
School of Computer Science

Probabilistic Graphical Models 

Factor Analysis and State Space 
Models

Eric Xing
Lecture 11, February 19o, 2014

Reading: See class website
1© Eric Xing @ CMU, 2005-2014



A road map to more complex 
dynamic models
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Factorial HMM Switching SSM 
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Recall multivariate Gaussian
 Multivariate Gaussian density:

 A joint Gaussian: 

 How to write down p(x1), p(x1|x2) or p(x2|x1) using the block 
elements in  and ?
 Formulas to remember:
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Review:
The matrix inverse lemma
 Consider a block-partitioned matrix:

 First we diagonalize M

 Schur complement:

 Then we inverse, using this formula:

 Matrix inverse lemma
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Review:
Some matrix algebra
 Trace and derivatives

 Cyclical permutations

 Derivatives

 Determinants and derivatives
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Factor analysis
 An unsupervised linear regression model

 Geometric interpretation

 To generate data, first generate a point within the manifold then add noise. 
Coordinates of point are components of latent variable.

AY

X

where  is called a factor loading matrix, and  is diagonal. 
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Marginal data distribution 
 A marginal Gaussian (e.g., p(x)) times a conditional Gaussian 

(e.g., p(y|x)) is a joint Gaussian
 Any marginal (e.g., p(y) of a joint Gaussian (e.g., p(x,y)) is 

also a Gaussian
 Since the marginal is Gaussian, we can determine it by just computing its mean 

and variance. (Assume noise uncorrelated with data.)
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FA = Constrained-Covariance 
Gaussian
 Marginal density for factor analysis (y is p-dim, x is k-dim):

 So the effective covariance is the low-rank outer product of 
two long skinny matrices plus a diagonal matrix:

 In other words, factor analysis is just a constrained Gaussian 
model. (If  were not diagonal then we could model any 
Gaussian and it would be pointless.)
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FA joint distribution
 Model

 Covariance between x and y

 Hence the joint distribution of x and y:

 Assume noise is uncorrelated with data or latent variables.
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Inference in Factor Analysis
 Apply the Gaussian conditioning formulas to the joint 

distribution we derived above, where

we can now derive the posterior of the latent variable x given 
observation y,                                    , where

Applying the matrix inversion lemma

 Here we only need to invert a matrix of size |x||x|, instead of |y||y|.
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Geometric interpretation: 
inference is linear projection
 The posterior is:

 Posterior covariance does not depend on observed data y!
 Computing the posterior mean is just a linear operation:
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Learning FA
 Now, assume that we are given {yn} (the observation on high-

dimensional data) only

 We have derived how to estimate xn from P(X|Y)

 How can we learning the model?
 Loading matrix 
 Manifold center 
 Variance 
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EM for Factor Analysis
 Incomplete data log likelihood function (marginal density of y)

 Estimating  is trivial: 
 Parameters  and  are coupled nonlinearly in log-likelihood

 Complete log likelihood 
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E-step for Factor Analysis 
 Compute

 Recall that we have derived: 
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M-step for Factor Analysis 
 Take the derivates of the expected complete log likelihood 

wrt. parameters.
 Using the trace and determinant derivative rules:
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Model Invariance and 
Identifiability
 There is degeneracy in the FA model.
 Since  only appears as outer product , the model is 

invariant to rotation and axis flips of the latent space.
 We can replace  with Q for any orthonormal matrix Q and 

the model remains the same: (Q)(Q)=(QQ)=.
 This means that there is no “one best” setting of the 

parameters. An infinite number of parameters all give the ML 
score!

 Such models are called un-identifiable since two people both 
fitting ML parameters to the identical data will not be 
guaranteed to identify the same parameters.
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A road map to more complex 
dynamic models
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State space models (SSM)
 A sequential FA or a continuous state HMM

 In general, 
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where f is an (arbitrary) dynamic model, and g is an (arbitrary) 
observation  model
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LDS for 2D tracking
 Dynamics: new position = old position +  velocity + noise 

(constant velocity model, Gaussian noise)

 Observation: project out first two components (we observe 
Cartesian position of object - linear!)
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The inference problem 1

j
tt

j
ttt

i
ttt jipipip 111     )X|X()X|y()|X( :y

A Y2 Y3Y1 Yt

X2 X3X1 Xt... 

... 

)|( :1 ttxP y

0α 1α 2α tα

 Filtering  given y1, …, yt, estimate xt: 
 The Kalman filter is a way to perform exact online inference (sequential 

Bayesian updating) in an LDS. 
 It is the Gaussian analog of the forward algorithm for HMMs:
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The inference problem 2
 Smoothing  given y1, …, yT, estimate xt (t<T)

 The Rauch-Tung-Strievel smoother is a way to perform exact off-line inference in 
an LDS. It is the Gaussian analog of the forwards-backwards (alpha-gamma) 
algorithm:
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2D tracking

X1 X1
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Kalman filtering in the brain?
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Kalman filtering derivation
 Since all CPDs are linear Gaussian, the system defines a 

large multivariate Gaussian.
 Hence all marginals are Gaussian.
 Hence we can represent the belief state p(Xt|y1:t) as a Gaussian with 

mean                                     and covariance                                        .
 It is common to work with the inverse covariance (precision) matrix       ; 

this is called information form.

 Kalman filtering is a recursive procedure to update the belief 
state:
 Predict step: compute p(Xt+1|y1:t) from prior belief                          

p(Xt|y1:t) and dynamical model p(Xt+1|Xt) --- time update

 Update step: compute new belief p(Xt+1|y1:t+1) from                      
prediction p(Xt+1|y1:t), observation yt+1 and observation                     
model p(yt+1|Xt+1) --- measurement update

AA YtY1

Xt Xt+1X1 ... 

A AA Yt Yt+1Y1

Xt Xt+1X1 ... 
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Kalman filtering derivation
 Kalman filtering is a recursive procedure to update the belief 

state:
 Predict step: compute p(Xt+1|y1:t) from prior belief                          

p(Xt|y1:t) and dynamical model p(Xt+1|Xt) --- time update

 Update step: compute new belief p(Xt+1|y1:t+1) from                      
prediction p(Xt+1|y1:t), observation yt+1 and observation                     
model p(yt+1|Xt+1) --- measurement update

AA YtY1

Xt Xt+1X1 ... 

A AA Yt Yt+1Y1

Xt Xt+1X1 ... 
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Predict step
 Dynamical Model:

 One step ahead prediction of state:

 Observation model:
 One step ahead prediction of observation:

);(~         , QGA 01 Ntttt ww xx

);0(~    , RvvC tttt N xy
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Predict step
 Dynamical Model:

 One step ahead prediction of state:

 Observation model:
 One step ahead prediction of observation:
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Update step
 Summarizing results from previous slide, we have 

p(Xt+1,Yt+1|y1:t) ~ N(mt+1, Vt+1), where

 Remember the formulas for conditional Gaussian 
distributions:
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Kalman Filter
 Measurement updates:

 where Kt+1 is the Kalman gain matrix

 Time updates:

 Kt can be pre-computed (since it is independent of the data).
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Example of KF in 1D
 Consider noisy observations of a 1D particle doing a random 

walk:

 KF equations: 
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KF intuition
 The KF update of the mean is

 the term                        is called the innovation

 New belief is convex combination of updates from prior and 
observation, weighted by Kalman Gain matrix:

 If the observation is unreliable, z (i.e., R) is large so Kt+1 is 
small, so we pay more attention to the prediction.

 If the old prior is unreliable (large t) or the process is very 
unpredictable (large x), we pay more attention to the 
observation.

 
zxt

ttztxt
ttttt

xz
xzxx







 
|

t|1t1t||

ˆ
)ˆ-(ˆˆ CK 1111

)ˆ( t|1t1t   xz C

-1TT RCCPCPK )( ||   ttttt 111

31© Eric Xing @ CMU, 2005-2014



Complexity of one KF step
 Let                and               , 

 Computing                                  takes O(Nx
2) time, assuming 

dense P and dense A.

 Computing                                             takes O(Ny
3) time.

 So overall time is, in general, max {Nx
2,Ny

3}

xN
tX R yN

tY R
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The inference problem 2
 Smoothing  given y1, …, yT, estimate xt (t<T)

 The Rauch-Tung-Strievel smoother is a way to perform exact off-line inference in 
an LDS. It is the Gaussian analog of the forwards-backwards (alpha-gamma) 
algorithm:
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Rauch-Tung-Strievel smoother 

 General structure: KF results + the difference of the "smoothed" and predicted results 
of the next step 

 Backward computation: Pretend to know things at t+1 –- such conditioning makes 
things simple and we can remove this condition finally 

 The difficulty: 
 The  trick: 
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RTS derivation
 Following the results from previous slide, we need to derive 

p(Xt+1,Xt|y1:t) ~ N(m, V), where

 all the quantities here are available after a forward KF pass

 Remember the formulas for conditional Gaussian distributions:

 The RTS smoother
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Learning SSMs
 Complete log likelihood

 EM
 E-step: compute

these quantities can be inferred via KF and RTS filters, etc.,                              
e,g.,   

 M-step: MLE using

c.f., M-step in factor analysis 
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Nonlinear systems
 In robotics and other problems, the motion model and the 

observation model are often nonlinear:

 An optimal closed form solution to the filtering problem is no longer 
possible.

 The nonlinear functions f and g are sometimes represented by 
neural networks (multi-layer perceptrons or radial basis function 
networks).

 The parameters of f and g may be learned offline using EM, where 
we do gradient descent (back propagation) in the M step, c.f. 
learning a MRF/CRF with hidden nodes.

 Or we may learn the parameters online by adding them to the state 
space: xt'= (xt, ). This makes the problem even more nonlinear.

     )(         ,  )( tttttt vxgywxfx  1

37© Eric Xing @ CMU, 2005-2014



Extended Kalman Filter (EKF)
 The basic idea of the EKF is to linearize f and g using a 

second order Taylor expansion, and then apply the standard 
KF.
 i.e., we approximate a stationary nonlinear system with a non-stationary 

linear system.

where                             and                    and

 The noise covariance (Q and R) is not changed, i.e., the 
additional error due to linearization is not modeled.
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Online vs offline inference
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 The KF update of the mean is

 Consider the special case where the hidden state is a 
constant, xt =, but the “observation matrix” C is a time-
varying vector, C = xt

T.
 Hence the observation model at each time slide,                      , is a 

linear regression

 We can estimate  recursively using the Kalman filter:

This is called the recursive least squares (RLS) algorithm.

 We can approximate                     by a scalar constant. This is 
called the least mean squares (LMS) algorithm.

 We can adapt t online using stochastic approximation theory.
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KF, RLS and LMS
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