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Hidden Markov Model revisit
 Transition probabilities between 

any two states

or

 Start probabilities 

 Emission probabilities associated with each state

or in general:
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Inference (review)

)|,...,()(
def

111  
k
tTttt

k
t yxxPk

 Forward algorithm

 Backward algorithm

),,,...,()(
def

1111  
k
ttttt

k
t yxxxPk

)|()|()1()1(

),1,1(

111111

:11

def
,

tttt
j
ttt

i
ttt

T
j
t

i
t

ji
t

yypyxpyy

xyyp













 
i

ki
i
t

k
tt

k
t ayxp ,)|( 11 

i
t

i
tt

i
ik

k
t yxpa 111, )1|(    

)|(,
, 1111  

i
ttji

j
t

i
t

ji
t yxpa


j

ji
t

i
t

i
tT

i
t

i
t xyp ,

:1

def
)|1( 

)|(),(

)|()(
def

def

11

1

1 




i
t

j
t

i
ttt

yypji

yxpi

A

B

 
 
  

ttt

tttt

ttt

ttt



















. 
. .

. 
. 

AB

BA
BA

T

T

11

11

1

The matrix-vector form:
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Learning HMM
 Supervised learning: estimation when the “right answer” is known

 Examples: 
GIVEN: a genomic region x = x1…x1,000,000 where we have good

(experimental) annotations of the CpG islands
GIVEN: the casino player allows us to observe him one evening, 

as he changes dice and produces 10,000 rolls

 Unsupervised learning: estimation when the “right answer” is 
unknown
 Examples:

GIVEN: the porcupine genome; we don’t know how frequent are the 
CpG islands there, neither do we know their composition

GIVEN: 10,000 rolls of the casino player, but we don’t see when he 
changes dice

 QUESTION: Update the parameters  of the model to maximize P(x|) -
-- Maximal likelihood (ML) estimation 
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Learning HMM: two scenarios
 Supervised learning: if only we knew the true state path then 

ML parameter estimation would be trivial
 E.g., recall that for complete observed tabular BN:

 What if y is continuous? We can treat                                       as NT
observations of, e.g., a GLIM, and apply learning rules for GLIM …

 Unsupervised learning: when the true state path is unknown, 
we can fill in the missing values using inference recursions.
 The Baum Welch algorithm (i.e., EM)

 Guaranteed to increase the log likelihood of the model after each iteration
 Converges to local optimum, depending on initial conditions




kji
kij

ijkML
ijk n

n

,',
'

  
 

 

 





n

T

t
i
tn

j
tnn

T

t
i
tnML

ij y
yy

i
jia

2 1

2 1

,

,,

)(#
)(#

 
 









n

T

t
i
tn

k
tnn

T

t
i
tnML

ik y
xy

i
kib

1

1

,

,,

)(#
)(#

  NnTtyx tntn :,::, ,, 11 

5© Eric Xing @ CMU, 2005-2014



The Baum Welch algorithm
 The complete log likelihood

 The expected complete log likelihood

 EM
 The E step

 The M step ("symbolically" identical to MLE)
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Shortcomings of Hidden Markov 
Model (1): locality of features

 HMM models capture dependences between each state and only its 
corresponding observation  
 NLP example: In a sentence segmentation task, each segmental state may 

depend not just on a single word (and the adjacent segmental stages), but also 
on the (non-local) features of the whole line such as line length, indentation, 
amount of white space, etc.

 Mismatch between learning objective function and prediction 
objective function
 HMM learns a joint distribution of states and observations P(Y, X), but in a 

prediction task, we need the conditional probability P(Y|X)

Y1 Y2 … … … Yn

X1 X2 … … … Xn

7© Eric Xing @ CMU, 2005-2014



Solution:
Maximum Entropy Markov Model (MEMM)

 Models dependence between each state and the full 
observation sequence explicitly
 More expressive than HMMs 

 Discriminative model
 Completely ignores modeling P(X): saves modeling effort
 Learning objective function consistent with predictive function: P(Y|X)

Y1 Y2 … … … Yn

X1:n
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Then, shortcomings of MEMM (and 
HMM) (2): the Label bias problem

State 1

State 2

State 3

State 4

State 5

Observation 1 Observation 2 Observation 3 Observation 4
0.4

0.60.2

0.2

0.2

0.2

0.2

0.45

0.550.2

0.3

0.1

0.1

0.3

0.5

0.50.1

0.3

0.2

0.2

0.2

What the local transition probabilities say:

• State 1 almost always prefers to go to state 2

• State 2 almost always prefer to stay in state 2
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MEMM: the Label bias problem

State 1

State 2

State 3

State 4

State 5

Observation 1 Observation 2 Observation 3 Observation 4
0.4

0.60.2

0.2

0.2

0.2

0.2

0.45

0.550.2

0.3

0.1

0.1

0.3

0.5

0.50.1

0.3

0.2

0.2

0.2

Probability of path 1-> 1-> 1-> 1:

• 0.4 x 0.45 x 0.5 = 0.09 
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MEMM: the Label bias problem

State 1

State 2

State 3

State 4

State 5

Observation 1 Observation 2 Observation 3 Observation 4
0.4

0.60.2

0.2

0.2

0.2

0.2

0.45

0.550.2

0.3

0.1

0.1

0.3

0.5

0.50.1

0.3

0.2

0.2

0.2

Probability of path 2->2->2->2 :

• 0.2 X 0.3 X 0.3 = 0.018 
Other paths:
1-> 1-> 1-> 1: 0.09 
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MEMM: the Label bias problem

State 1

State 2

State 3

State 4

State 5

Observation 1 Observation 2 Observation 3 Observation 4
0.4

0.60.2

0.2

0.2

0.2

0.2

0.45

0.550.2

0.3

0.1

0.1

0.3

0.5

0.50.1

0.3

0.2

0.2

0.2

Probability of path 1->2->1->2:

• 0.6 X 0.2 X 0.5 = 0.06
Other paths:
1->1->1->1: 0.09 
2->2->2->2: 0.018 
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MEMM: the Label bias problem

State 1

State 2

State 3

State 4

State 5

Observation 1 Observation 2 Observation 3 Observation 4
0.4

0.60.2

0.2

0.2

0.2

0.2

0.45

0.550.2

0.3

0.1

0.1

0.3

0.5

0.50.1

0.3

0.2

0.2

0.2

Probability of path 1->1->2->2:

• 0.4 X 0.55 X 0.3 = 0.066
Other paths:
1->1->1->1: 0.09 
2->2->2->2: 0.018
1->2->1->2: 0.06 13© Eric Xing @ CMU, 2005-2014



MEMM: the Label bias problem

State 1

State 2

State 3

State 4

State 5

Observation 1 Observation 2 Observation 3 Observation 4
0.4

0.60.2

0.2

0.2

0.2

0.2

0.45

0.550.2

0.3

0.1

0.1

0.3

0.5

0.50.1

0.3

0.2

0.2

0.2

Most Likely Path:  1-> 1-> 1-> 1

• Although locally it seems state 1 wants to go to state 2 and state 2 wants to remain in state 2.

• why?
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MEMM: the Label bias problem

State 1

State 2

State 3

State 4

State 5

Observation 1 Observation 2 Observation 3 Observation 4
0.4

0.60.2

0.2

0.2

0.2

0.2

0.45

0.550.2

0.3

0.1

0.1

0.3

0.5

0.50.1

0.3

0.2

0.2

0.2

Most Likely Path:  1-> 1-> 1-> 1

• State 1 has only two transitions but state 2 has 5:

• Average transition probability from state 2 is lower
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MEMM: the Label bias problem

State 1

State 2

State 3

State 4

State 5

Observation 1 Observation 2 Observation 3 Observation 4
0.4

0.60.2

0.2

0.2

0.2

0.2

0.45

0.550.2

0.3

0.1

0.1

0.3

0.5

0.50.1

0.3

0.2

0.2

0.2

Label bias problem in MEMM:

• Preference of states with lower number of transitions over others
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Solution: 
Do not normalize probabilities locally

State 1

State 2

State 3

State 4

State 5

Observation 1 Observation 2 Observation 3 Observation 4
0.4

0.60.2

0.2

0.2

0.2

0.2

0.45

0.550.2

0.3

0.1

0.1

0.3

0.5

0.50.1

0.3

0.2

0.2

0.2

From local probabilities ….
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Solution: 
Do not normalize probabilities locally

State 1

State 2

State 3

State 4

State 5

Observation 1 Observation 2 Observation 3 Observation 4
20

3010

20

10

20

20

30

2020

30

10

10

30

5

510

30

20

20

20

From local probabilities to local potentials

• States with lower transitions do not have an unfair advantage!
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From MEMM ….

Y1 Y2 … … … Yn

X1:n
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 CRF is a partially directed model
 Discriminative model like MEMM
 Usage of global normalizer Z(x) overcomes the label bias problem of MEMM
 Models the dependence between each state and the entire observation sequence 

(like MEMM)

From MEMM to CRF

Y1 Y2 … … … Yn

x1:n
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Conditional Random Fields
 General parametric form:

Y1 Y2 … … … Yn

x1:n
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CRFs: Inference
 Given CRF parameters  and , find the y* that maximizes P(y|x)

 Can ignore Z(x) because it is not a function of y

 Run the max-product algorithm on the junction-tree of CRF:

Y1 Y2 … … … Yn

x1:n

Y1,Y2 Y2,Y3 ……. Yn-2,Yn-1
Yn-1,Yn

Y2 Y3
Yn-2 Yn-1

Same as Viterbi decoding 
used in HMMs!
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CRF learning
 Given {(xd, yd)}d=1

N, find *, * such that

 Computing the gradient w.r.t 
Gradient of the log-partition function in an 
exponential family is the expectation of the 

sufficient statistics.
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CRF learning

 Computing the model expectations:

 Requires exponentially large number of summations: Is it intractable?

 Tractable!
 Can compute marginals using the sum-product algorithm on the chain

Expectation of f over the corresponding marginal 
probability of neighboring nodes!!
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CRF learning
 Computing marginals using junction-tree calibration:

 Junction Tree Initialization: 

 After calibration: 

Y1 Y2 … … … Yn

x1:n

Y1,Y2 Y2,Y3 ……. Yn-2,Yn-1
Yn-1,Yn

Y2 Y3
Yn-2 Yn-1

Also called 
forward-backward algorithm
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CRF learning
 Computing feature expectations using calibrated potentials:

 Now we know how to compute rL(,):

 Learning can now be done using gradient ascent: 
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CRF learning
 In practice, we use a Gaussian Regularizer for the parameter 

vector to improve generalizability

 In practice, gradient ascent has very slow convergence
 Alternatives:

 Conjugate Gradient method
 Limited Memory Quasi-Newton Methods 

27© Eric Xing @ CMU, 2005-2014



CRFs: some empirical results
 Comparison of error rates on synthetic data

CRF error HMM error

HMM error

M
EM

M
 e

rro
r

M
EM

M
 e

rro
r

C
R

F 
er

ro
r

Data is increasingly higher 
order in the direction of arrow

CRFs achieve the lowest 
error rate for higher order 
data
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CRFs: some empirical results
 Parts of Speech tagging

 Using same set of features: HMM >=< CRF > MEMM
 Using additional overlapping features: CRF+ > MEMM+ >> HMM
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Other CRFs
 So far we have discussed only 1-

dimensional chain CRFs
 Inference and learning: exact

 We could also have CRFs for 
arbitrary graph structure
 E.g: Grid CRFs
 Inference and learning no longer tractable
 Approximate techniques used

 MCMC Sampling
 Variational Inference
 Loopy Belief Propagation

 We will discuss these techniques soon

30© Eric Xing @ CMU, 2005-2014



Image Segmentation
 Image segmentation (FG/BG) by modeling of interactions btw RVs 

 Images are noisy. 
 Objects occupy continuous regions in an image.

Input image Pixel-wise separate
optimal labeling

Locally-consistent 
joint optimal labeling

[Nowozin,Lampert 2012]

Y* argmax
y{0,1}n

Vi (yi,X) Vi, j (yi, yj )
jNi


iS


iS












.

Y: labels
X: data (features)
S: pixels
Ni: neighbors of pixel i

Unary Term Pairwise Term
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Undirected Graphical Models 
(with an Image Labeling Example)
 Image can be represented by 4-connected

2D grid. 

 MRF / CRF with image labeling problem
 X={xi}iS: observed data of an image. 
 xi: data at i-th site (pixel or block) of the image set S

 Y={yi}iS: (hidden) labels at i-th site. yi  {1,…, L}. 

 Object: maximize the conditional probability  Y*=argmaxY P(Y|X)

xi
si

xj

sj
yi= 0 (BG)

si

yi= 1 (FG)
sj

Y*
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MRF (Markov Random Field)
 Definition: Y={yi}iS is called Markov Random Field on the set S, with 

respect to neighborhood system N, iff for all i  S,

 The posterior probability is

 (1) Very strict independence assumptions 
for tractability: Label of each site is a 
function of data only at that site. 

 (2) P(Y) is modeled as a MRF

P(yi|yS-{i}) = P(yi|yNi). 

yj yi

xi

P(Y | X)  P(X,Y )
P(X)

P(X |Y )P(Y )  P(xi | yi )
iS
 P(Y )

(1) (2)

P(Y )  1
Z

c (yc )
cC
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CRF
 Definition: Let G = (S, E), then (X, Y) is said to be a Conditional 

Random Field (CRF) if, when conditioned on X, the random 
variables yi obey the Markov property with respect to the graph

 Globally conditioned on the observation X

yj yi

xi

P(yi|yS-{i}) = P(yi|yNi)MRF:P(yi|X,yS-{i}) = P(yi|X,yNi)

CRF

yj yi

xi

MRF
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CRF vs MRF
 MRF: two-step generative model

 Infer likelihood P(X|Y) and prior P(Y)
 Use Bayes theorem to determine posterior P(Y|X)

 CRF: one-step discriminative model
 Directly Infer posterior P(Y|X)

 Popular Formulation

P(Y | X) P(X,Y )
P(X)

P(X |Y )P(Y )  P(xi | yi )
iS
  1

Z
c (yc )

cC


P(Y | X) 1
Z

exp( log p(xi | yi ) V2 (yi, yi ' )
i 'Ni


iS


iS
 )MRF

P(Y | X)  1
Z

exp( V1(yi | X) V2 (yi, yi ' | X)
i 'Ni


iS


iS
 )CRF

Potts model for P(Y) with
only pairwise potential 

Only up to pairwise clique
potentials

Assumption
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Example of CRF – DRF
 A special type of CRF

 The unary and pairwise potentials are designed using local discriminative 
classifiers.

 Posterior

 Association Potential 
 Local discriminative model for site i: using logistic link with GLM.

 Interaction Potential
 Measure of how likely site i and j have the same label given X

Ai (yi,X)  logP(yi | fi (X))

P(Y | X)  1
Z

exp( Ai (yi,X) Iij (yi, yj,X)
jNi


iS


iS
 )

S. Kumar and M. Hebert. Discriminative Random Fields. IJCV, 2006.

Association Interaction

P(yi 1 | fi (X))  1
1 exp((wT fi (X)))

 (wT fi (X))

Iij (yi, yj,X)  kyiyj  (1 k)(2 (yiyjij (X))1))

(1) Data-independent smoothing term (2) Data-dependent pairwise logistic function  
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Example of CRF – DRF Results
 Task: Detecting man-made structure in natural scenes. 

 Each image is divided in non-overlapping 16x16 tile blocks. 

 An example

 Logistic: No smoothness in the labels
 MRF: Smoothed False positive. Lack of neighborhood interaction of the data

S. Kumar and M. Hebert. Discriminative Random Fields. IJCV, 2006.

Input image Logistic MRF DRF
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Example of CRF –Body Pose 
Estimation
 Task: Estimate a body pose.

 Need to detect parts of human body
 Appearance + Geometric configuration. 
 A large number of DOFs

 Use CRF to model a human body
 Nodes: Parts (head, torso, upper/

lower left/right arms).
L=(l1,…, l6), li = [xi, yi, θi].

 Edges: Pairwise linkage between
parts

 Tree vs. Graph

V. Ferrari et al. Progressive search space reduction for human pose estimation. CVPR 2008.
D. Ramanan. Learning to Parse Images of Articulated Bodies." NIPS 2006. 

[Zisserman 2010]
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Example of CRF –Body Pose 
Estimation
 Posterior of configuration

 ψ(li,lj): relative position with geometric constraints
 ϕ(li): local image evidence for a part in a particular location
 If E is a tree, exact inference is efficiently performed by BP.

 Example of unary and pairwise terms 
 Unary term: appearance feature

P(L | I ) exp( (li ) (li, l j
(i, j )E


i
 ))

HOG of lower arm 
template (learned)

HOG of image L2 Distance

 Pairwise term: kinematic layout

li

lj
Truncated
quadratic

[Zisserman 2010]
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Example of CRF – Results of 
Body Pose Estimation
 Examples of results

 Datasets and codes are available.
 http://www.ics.uci.edu/~dramanan/papers/parse/
 http://www.robots.ox.ac.uk/~vgg/research/pose_estimation/

[Ferrari et al. 2008]

[Ramanan 2006] 
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Summary
 Conditional Random Fields are partially directed discriminative 

models
 They overcome the label bias problem of MEMMs by using a global 

normalizer
 Inference for 1-D chain CRFs is exact

 Same as Max-product or Viterbi decoding
 Learning also is exact

 globally optimum parameters can be learned
 Requires using sum-product or forward-backward algorithm

 CRFs involving arbitrary graph structure are intractable in general
 E.g.: Grid CRFs
 Inference and learning require approximation techniques

 MCMC sampling
 Variational methods
 Loopy BP 
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