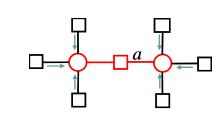


#### **Probabilistic Graphical Models**

#### Variational Inference

#### Eric Xing Lecture 13, February 24, 2014

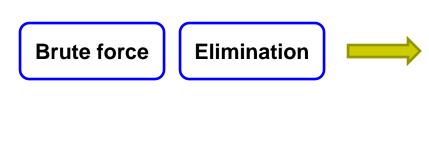


Reading: See class website

© Eric Xing @ CMU, 2005-2014

#### **Inference Problems**

- Compute the likelihood of observed data
- Compute the marginal distribution  $p(x_A)$  over a particular subset of nodes  $A \subset V$
- Compute the conditional distribution  $p(x_A|x_B)$  for disjoint subsets A and B
- Compute a mode of the density  $\hat{x} = \arg \max_{x \in \mathcal{X}^m} p(x)$
- Methods we have



Individual computations independent



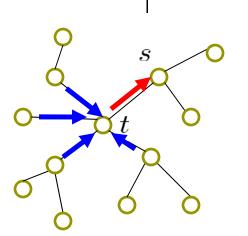
(Forward-backward , Max-product /BP, Junction Tree)

#### Sharing intermediate terms

#### **Sum-Product Revisited**

• Tree-structured GMs

$$p(x_1, \cdots, x_m) = \frac{1}{Z} \prod_{s \in V} \psi_s(x_s) \prod_{(s,t) \in E} \psi_{st}(x_s, x_t)$$



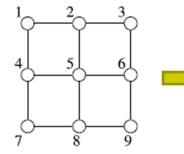
• Message Passing on Trees:

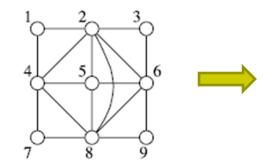
$$M_{t \to s}(x_s) \leftarrow \kappa \sum_{x'_t} \left\{ \psi_{st}(x_s, x'_t) \psi_t(x'_t) \prod_{u \in N(t) \setminus s} M_{u \to t}(x'_t) \right\}$$

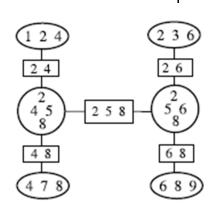
• On trees, converge to a unique fixed point after a finite number of iterations

#### **Junction Tree Revisited**

• General Algorithm on Graphs with Cycles





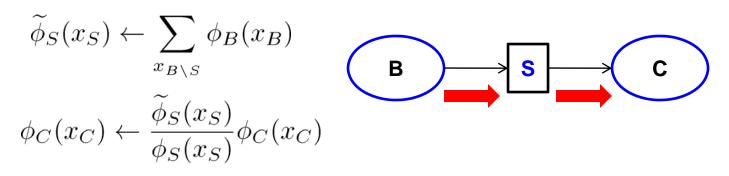


• Steps:

-> Triangularization

=> Construct JTs

#### => Message Passing on Clique Trees



#### **Local Consistency**

- Given a set of functions  $\{\tau_C, C \in C\}$  and  $\{\tau_S, S \in S\}$  associated with the cliques and separator sets
- They are locally consistent if:

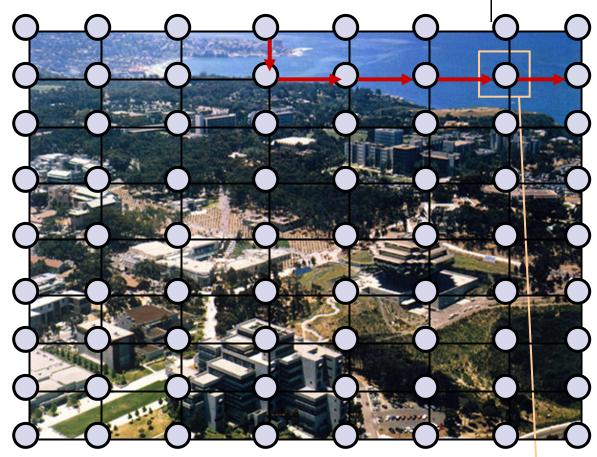
$$\sum_{\substack{x'_S \\ x'_S = x_S}} \tau_S(x'_S) = 1, \ \forall S \in \mathcal{S}$$
$$\sum_{\substack{x'_C \mid x'_S = x_S}} \tau_C(x'_C) = \tau_S(x_S), \ \forall C \in \mathcal{C}, \ S \subset C$$

• For junction trees, local consistency is equivalent to global consistency!



#### An Ising model on 2-D image

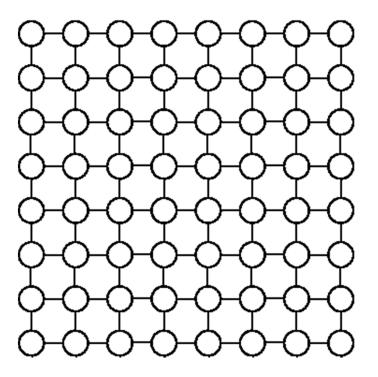
- Nodes encode hidden information (patchidentity).
- They receive local information from the image (brightness, color).
- Information is propagated though the graph over its edges.
- Edges encode 'compatibility' between nodes.



© Eric Xing @ CMU, 2005-2014

# Why Approximate Inference?

• Why can't we just run junction tree on this graph?



 $p(X) = \frac{1}{Z} \exp\left\{\sum_{i < i} \theta_{ij} X_i X_j + \sum_i \theta_{i0} X_i\right\}$ 

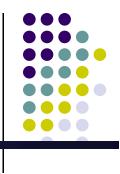
- If NxN grid, tree width at least N
- N can be a huge number(~1000s of pixels)
  - If N~O(1000), we have a clique with 2<sup>100</sup> entries

#### **Approaches to inference**

- Exact inference algorithms
  - The elimination algorithm
  - Message-passing algorithm (sum-product, belief propagation)
  - The junction tree algorithms

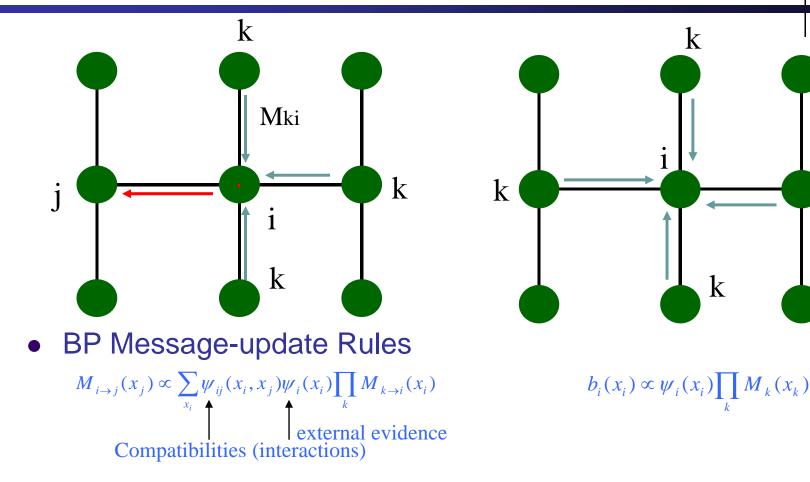
#### • Approximate inference techniques

- Variational algorithms
  - Loopy belief propagation
  - Mean field approximation
- Stochastic simulation / sampling methods
- Markov chain Monte Carlo methods



#### **Loopy Belief Propogation**

### **Recap: Belief Propagation**

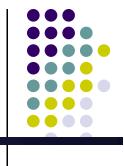


BP on trees always converges to exact marginals (cf. Junction tree algorithm)

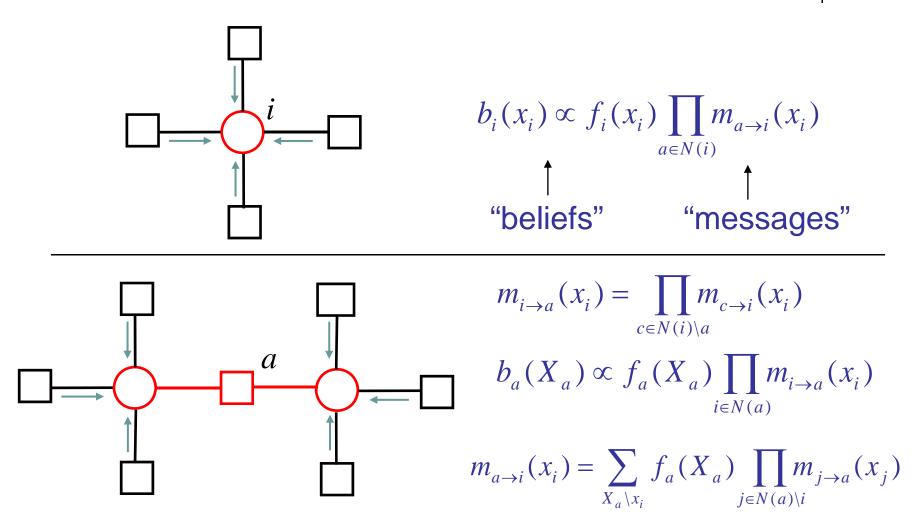
k

k

k

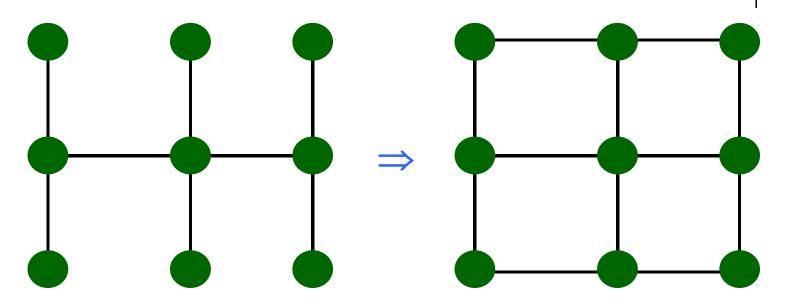


#### **Beliefs and messages in FG**

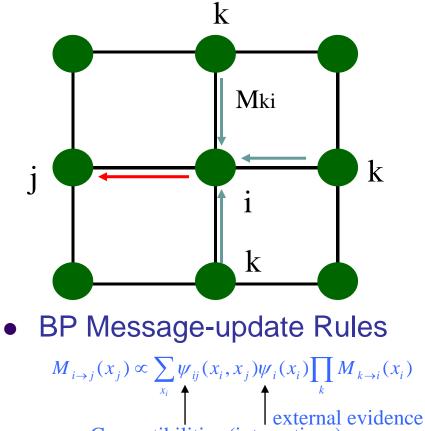




#### What if the graph is loopy?



# Belief Propagation on loopy graphs



Compatibilities (interactions)

• May not converge or converge to a wrong solution

k

k

k

k

 $b_i(x_i) \propto \psi_i(x_i) \prod M_k(x_k)$ 

# **Loopy Belief Propagation**

- A fixed point iteration procedure that tries to minimize F<sub>bethe</sub>
- Start with random initialization of messages and beliefs
  - While not converged do

 $b_i(x_i) \propto \prod_{a \in N(i)} m_{a \to i}(x_i) \qquad b_a(X_a) \propto f_a(X_a) \prod_{i \in N(a)} m_{i \to a}(x_i)$  $m_{i \to a}^{new}(x_i) = \prod m_{c \to i}(x_i) \qquad m_{a \to i}^{new}(x_i) = \sum f_a(X_a) \prod m_{j \to a}(x_j)$ 

 $X_a \setminus x_i$ 

 $j \in N(a) \setminus i$ 

- At convergence, stationarity properties are guaranteed
- However, not guaranteed to converge!

 $c \in N(i) \setminus a$ 



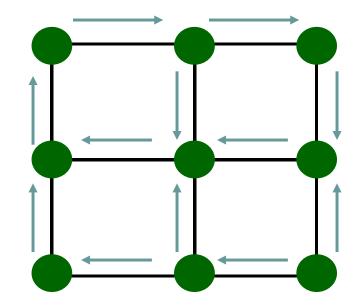
## **Loopy Belief Propagation**

- If BP is used on graphs with loops, messages may circulate indefinitely
- But let's run it anyway and hope for the best ... ©
- Empirically, a good approximation is still achievable
  - Stop after fixed # of iterations
  - Stop when no significant change in beliefs
  - If solution is not oscillatory but converges, it usually is a good approximation

Loopy-belief Propagation for Approximate Inference: An Empirical Study Kevin Murphy, Yair Weiss, and Michael Jordan. *UAI '99 (Uncertainty in AI).*]

### So what is going on?

• Is it a dirty hack that you bet your luck?



## **Approximate Inference**

• Let us call the actual distribution P

$$P(X) = 1/Z \prod_{f_a \in F} f_a(X_a)$$

- We wish to find a distribution *Q* such that *Q* is a "good" approximation to *P*
- Recall the definition of KL-divergence

$$KL(Q_1 || Q_2) = \sum_X Q_1(X) \log(\frac{Q_1(X)}{Q_2(X)})$$

- KL(Q<sub>1</sub>||Q<sub>2</sub>)>=0
- KL(Q<sub>1</sub>||Q<sub>2</sub>)=0 iff Q<sub>1</sub>=Q<sub>2</sub>
- We can therefore use KL as a scoring function to decide a good Q
- But,  $KL(Q_1||Q_2) \neq KL(Q_2||Q_1)$

#### Which KL?

- Computing KL(*P*||*Q*) requires inference!
- But KL(*Q*||*P*) can be computed without performing inference on *P*

$$KL(Q || P) = \sum_{X} Q(X) \log(\frac{Q(X)}{P(X)})$$
$$= \sum_{X} Q(X) \log Q(X) - \sum_{X} Q(X) \log P(X)$$
$$= -H_Q(X) - E_Q \log P(X)$$

• Using 
$$P(X) = 1/Z \prod_{f_a \in F} f_a(X_a)$$
  
 $KL(Q \parallel P) = -H_Q(X) - E_Q \log(1/Z \prod_{f_a \in F} f_a(X_a))$   
 $= -H_Q(X) - \log 1/Z - \sum_{f_a \in F} E_Q \log f_a(X_a)$ 

### **Optimization function**

$$KL(Q \parallel P) = \boxed{-H_Q(X) - \sum_{f_a \in F} E_Q \log f_a(X_a) + \log Z}$$

$$\overbrace{F(P,Q)}$$

- We will call F(P,Q) the "Free energy" \*
- F(P, P) = ?
- F(P,Q) >= F(P,P)

\*Gibbs Free Energy

# **The Energy Functional**

• Let us look at the functional

$$F(P,Q) = -H_Q(X) - \sum_{f_a \in F} E_Q \log f_a(X_a)$$

- $\sum_{f_a \in F} E_Q \log f_a(X_a)$  can be computed if we have marginals over each  $f_a$
- $H_Q = -\sum_X Q(X) \log Q(X)$  is harder! Requires summation over all possible values
- Computing *F*, is therefore hard in general.
- Approach 1: Approximate F(P,Q) with easy to compute F(P,Q)



### **Tree Energy Functionals**

• Consider a tree-structured distribution



- The probability can be written as:  $b(\mathbf{x}) = \prod b_a(\mathbf{x}_a) \prod b_i(x_i)^{1-d_i}$
- $H_{tree} = -\sum_{a} \sum_{\mathbf{x}_{a}} b_{a}(\mathbf{x}_{a}) \ln b_{a}(\mathbf{x}_{a}) + \sum_{i} (d_{i} \mathbf{1}) \sum_{\mathbf{x}_{i}} b_{i}(\mathbf{x}_{i}) \ln b_{i}(\mathbf{x}_{i})$   $F_{Tree} = \sum_{a} \sum_{\mathbf{x}_{a}} b_{a}(\mathbf{x}_{a}) \ln \frac{b_{a}(\mathbf{x}_{a})}{f_{a}(\mathbf{x}_{a})} + \sum_{i} (\mathbf{1} d_{i}) \sum_{\mathbf{x}_{i}} b_{i}(\mathbf{x}_{i}) \ln b_{i}(\mathbf{x}_{i})$

 $= F_{12} + F_{23} + \ldots + F_{67} + F_{78} - F_1 - F_5 - F_2 - F_6 - F_3 - F_7$ 

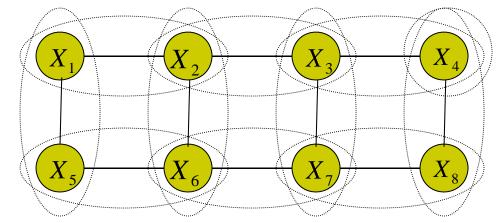
• involves summation over edges and vertices and is therefore easy to compute

# Bethe Approximation to Gibbs Free Energy

• For a general graph, choose  $\hat{F}(P,Q) = F_{Betha}$ 

$$H_{Bethe} = -\sum_{a} \sum_{\mathbf{x}_{a}} b_{a}(\mathbf{x}_{a}) \ln b_{a}(\mathbf{x}_{a}) + \sum_{i} (d_{i} - 1) \sum_{\mathbf{x}_{i}} b_{i}(\mathbf{x}_{i}) \ln b_{i}(\mathbf{x}_{i})$$
$$F_{Bethe} = \sum_{a} \sum_{\mathbf{x}_{a}} b_{a}(\mathbf{x}_{a}) \ln \frac{b_{a}(\mathbf{x}_{a})}{f_{a}(\mathbf{x}_{a})} + \sum_{i} (1 - d_{i}) \sum_{\mathbf{x}_{i}} b_{i}(\mathbf{x}_{i}) \ln b_{i}(\mathbf{x}_{i}) = -\langle f_{a}(\mathbf{x}_{a}) \rangle - H_{betha}$$

Called "Bethe approximation" after the physicist Hans Bethe



 $F_{\textit{bethe}} = F_{12} + F_{23} + ... + F_{67} + F_{78} - F_1 - F_5 - 2F_2 - 2F_6 ... - F_8$ 

- Equal to the exact Gibbs free energy when the factor graph is a tree
- In general,  $H_{Bethe}$  is **not** the same as the H of a tree

# **Bethe Approximation**



#### • Pros:

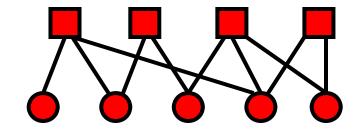
- Easy to compute, since entropy term involves sum over pairwise and single variables
- Cons:
  - $F(P,Q) = F_{bethe}$  may or may not be well connected to F(P,Q)
  - It could, in general, be greater, equal or less than F(P,Q)

#### • Optimize each $b(\mathbf{x}_a)$ 's.

- For discrete belief, constrained opt. with Lagrangian multiplier
- For continuous belief, not yet a general formula
- Not always converge



#### **Bethe Free Energy for FG**



$$F_{Betha} = \sum_{a} \sum_{\mathbf{x}_{a}} b_{a}(\mathbf{x}_{a}) \ln \frac{b_{a}(\mathbf{x}_{a})}{f_{a}(\mathbf{x}_{a})} + \sum_{i} (\mathbf{1} - d_{i}) \sum_{\mathbf{x}_{i}} b_{i}(\mathbf{x}_{i}) \ln b_{i}(\mathbf{x}_{i})$$

$$H_{Bethe} = -\sum_{a} \sum_{\mathbf{x}_{a}} b_{a}(\mathbf{x}_{a}) \ln b_{a}(\mathbf{x}_{a}) + \sum_{i} (d_{i} - \mathbf{1}) \sum_{\mathbf{x}_{i}} b_{i}(\mathbf{x}_{i}) \ln b_{i}(\mathbf{x}_{i})$$

$$F_{Bethe} = -\langle f_a(\mathbf{x}_a) \rangle - H_{betha}$$

© Eric Xing @ CMU, 2005-2014

#### **Minimizing the Bethe Free Energy**

• 
$$L = F_{Bethe} + \sum_{i} \gamma_{i} \{1 - \sum_{x_{i}} b_{i}(x_{i})\}$$
$$+ \sum_{a} \sum_{i \in N(a)} \sum_{x_{i}} \lambda_{ai}(x_{i}) \left\{ b_{i}(x_{i}) - \sum_{X_{a} \setminus x_{i}} b_{a}(X_{a}) \right\}$$

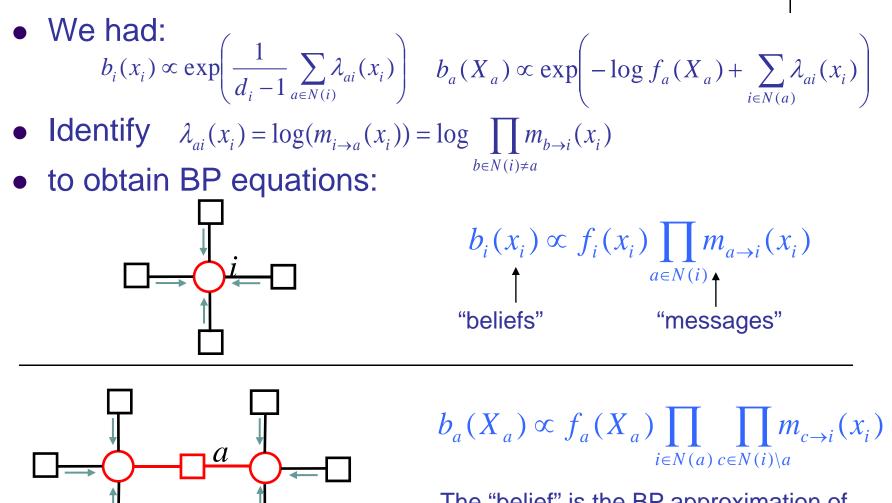
• Set derivative to zero

# **Constrained Minimization of the Bethe Free Energy**

$$L = F_{Bethe} + \sum_{i} \gamma_{i} \{ \sum_{x_{i}} b_{i}(x_{i}) - 1 \}$$
$$+ \sum_{a} \sum_{i \in N(a)} \sum_{x_{i}} \lambda_{ai}(x_{i}) \left\{ \sum_{X_{a} \setminus x_{i}} b_{a}(X_{a}) - b_{i}(x_{i}) \right\}$$

$$\frac{\partial L}{\partial b_i(x_i)} = 0 \qquad \Longrightarrow \qquad b_i(x_i) \propto \exp\left(\frac{1}{d_i - 1} \sum_{a \in N(i)} \lambda_{ai}(x_i)\right)$$
$$\frac{\partial L}{\partial b_a(X_a)} = 0 \qquad \Longrightarrow \qquad b_a(X_a) \propto \exp\left(-E_a(X_a) + \sum_{i \in N(a)} \lambda_{ai}(x_i)\right)$$

#### Bethe = BP on FG



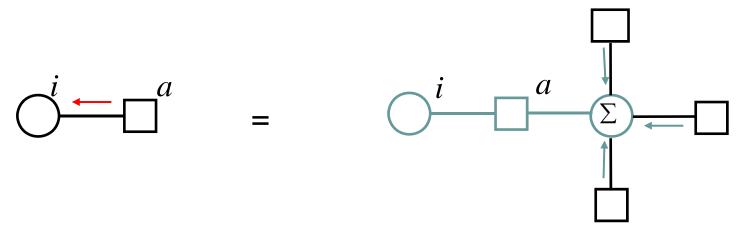
The "belief" is the BP approximation of © Eric Xing @ CMU, 2005-2014

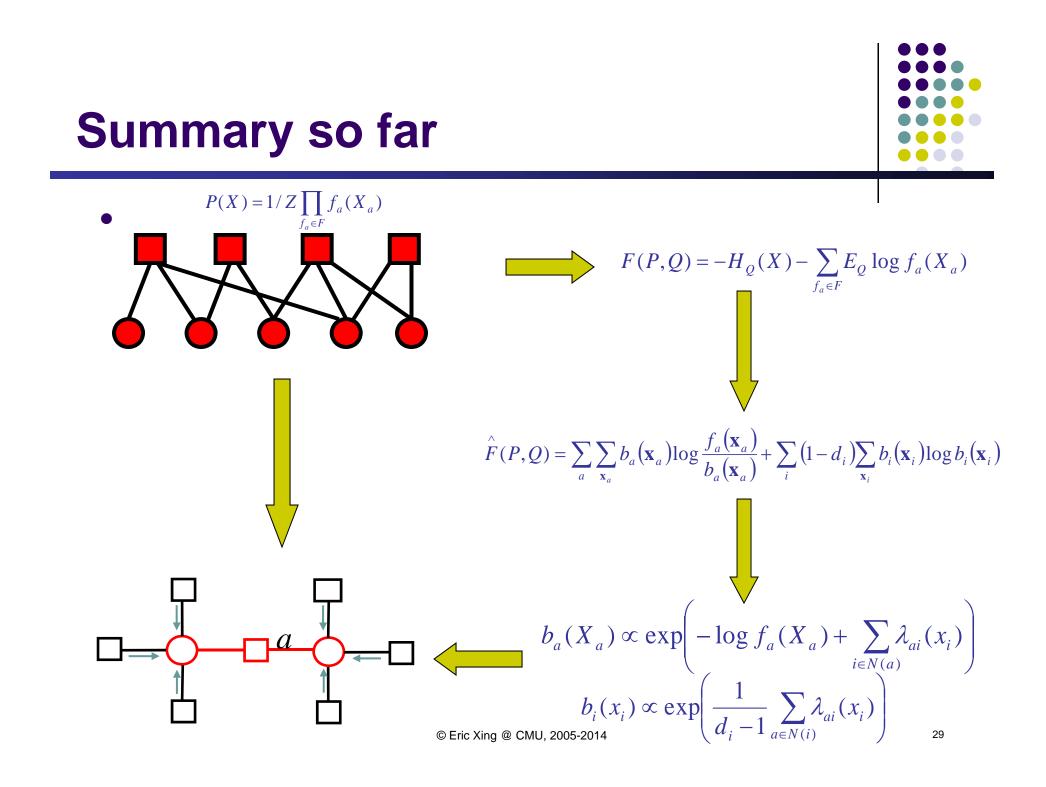
#### **BP Message-update Rules**

Using 
$$b_{a \to i}(x_i) = \sum_{X_a \setminus x_i} b_a(X_a)$$
, we get

$$m_{a \to i}(x_i) = \sum_{X_a \setminus x_i} f_a(X_a) \prod_{j \in N(a) \setminus i} \prod_{b \in N(j) \setminus a} m_{b \to j}(x_j)$$

#### (A sum product algorithm)





#### The Theory Behind LBP



- For a distribution *p*(X/θ) associated with a complex graph, computing the marginal (or conditional) probability of arbitrary random variable(s) is intractable
- Variational methods
  - formulating probabilistic inference as an optimization problem:

$$q^* = \arg\min_{q \in S} \left\{ F_{Betha}(p,q) \right\}$$

$$F_{Bethe} = \sum_{a} \sum_{\mathbf{x}_{a}} b_{a}(\mathbf{x}_{a}) \ln \frac{b_{a}(\mathbf{x}_{a})}{f_{a}(\mathbf{x}_{a})} + \sum_{i} (\mathbf{1} - d_{i}) \sum_{\mathbf{x}_{i}} b_{i}(\mathbf{x}_{i}) \ln b_{i}(\mathbf{x}_{i}) = -\langle f_{a}(\mathbf{x}_{a}) \rangle - H_{bethe}$$

q: a (tractable) probability distribution

## The Theory Behind LBP



• But we do not optimize  $q(\mathbf{X})$  explicitly, focus on the set of beliefs

• 
$$e.g., b = \{b_{i,j} = \tau(x_i, x_j), b_i = \tau(x_i)\}$$

- Relax the optimization problem
  - approximate objective:
  - relaxed feasible set:

 $H_{q} \approx F(b)$  $\mathcal{M} \to \mathcal{M}_{o} \quad (\mathcal{M}_{o} \supseteq \mathcal{M})$ 

$$b^* = \arg\min_{b \in \mathcal{M}_p} \left\{ \left\langle E \right\rangle_b + F(b) \right\}$$

- The loopy BP algorithm: <sup>*v*</sup>
  - a fixed point iteration procedure that tries to solve b\*

## The Theory Behind LBP

• But we do not optimize  $q(\mathbf{X})$  explicitly, focus on the set of beliefs

• 
$$e.g., b = \{b_{i,j} = \tau(x_i, x_j), b_i = \tau(x_i)\}$$

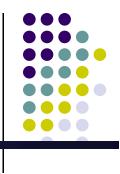
- Relax the optimization problem
  - approximate objective:
  - relaxed feasible set:

$$H_{Betha} = H(b_{i,j}, b_i)$$
  
$$\mathcal{M}_o = \left\{ \tau \ge \mathbf{0} \mid \sum_{x_i} \tau(x_i) = \mathbf{1}, \sum_{x_i} \tau(x_i, x_j) = \tau(x_j) \right\}$$

$$b^* = \arg\min_{b \in \mathcal{M}_a} \left\{ \left\langle E \right\rangle_b + F(b) \right\}$$

- The loopy BP algorithm: <sup>be</sup>
  - a fixed point iteration procedure that tries to solve *b*\*



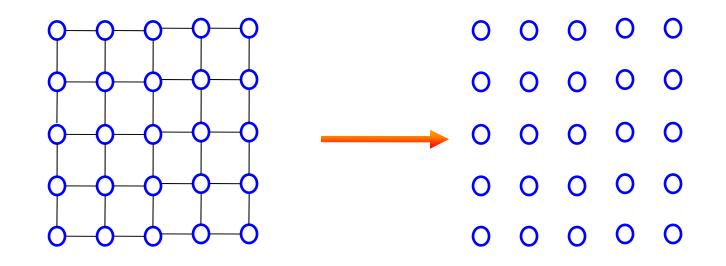


#### **Mean Field Approximation**

#### **Naïve Mean Field**

• Fully factorized variational distribution

$$q(x) = \prod_{s \in V} q(x_s)$$



## Naïve Mean Field for Ising Model

Optimization Problem

Update

$$\max_{\mu \in [0,1]^m} \left\{ \sum_{s \in V} \theta_s \mu_s + \sum_{(s,t) \in E} \theta_{st} \mu_s \mu_t + \sum_{s \in V} H_s(\mu_s) \right\}$$
  
Rule

$$\mu_s \leftarrow \sigma \Big( \theta_s + \sum_{t \in N(s)} \theta_{st} \mu_t \Big)$$

- $\mu_t = p(X_t = 1) = \mathbb{E}_p[X_t]$  resembles "message" sent from node t to s
- $\{\mathbb{E}_p[X_t], t \in N(s)\}$  forms the "mean field" applied to s from its neighborhood

#### **Mean field methods**



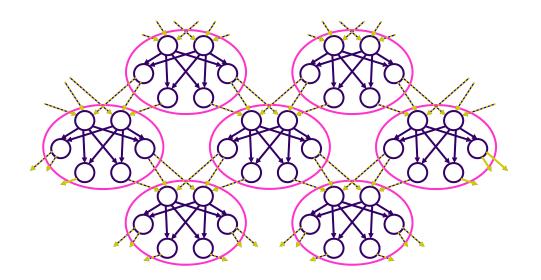
- Optimize  $q(\mathbf{X}_H)$  in the space of tractable families
  - *i.e.*, subgraph of  $G_p$  over which exact computation of  $H_q$  is feasible
- Tightening the optimization space
  - exact objective:  $H_q$  tightened feasible set:  $Q \to \mathcal{T}$   $(\mathcal{T} \subseteq Q)$

$$q^* = \arg\min_{q\in\mathcal{T}} \langle E \rangle_q - H_q$$

#### Cluster-based approx. to the Gibbs free energy (Wiegerinck 2001, Xing et al 03,04)



Exact: G[p(X)] (intractable) Clusters:  $G[\{q_c(X_c)\}]$ 



# Mean field approx. to Gibbs free energy

- Given a disjoint clustering,  $\{C_1, \ldots, C_l\}$ , of all variables
- Let  $q(\mathbf{X}) = \prod q_i(\mathbf{X}_{C_i}),$
- Mean-field free energy

$$G_{\rm MF} = \sum_{i} \sum_{\mathbf{x}_{C_i}} \prod_{i} q_i \left( \mathbf{x}_{C_i} \right) E(\mathbf{x}_{C_i}) + \sum_{i} \sum_{\mathbf{x}_{C_i}} q_i \left( \mathbf{x}_{C_i} \right) \ln q_i \left( \mathbf{x}_{C_i} \right)$$

e.g.,  $G_{\rm MF} = \sum_{i < j} \sum_{x_i x_j} q(x_i) q(x_j) \phi(x_i x_j) + \sum_i \sum_{x_i} q(x_i) \phi(x_i) + \sum_i \sum_{x_i} q(x_i) \ln q(x_i)$ (naïve mean field)

- Will **never** equal to the exact Gibbs free energy no matter what clustering is used, but it does **always** define a lower bound of the likelihood
- Optimize each  $q_i(x_c)$ 's.
  - Variational calculus ...
  - Do inference in each  $q_i(x_c)$  using any tractable algorithm

### The Generalized Mean Field theorem



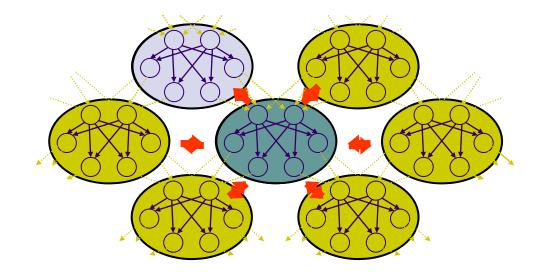
**Theorem:** The optimum GMF approximation to the cluster marginal is isomorphic to the cluster posterior of the original distribution given internal evidence and its generalized mean fields:

$$q_i^*(\mathbf{X}_{H,C_i}) = p(\mathbf{X}_{H,C_i} | \mathbf{x}_{E,C_i}, \langle \mathbf{X}_{H,MB_i} \rangle_{q_{i\neq i}})$$

GMF algorithm: Iterate over each  $q_i$ 

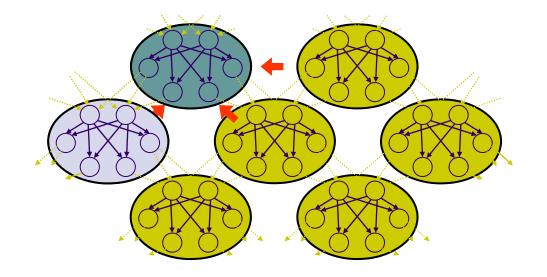
# A generalized mean field algorithm [xing et al. UAI 2003]





# A generalized mean field algorithm [xing et al. UAI 2003]





#### **Convergence theorem**



**Theorem:** The GMF algorithm is guaranteed to converge to a local optimum, and provides a lower bound for the likelihood of evidence (or partition function) the model.

# The naive mean field approximation



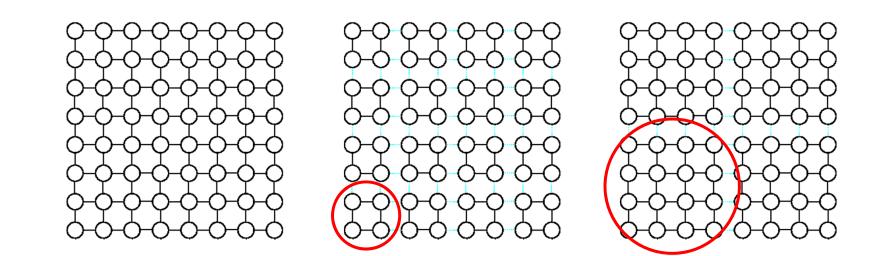
- Approximate  $p(\mathbf{X})$  by fully factorized  $q(\mathbf{X}) = P_i q_i(X_i)$
- For Boltzmann distribution  $p(X) = \exp\{\sum_{i < j} q_{ij} X_i X_j + q_{io} X_i\}/Z$ :

mean field equation:

$$q_{i}(X_{i}) = \exp\left\{\theta_{i0}X_{i} + \sum_{j \in \mathcal{N}_{i}} \theta_{ij}X_{i}\langle X_{j}\rangle_{q_{j}} + A_{i}\right\}$$
  
$$= p(X_{i} |\{\langle X_{j}\rangle_{q_{j}} : j \in \mathcal{N}_{i}\})$$

- $\langle X_j \rangle_{q_j}$  resembles a "message" sent from node *j* to *i*
- { $\langle X_j \rangle_{q_j} : j \in \mathcal{N}_i$ } forms the "mean field" applied to  $X_i$  from its neighborhood

### **Example 1: Generalized MF** approximations to Ising models

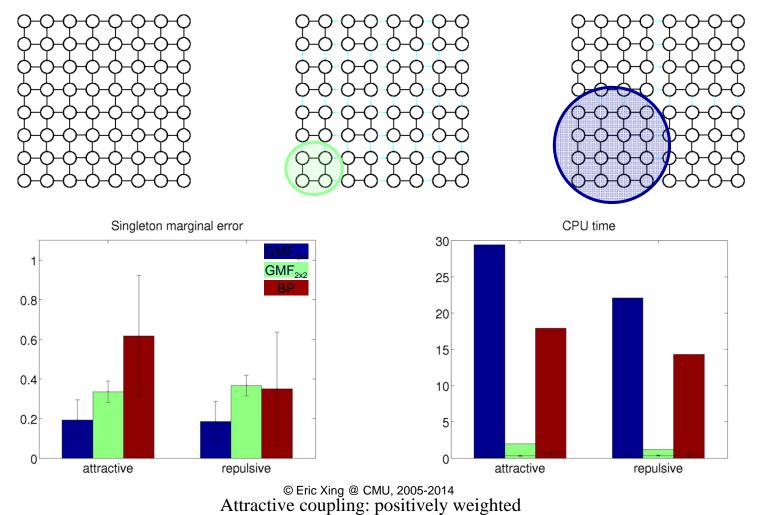


Cluster marginal of a square block  $C_k$ :

$$q(X_{C_k}) \propto \exp\left\{\sum_{i,j\in C_k} \theta_{ij} X_i X_j + \sum_{i\in C_k} \theta_{i0} X_i + \sum_{\substack{i\in C_k, j\in MB_k, \\ k'\in MBC_k}} \theta_{ij} X_i \langle X_j \rangle_{q(X_{C_k})}\right\}$$

Virtually a reparameterized Ising model of small size. © Eric Xing @ CMU, 2005-2014

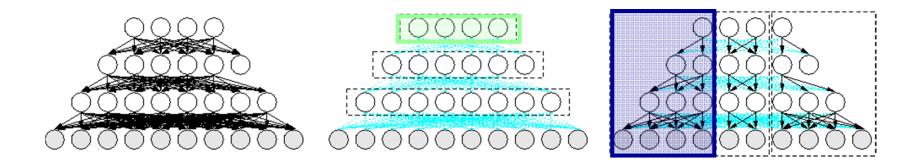
### GMF approximation to Ising models

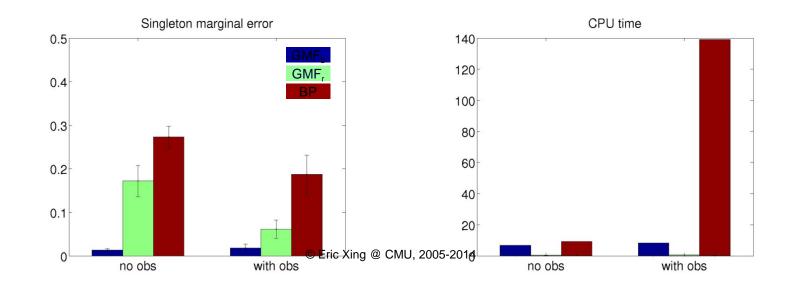


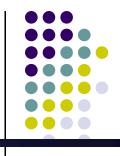
Repulsive coupling: negatively weighted

### Example 2: Sigmoid belief network

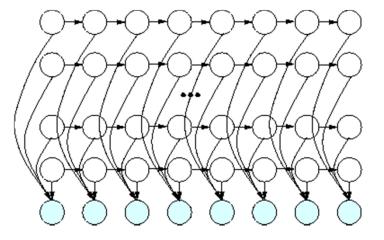


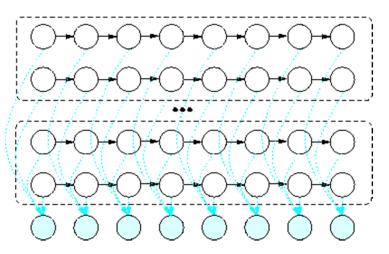


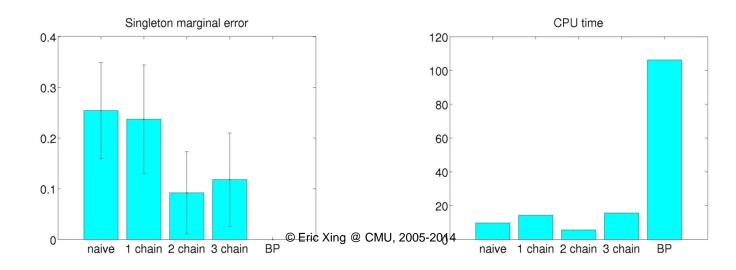




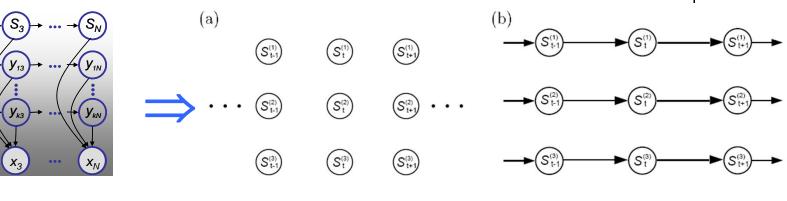
#### **Example 3: Factorial HMM**







#### **Automatic Variational Inference**



**fHMM** 

Mean field approx.

Structured variational approx.

- Currently for each new model we have to
  - derive the variational update equations
  - write application-specific code to find the solution
- Each can be time consuming and error prone
- Can we build a general-purpose inference engine which automates these procedures?

### **Cluster-based MF (e.g., GMF)**

- a general, iterative message passing algorithm
- clustering completely defines approximation
  - preserves dependencies
  - flexible performance/cost trade-off
  - clustering automatable
- recovers model-specific structured VI algorithms, including:
  - fHMM, LDA
  - variational Bayesian learning algorithms
- easily provides new structured VI approximations to complex models