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Inference Problems
 Compute the likelihood of observed data
 Compute the marginal distribution            over a particular subset           

of nodes
 Compute the conditional distribution                  for disjoint subsets A

and B
 Compute a mode of the density

 Methods we have

Brute force Elimination
Message Passing
(Forward-backward , Max-product 

/BP, Junction Tree)

Sharing intermediate termsIndividual computations independent
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Sum-Product Revisited
 Tree-structured GMs

 Message Passing on Trees:

 On trees, converge to a unique fixed point after a finite number of iterations
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Junction Tree Revisited
 General Algorithm on Graphs with Cycles

 Steps:

B CS

=> Triangularization => Construct JTs

=> Message Passing on Clique Trees
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Local Consistency
 Given a set of functions                                            associated 

with the cliques and separator sets

 They are locally consistent if:

 For junction trees, local consistency is equivalent to global 
consistency!
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An Ising model on 2-D image
 Nodes encode hidden 

information (patch-
identity).

 They receive local 
information from the 
image (brightness, 
color).

 Information is 
propagated though the 
graph over its edges.

 Edges encode 
‘compatibility’ between 
nodes.

?air or water ?
6
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Why Approximate Inference?
 Why can’t we just run junction tree on this graph?

 If NxN grid, tree width at least N
 N can be a huge number(~1000s of pixels)

 If N~O(1000), we have a clique with 2100 entries
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Approaches to inference
 Exact inference algorithms

 The elimination algorithm
 Message-passing algorithm (sum-product, belief propagation)
 The junction tree algorithms      

 Approximate inference techniques
 Variational algorithms

 Loopy belief propagation 
 Mean field approximation 

 Stochastic simulation / sampling methods
 Markov chain Monte Carlo methods
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Loopy Belief Propogation
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Recap: Belief Propagation

 BP Message-update Rules

 BP on trees always converges to exact marginals (cf. Junction 
tree algorithm)
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Beliefs and messages in FG
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What if the graph is loopy?



12© Eric Xing @ CMU, 2005-2014



i
k

k

k

k

i
j k

k

k

Mki

Belief Propagation on loopy 
graphs

 BP Message-update Rules

 May not converge or converge to a wrong solution
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 A fixed point iteration procedure that tries to minimize Fbethe

 Start with random initialization of messages and beliefs

 While not converged do

 At convergence, stationarity properties are guaranteed
 However, not guaranteed to converge!

Loopy Belief Propagation
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Loopy Belief Propagation
 If BP is used on graphs with loops, messages may circulate 

indefinitely

 But let’s run it anyway and hope for the best … 

 Empirically, a good approximation is still achievable
 Stop after fixed # of iterations
 Stop when no significant change in beliefs
 If solution is not oscillatory but converges, it usually is a good approximation

Loopy-belief Propagation for Approximate Inference: An Empirical Study 
Kevin Murphy, Yair Weiss, and Michael Jordan. 
UAI '99 (Uncertainty in AI). ]
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So what is going on?
 Is it a dirty hack that you bet your luck?
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Approximate Inference
 Let us call the actual distribution P

 We wish to find a distribution Q such that Q is a “good” 
approximation to P

 Recall the definition of KL-divergence

 KL(Q1||Q2)>=0
 KL(Q1||Q2)=0 iff Q1=Q2

 We can therefore use KL as a scoring function to decide a good Q
 But, KL(Q1||Q2)  KL(Q2||Q1
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Which KL?
 Computing KL(P||Q) requires inference!
 But KL(Q||P) can be computed without performing inference 

on P

 Using 
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Optimization function

 We will call                 the “Free energy” *
 =?

 F(P,Q) >= F(P,P)
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The Energy Functional
 Let us look at the functional

 can be computed if we have marginals over each  fa

 is harder! Requires summation over all 
possible values

 Computing F, is therefore hard in general.
 Approach 1: Approximate with easy to compute
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Tree Energy Functionals
 Consider a tree-structured distribution

 The probability can be written as:




 involves summation over edges and vertices and is therefore easy to compute
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Bethe Approximation to Gibbs 
Free Energy
 For a general graph, choose

 Called “Bethe approximation” after the physicist Hans Bethe

 Equal to the exact Gibbs free energy when the factor graph is a tree
 In general, HBethe is not the same as the H of a tree

BethaFQPF 
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Bethe Approximation
 Pros:

 Easy to compute, since entropy term involves sum over pairwise and 
single variables

 Cons:
 may or may not be well connected to
 It could, in general, be greater, equal or less than  

 Optimize each b(xa)'s. 
 For discrete belief, constrained opt. with Lagrangian multiplier 
 For continuous belief, not yet a general formula
 Not always converge

betheFQPF 
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Bethe Free Energy for FG
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Minimizing the Bethe Free Energy


 Set derivative to zero
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Constrained Minimization of the 
Bethe Free Energy
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Bethe = BP on FG
 We had:

 Identify
 to obtain BP equations:
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The “belief” is the BP approximation of 
the marginal probability.
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Using ,)()(
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BP Message-update Rules

( A sum product algorithm )
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Summary so far
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 For a distribution p(X|) associated with a complex graph, 
computing the marginal (or conditional) probability of arbitrary 
random variable(s) is intractable

 Variational methods
 formulating probabilistic inference as an optimization problem:
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The Theory Behind LBP
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 But we do not optimize q(X) explicitly, focus on the set of beliefs

 e.g.,

 Relax the optimization problem

 approximate objective:
 relaxed feasible set:

 The loopy BP algorithm: 
 a fixed point iteration procedure that tries to solve b*
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The Theory Behind LBP
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The Theory Behind LBP
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Mean Field Approximation
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Naïve Mean Field
 Fully factorized variational distribution
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Naïve Mean Field for Ising Model
 Optimization Problem

 Update Rule

 resembles “message” sent from node      to   

 forms the “mean field” applied to     from its 
neighborhood
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 Optimize q(XH) in the space of tractable families

 i.e., subgraph of Gp over which exact computation of Hq is  
feasible

 Tightening the optimization space

 exact objective:
 tightened feasible set: 

qH
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Mean field methods
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Exact:

Clusters:

(intractable)

Cluster-based approx. to the 
Gibbs free energy (Wiegerinck 2001, 

Xing et al 03,04)
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Mean field approx. to Gibbs free 
energy
 Given a disjoint clustering, {C1, … , CI}, of all variables
 Let 

 Mean-field free energy

 Will never equal to the exact Gibbs free energy no matter what clustering is used, 
but it does always define a lower bound of the likelihood 

 Optimize each qi(xc)'s. 
 Variational calculus …
 Do inference in each qi(xc) using any tractable algorithm
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Theorem: The optimum GMF approximation to the 
cluster marginal is isomorphic to the cluster posterior of 
the original distribution given internal evidence and its 
generalized mean fields:

GMF algorithm: Iterate over each qi

The Generalized Mean Field 
theorem
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[xing et al. UAI 2003]

A generalized mean field 
algorithm
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[xing et al. UAI 2003]

A generalized mean field 
algorithm
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Theorem: The GMF algorithm is guaranteed to 
converge to a local optimum, and provides a lower 
bound for the likelihood of evidence (or partition 
function) the model.

Convergence theorem
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Gibbs predictive distribution:
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 Approximate p(X) by fully factorized q(X)=Piqi(Xi)

 For Boltzmann distribution p(X)=exp{i < j qijXiXj+qioXi}/Z :

Xi

 xjqj resembles a “message” sent from node j to i 
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The naive mean field 
approximation
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Cluster marginal of a square block Ck:
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Virtually a reparameterized Ising model of small size.

Example 1: Generalized MF 
approximations to Ising models
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GMF approximation to Ising
models

GMF2x2

GMF4x4

BP

Attractive coupling: positively weighted
Repulsive coupling: negatively weighted 45
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GMFr

GMFb

BP

Example 2: Sigmoid belief 
network

46
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Example 3: Factorial HMM

47
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Automatic Variational Inference

 Currently for each new model we have to 
 derive the variational update equations 
 write application-specific code to find the solution

 Each can be time consuming and error prone

 Can we build a general-purpose inference engine which 
automates these procedures?

... ... ... ...

A AA Ax2 x3x1 xN

yk2 yk3yk1 ykN... 

... 

y12 y13y11 y1N... 

S2 S3S1 SN... 

... ... ... ...

A AA Ax2 x3x1 xN

yk2 yk3yk1 ykN... 

... 

y12 y13y11 y1N... 

S2 S3S1 SN... 

fHMM Mean field approx. Structured variational approx.
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 a general, iterative message passing algorithm 

 clustering completely defines approximation
 preserves dependencies 
 flexible performance/cost trade-off
 clustering automatable 

 recovers model-specific structured VI algorithms, including:
 fHMM, LDA 
 variational Bayesian learning algorithms

 easily provides new structured VI approximations to complex 
models

Cluster-based MF (e.g., GMF)
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