (e.g. mixture models, 

Latent Dirichlet allocation)
 Have reasonable computation and memory requirements, because they 

sample one r.v. at a time
 Can be Rao-Blackwellized (integrate out some r.v.s) to decrease the 

sampling variance
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Gibbs Sampling
 The GS algorithm:

1. Suppose the graphical model contains variables x1,…,xn

2. Initialize starting values for x1,…,xn

3. Do until convergence:
1. Pick an ordering of the n variables (can be fixed or random)
2. For each variable xi in order:

1. Sample x from P(xi | x1, …, xi-1, xi+1, …, xn), i.e. the conditional distribution of xi given 
the current values of all other variables

2. Update xi ← x

 When we update xi, we immediately use its new value for 
sampling other variables xj
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Markov Blankets
 The conditional P(xi | x1, …, xi-1, xi+1, …, xn) looks intimidating, 

but recall Markov Blankets:
 Let MB(xi) be the Markov Blanket of xi, then

 For a BN, the Markov Blanket of x is the set              
containing its parents, children, and co-parents

 For an MRF, the Markov Blanket of x is its immediate 
neighbors
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Gibbs Sampling: An Example

 Consider the alarm network
 Assume we sample variables in the order B,E,A,J,M
 Initialize all variables at t = 0 to False
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t B E A J M
0 F F F F F
1
2
3
4
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Gibbs Sampling: An Example

 Sampling P(B|A,E) at t = 1: Using Bayes Rule,

 (A,E) = (F,F), so we compute the following, and sample B = F
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t B E A J M
0 F F F F F
1 F
2
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4

)(),|(),|( BPEBAPEABP 

9980.0)999.0)(999.0(),|(
0006.0)01.0)(06.0(),|(



FEFAFBP
FEFATBP

© Eric Xing @ CMU, 2005-2014



Gibbs Sampling: An Example

 Sampling P(E|A,B): Using Bayes Rule,

 (A,B) = (F,F), so we compute the following, and sample E = T
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1 F T
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Gibbs Sampling: An Example

 Sampling P(A|B,E,J,M): Using Bayes Rule,

 (B,E,J,M) = (F,T,F,F), so we compute the following, and sample A = F
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0 F F F F F
1 F T F
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Gibbs Sampling: An Example

 Sampling P(J|A): No need to apply Bayes Rule

 A = F, so we compute the following, and sample J = T
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0 F F F F F
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Gibbs Sampling: An Example

 Sampling P(M|A): No need to apply Bayes Rule

 A = F, so we compute the following, and sample M = F
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t B E A J M
0 F F F F F
1 F T F T F
2
3
4
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Gibbs Sampling: An Example

 Now t = 2, and we repeat the procedure to sample new values of 
B,E,A,J,M …
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t B E A J M
0 F F F F F
1 F T F T F
2 F T T T T
3
4
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Gibbs Sampling: An Example

 Now t = 2, and we repeat the procedure to sample new values of 
B,E,A,J,M …

 And similarly for t = 3, 4, etc.
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t B E A J M
0 F F F F F
1 F T F T F
2 F T T T T
3 T F T F T
4 T F T F F
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 Collapsed Gibbs sampling
 Popular inference algorithm for topic models
 Integrate out topic vectors π and topics B
 Only need to sample word-topic assignments z

Algorithm:
For all variables z = z1, z2, …, zn

Draw zi
(t+1) from P(zi|z-i, w)

where z-i = z1
(t+1), z2

(t+1),…, zi-1
(t+1), zi+1

(t), …, zn
(t)

Topic Models: Collapsed Gibbs 
(Tom Griffiths & Mark Steyvers)
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Collapsed Gibbs sampling
 What is P(zi|z-i, w)?

 It is a product of two Dirichlet-Multinomial conditional distributions:
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Collapsed Gibbs sampling
 What is P(zi|z-i, w)?

 It is a product of two Dirichlet-Multinomial conditional distributions:
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# word positions a
(excluding wi) such that:

wa = wi
za = j

# word positions a in the current 
document di (excluding wi) such that:

za = j

# word positions a
(excluding wi) such that:

za = j

# word positions a in the current 
document di (excluding wi)



Collapsed Gibbs illustration
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Collapsed Gibbs illustration
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Collapsed Gibbs illustration
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Collapsed Gibbs illustration
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Collapsed Gibbs illustration
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Collapsed Gibbs illustration
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Collapsed Gibbs illustration
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Collapsed Gibbs illustration
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Collapsed Gibbs illustration
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Gibbs Sampling is a special case 
of MH
 The GS proposal distribution is

 Where x-i denotes all variables except xi

 Applying MH to this proposal, we find that samples are always 
accepted (which is exactly what GS does):

 GS is simply MH with a proposal that is always accepted!
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Practical Aspects of MCMC
 How do we know if our proposal Q(x’|x) is any good?

 Monitor the acceptance rate
 Plot the autocorrelation function

 How do we know when to stop burn-in?
 Plot the sample values vs time
 Plot the log-likelihood vs time
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Acceptance Rate

 Choosing the proposal Q(x’|x) is a tradeoff:
 “Narrow”, low-variance proposals have high acceptance, but take many 

iterations to explore P(x) fully because the proposed x are too close
 “Wide”, high-variance proposals have the potential to explore much of 

P(x), but many proposals are rejected which slows down the sampler

 A good Q(x’|x) proposes distant samples x’ with a sufficiently 
high acceptance rate

48
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High-variance proposal
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Acceptance Rate

 Acceptance rate is the fraction of samples that MH accepts.
 General guideline: proposals should have ~0.5 acceptance rate [1]

 Gaussian special case:
 If both P(x) and Q(x’|x) are Gaussian, the optimal acceptance rate is 

~0.45 for D=1 dimension and approaches ~0.23 as D tends to infinity [2]
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[1] Muller, P. (1993). “A Generic Approach to Posterior Integration and Gibbs Sampling”
[2] Roberts, G.O., Gelman, A., and Gilks, W.R. (1994). “Weak Convergence and Optimal Scaling of Random Walk Metropolis Algorithms”
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Autocorrelation function

 MCMC chains always show autocorrelation (AC)
 AC means that adjacent samples in time are highly correlated

 We quantify AC with the autocorrelation function of an r.v. x:
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Autocorrelation function

 The first-order AC Rx(1) can be used to estimate the Sample 
Size Inflation Factor (SSIF):

 If we took n samples with SSIF sx, then the effective sample size is n/sx

 High autocorrelation leads to smaller effective sample size!
 We want proposals Q(x’|x) with low autocorrelation
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Sample Values vs Time

 Monitor convergence by plotting samples (of r.v.s) from 
multiple MH runs (chains)
 If the chains are well-mixed (left), they are probably converged
 If the chains are poorly-mixed (right), we should continue burn-in
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Well-mixed chains Poorly-mixed chains
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Log-likelihood vs Time

 Many graphical models are high-dimensional
 Hard to visualize all r.v. chains at once

 Instead, plot the complete log-likelihood vs. time
 The complete log-likelihood is an r.v. that depends on all model r.v.s
 Generally, the log-likelihood will climb, then eventually plateau
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Summary
 Markov Chain Monte Carlo methods use adaptive proposals 

Q(x’|x) to sample from the true distribution P(x)

 Metropolis-Hastings allows you to specify any proposal Q(x’|x)
 But choosing a good Q(x’|x) requires care

 Gibbs sampling sets the proposal Q(x’|x) to the conditional 
distribution P(x’|x)
 Acceptance rate always 1!
 But remember that high acceptance usually entails slow exploration
 In fact, there are better MCMC algorithms for certain models

 Knowing when to halt burn-in is an art
54© Eric Xing @ CMU, 2005-2014


