
10-708 PGM (Spring 2020): Homework 1

Andrew ID: [your Andrew ID]
Name: [your first and last name]

Collaborators: [Andrew IDs of all collaborators, if any]

1 Bayesian Networks [20 Points] (Ben)

State True or False, and briefly justify your answer within 3 lines. The statements are either direct consequences
of theorems in Koller and Friedman (2009, Ch. 3), or have a short proof. In the follows, P is a distribution
and G is a BN structure.

1. [2 points] If A ⊥ B | C and A ⊥ C | B, then A ⊥ B and A ⊥ C. (Suppose the joint distribution of
A,B,C is positive.) (This is a general probability question not related to BNs.)

A B C

D E

Figure 1: A Bayesian network.

2. [2 points] In Figure 1, E ⊥ C | B.

3. [2 points] In Figure 1, A ⊥ E | C.

P factorizes over G I(G) ⊆ I(P ) I`(G) ⊆ I(P )
(1) (2)

(3)

Figure 2: Some relations in Bayesian networks.

Recall the definitions of local and global independences of G and independences of P .

I`(G) = {(X ⊥ NonDescendantsG(X) | ParentsG(X))} (1)

I(G) = {(X ⊥ Y | Z) : d-separatedG(X,Y |Z)} (2)

I(P ) = {(X ⊥ Y | Z) : P (X,Y |Z) = P (X|Z)P (Y |Z)} (3)

4. [2 points] In Figure 2, relation (1) is true.

5. [2 points] In Figure 2, relation (2) is true.

6. [2 points] In Figure 2, relation (3) is true.

7. [2 points] If G is an I-map for P , then P may have extra conditional independencies than G.
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8. [2 points] Two BN structures G1 and G2 are I-equivalent iff they have the same skeleton and the same
set of v-structures.

9. [2 points] If G1 is an I-map of distribution P , and G1 has fewer edges than G2, then G2 is not a minimal
I-map of P .

10. [2 points] The P-map of a distribution, if it exists, is unique.
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2 Markov Networks [30 points] (Xun)

Let X = (X1, . . . , Xd) be a random vector (not necessarily Gaussian) with mean µ and covariance matrix
Σ. The partial correlation matrix R of X is a d × d matrix where each entry Rij = ρ(Xi, Xj |X−ij) is the
partial correlation between Xi and Xj given the d− 2 remaining variables X−ij . Let Θ = Σ−1 be the inverse
covariance matrix of X.

We will prove the relation between R and Θ, and furthermore how Θ characterizes conditional independence
in Gaussian graphical models.

1. [10 points] Show that (
Θii Θij

Θji Θjj

)
=

(
Var[ei] Cov[ei, ej ]

Cov[ei, ej ] Var[ej ]

)−1
(4)

for any i, j ∈ [d], i 6= j. Here ei is the residual resulting from the linear regression of X−ij to Xi, and
similarly ej is the residual resulting from the linear regression of X−ij to Xj .

2. [10 points] Show that

Rij = − Θij√
Θii

√
Θjj

(5)

3. [10 points] From the above result and the relation between independence and correlation, we know
Θij = 0 ⇐⇒ Rij = 0 ⇐= Xi ⊥ Xj | X−ij . Note the last implication only holds in one direction.

Now suppose X ∼ N(µ,Σ) is jointly Gaussian. Show that Rij = 0 =⇒ Xi ⊥ Xj | X−ij .
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3 Exact Inference [20 points] (Yiwen)

Reference materials for this problem:

• Jordan textbook Ch. 3, available at

https://people.eecs.berkeley.edu/ jordan/prelims/chapter3.pdf

• Koller and Friedman (2009, Ch. 9 and Ch. 10)

3.1 Variable elimination on a grid [10 points]

Consider the following Markov network:

A B C

D E F

G H I

We are going to see how tree-width, a property of the graph, is related to the intrinsic complexity of variable
elimination of a distribution.

1. [2 points] Write down largest clique(s) for the elimination order E,D,H, F,B,A,G, I, C.

2. [2 points] Write down largest clique(s) for the elimination order A,G, I, C,D,H, F,B,E.

3. [2 points] Which of the above ordering is preferable? Explain briefly.

4. [4 points] Using this intuition, give a reasonable (� n2) upper bound on the tree-width of the n× n
grid.

3.2 Junction tree (a.k.a Clique Tree) [10 points]

Consider the following Bayesian network G:

A B C

E D

We are going to construct a junction tree T from G. Please sketch the generated objects in each step.

1. [1 points] Moralize G to construct an undirected graph H.

2. [3 points] Triangulate H to construct a chordal graph H∗.

(Although there are many ways to triangulate a graph, for the ease of grading, please try adding fewest
additional edges possible.)

3. [3 points] Construct a cluster graph U where each node is a maximal clique Ci from H∗ and each
edge is the sepset Si,j = Ci ∩Cj between adjacent cliques Ci and Cj .

4. [3 points] The junction tree T is the maximum spanning tree of U .

(The cluster graph is small enough to calculate maximum spanning tree in one’s head.)
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4 Parameter Estimation [30 points] (Xun)

Consider an HMM with T time steps, M discrete states, and K-dimensional observations as in Figure 3,
where zt ∈ {0, 1}M ,

∑
s zts = 1, xt ∈ RK for t ∈ [T ].

z1 z2 · · · zT

x1 x2 xT

Figure 3: A hidden Markov model.

The joint distribution factorizes over the graph:

p(x1:T , z1:T ) = p(z1)

T∏
t=2

p(zt|zt−1)

T∏
t=1

p(xt|zt). (6)

Now consider the parameterization of CPDs. Let π ∈ RM be the initial state distribution and A ∈ RM×M
be the transition matrix. The emission density f(·) is parameterized by φi at state i. In other words,

p(z1i = 1) = πi, p(z1) =

M∏
i=1

πz1ii , (7)

p(ztj = 1|zt−1,i = 1) = aij , p(zt|zt−1) =

M∏
i=1

M∏
j=1

a
zt−1,iztj
ij , t = 2, . . . , T (8)

p(xt|zti = 1) = f(xt;φi), p(xt|zt) =

M∏
i=1

f(xt;φi)
zti , t = 1, . . . , T. (9)

Let θ = (π, A, {φi}Mi=1) be the set of parameters of the HMM. Given the empirical distribution p̂ of x1:T , we
would like to find MLE of θ by solving the following problem:

max
θ

Ex1:T∼p̂ [log pθ(x1:T )] . (10)

However the marginal likelihood is intractable due to summation over MT terms:

pθ(x1:T ) =
∑
z1:T

pθ(x1:T , z1:T ). (11)

An alternative is to use the EM algorithm as we saw in the class.

1. [10 points] Show that the EM updates can take the following form:

θ∗ ← argmax
θ

Ex1:T∼p̂ [F (x1:T ; θ)] (12)

where

F (x1:T ; θ) :=

M∑
i=1

γ(z1i) log πi +

T∑
t=2

M∑
i=1

M∑
j=1

ξ(zt−1,i, ztj) log aij +

T∑
t=1

M∑
i=1

γ(zti) log f(xt;φi) (13)

and γ and ξ are the posterior expectations over current parameters θ̂:

γ(zti) := Ez1:T∼pθ̂(z1:T |x1:T ) [zti] = pθ̂(zti = 1|x1:T ), t = 1, . . . , T (14)

ξ(zt−1,i, ztj) := Ez1:T∼pθ̂(z1:T |x1:T ) [zt−1,iztj ] = pθ̂(zt−1,iztj = 1|x1:T ), t = 2, . . . , T (15)
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2. [0 points] (No need to answer.) Suppose γ and ξ are given, and we use isotropic Gaussian xt|zti = 1 ∼
N(µi, σ

2
i I) as the emission distribution. Then the parameter updates have the following closed form:

π∗i ∝ Ex1:T∼p̂ [γ(z1i)] (16)

a∗ij ∝ Ex1:T∼p̂

[
T∑
t=2

ξ(zt−1,i, ztj)

]
(17)

µ∗ik =
Ex1:T∼p̂

[∑T
t=1 γ(zti)xt

]
Ex1:T∼p̂

[∑T
t=1 γ(zti)

] (18)

σ2
i
∗

=
Ex1:T∼p̂

[∑T
t=1 γ(zti)‖xt − µi‖22

]
Ex1:T∼p̂

[∑T
t=1 γ(zti)K

] (19)

3. [10 points] We will use the belief propagation algorithm (Koller and Friedman, 2009, Alg. 10.2) to
perform inference for all marginal queries:

γ(zt) = pθ̂(zt|x1:T ), t = 1, . . . , T (20)

ξ(zt−1, zt) = pθ̂(zt−1, zt|x1:T ). t = 2, . . . , T (21)

For convenience, the notation θ̂ will be omitted from now on.

Derive the following BP updates:

γ(zt) =
1

Z(x1:T )
· s(zt) (22)

ξ(zt−1, zt) =
1

Z(x1:T )
· c(zt−1, zt) (23)

(24)

where

s(zt) = α(zt)β(zt), t = 1, . . . , T (25)

c(zt−1, zt) = p(zt|zt−1)p(xt|zt)α(zt−1)β(zt), t = 2, . . . , T (26)

Z(x1:T ) =
∑
zt

s(zt) (27)

and

α(z1) = p(z1)p(x1|z1) (28)

α(zt) = p(xt|zt)
∑
zt−1

p(zt|zt−1)α(zt−1), t = 2, . . . , T (29)

β(zt−1) =
∑
zt

p(zt|zt−1)p(xt|zt)β(zt), t = 2, . . . , T (30)

β(zT ) = 1 (31)

4. [0 points] (No need to answer.) Implemented as above, the (α, β)-recursion is likely to encounter
numerical instability due to repeated multiplication of small values. One way to mitigate the numerical
issue is to scale (α, β) messages at each step t, so that the scaled values are always in some appropriate
range, while not affecting the inference result for (γ, ξ).
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Recall that the forward message is in fact a joint distribution

α(zt) = p(x1:t, zt). (32)

Define scaled messages by re-normalizing α w.r.t. zt:

α̂(zt) :=
1

Z(x1:t)
· α(zt), (33)

Z(x1:t) =
∑
zt

α(zt). (34)

Furthermore, define

r1 := Z(x1), (35)

rt :=
Z(x1:t)

Z(x1:t−1)
. t = 2, . . . , T (36)

Notice that Z(x1:t) = r1 · · · rt, hence

α̂(zt) =
1

r1 · · · rt
· α(zt). (37)

Plugging α̂ into forward messages, the new α̂-recursion is

α̂(z1) =
1

r1
· p(z1)p(x1|z1)︸ ︷︷ ︸

α̃(z1)

(38)

α̂(zt) =
1

rt
· p(xt|zt)

∑
zt−1

p(zt|zt−1)α̂(zt−1)︸ ︷︷ ︸
α̃(zt)

. t = 2, . . . , T (39)

Since α̂ is normalized, each rt serves as the normalizing constant:

rt =
∑
zt

α̃(zt). (40)

Now switch focus to β. In order to make the inference for (γ, ξ) invariant of scaling, β has to be scaled
in a way that counteracts the scaling on α. Plugging α̂ into the marginal queries,

γ(zt) =
1

Z(x1:T )
· r1 · · · rt · α̂(zt)β(zt), (41)

ξ(zt−1, zt) =
1

Z(x1:T )
· p(zt|zt−1)p(xt|zt) · r1 · · · rt−1 · α̂(zt−1)β(zt). (42)

Since Z(x1:T ) = r1 . . . rT , a natural scaling scheme for β is

β̂(zt−1) :=
1

rt · · · rT
· β(zt−1), t = 2, . . . , T (43)

β̂(zT ) := β(zT ), (44)

which simplifies the expression for marginals (γ, ξ) to

γ(zt) = α̂(zt)β̂(zt), (45)

ξ(zt−1, zt) =
1

rt
· p(zt|zt−1)p(xt|zt)α̂(zt−1)β̂(zt). (46)
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The new β̂-recursion can be obtained by plugging β̂ into backward messages:

β̂(zt−1) =
1

rt
·
∑
zt

p(zt|zt−1)p(xt|zt)β̂(zt), t = 2, . . . , T (47)

β̂(zT ) = 1. (48)

In other words, β̂(zt−1) is scaled by 1/rt, the normalizer of α̂(zt).

The full algorithm is summarized below.

Algorithm 1 Exact inference for (γ, ξ)

(a) Scaled forward message for t = 1:

α̃(z1) = p(z1)p(x1|z1) (49)

r1 =
∑
z1

α̃(z1) (50)

α̂(z1) =
1

r1
· α̃(z1) (51)

(b) Scaled forward message for t = 2, . . . , T :

α̃(zt) = p(xt|zt)
∑
zt−1

p(zt|zt−1)α̂(zt−1) (52)

rt =
∑
zt

α̃(zt) (53)

α̂(zt) =
1

rt
· α̃(zt) (54)

(c) Scaled backward message for t = T + 1:

β̂(zT ) = 1 (55)

(d) Scaled backward message for t = T, . . . , 2:

β̂(zt−1) =
1

rt
·
∑
zt

p(zt|zt−1)p(xt|zt)β̂(zt) (56)

(e) Singleton marginal for t = 1, . . . , T :

γ(zt) = α̂(zt)β̂(zt) (57)

(f) Pairwise marginal for t = 2, . . . , T :

ξ(zt−1, zt) =
1

rt
· p(zt|zt−1)p(xt|zt)α̂(zt−1)β̂(zt) (58)

5. [10 points] We will implement the EM algorithm (also known as Baum-Welch algorithm), where
E-step performs exact inference and M-step updates parameter estimates. Please complete the TODO
blocks in the provided template baum_welch.py and submit it to Gradescope. The template contains
a toy problem to play with. The submitted code will be tested against randomly generated problem
instances.
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