10-708 PGM (Spring 2020): Homework 1

Andrew ID: [your Andrew ID]
Name: [your first and last name]
Collaborators: [Andrew IDs of all collaborators, if any]

1 Bayesian Networks [20 Points] (Ben)

State True or False, and briefly justify your answer within 3 lines. The statements are either direct consequences
of theorems in Koller and Friedman (2009, Ch. 3), or have a short proof. In the follows, P is a distribution
and G is a BN structure.

1.

NS G

[2 points] If AL B|Cand AL C | B, then A L Band A L C. (Suppose the joint distribution of
A, B, C is positive.) (This is a general probability question not related to BNs.)
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Figure 1: A Bayesian network.

[2 points] In Figure([ll E L C | B.
[2 points] In Figure[l] AL E | C.
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Figure 2: Some relations in Bayesian networks.

Recall the definitions of local and global independences of G and independences of P.

Zy(G) = {(X L NonDescendantsg(X) | Parentsg (X))} (1)
Z(G) ={(X LY | Z) : d-separatedg(X,Y|Z)} (2)
I(P)=4{(X LY | Z2): P(X,Y|Z)=P(X|Z)P(Y|Z)} (3)

[2 points] In Figure [2] relation (1) is true.
[2 points] In Figure [2] relation (2) is true.

[2 points

]
]
] In Figure [2] relation (3) is true.
]

[2 points] If G is an I-map for P, then P may have extra conditional independencies than G.



8. [2 points] Two BN structures G; and Go are I-equivalent iff they have the same skeleton and the same

set of v-structures.
9. [2 points] If G; is an I-map of distribution P, and G; has fewer edges than Go, then G, is not a minimal

I-map of P.
10. [2 points] The P-map of a distribution, if it exists, is unique.



2 Markov Networks [30 points] (Xun)

Let X = (X1,...,X4) be a random vector (not necessarily Gaussian) with mean p and covariance matrix
Y. The partial correlation matrix R of X is a d x d matrix where each entry R;; = p(X;, X;|X_;;) is the
partial correlation between X; and X; given the d — 2 remaining variables X_;;. Let © = Y1 be the inverse
covariance matrix of X.

We will prove the relation between R and ©, and furthermore how © characterizes conditional independence
in Gaussian graphical models.

1. [10 points] Show that

O, ©;;\ ([ Varle;]  Covle;, e, ! @)
©,; ©;;) \Covle,e;]  Varle,]
for any i, j € [d], i # j. Here e; is the residual resulting from the linear regression of X_;; to X;, and
similarly e; is the residual resulting from the linear regression of X_;; to Xj.
2. [10 points] Show that
Oy

Ve ©

Rij =

3. [10 points] From the above result and the relation between independence and correlation, we know
0;; =0 < R;; =0 < X; L X; | X_;;. Note the last implication only holds in one direction.

Now suppose X ~ N(u,X) is jointly Gaussian. Show that R;; =0 = X; L X, | X_;;.



3 Exact Inference [20 points] (Yiwen)
Reference materials for this problem:
e Jordan textbook Ch. 3, available at

https://people.eecs.berkeley.edu/ jordan/prelims/chapter3.pdf
e Koller and Friedman (2009, Ch. 9 and Ch. 10)

3.1 Variable elimination on a grid [10 points]

Consider the following Markov network:

Q—O—n
b0 — W

—C
— F
— I
We are going to see how tree-width, a property of the graph, is related to the intrinsic complexity of variable
elimination of a distribution.
1. [2 points] Write down largest clique(s) for the elimination order E, D, H, F, B, A,G,I,C.
2. [2 points] Write down largest clique(s) for the elimination order A,G,I,C,D,H, F, B, E.
3. [2 points] Which of the above ordering is preferable? Explain briefly.

4. [4 points] Using this intuition, give a reasonable (< n?) upper bound on the tree-width of the n x n

grid.

3.2 Junction tree (a.k.a Clique Tree) [10 points]

Consider the following Bayesian network G:

A—— B ——C

~N o

EFE——D

We are going to construct a junction tree 7 from G. Please sketch the generated objects in each step.
1. [1 points] Moralize G to construct an undirected graph H.
2. [3 points] Triangulate H to construct a chordal graph H*.

(Although there are many ways to triangulate a graph, for the ease of grading, please try adding fewest
additional edges possible.)

3. [3 points] Construct a cluster graph U where each node is a maximal clique C; from H* and each
edge is the sepset S; ; = C; N C; between adjacent cliques C; and C}.

4. [3 points] The junction tree 7 is the maximum spanning tree of U.

(The cluster graph is small enough to calculate maximum spanning tree in one’s head.)



4 Parameter Estimation [30 points] (Xun)

Consider an HMM with T time steps, M discrete states, and K-dimensional observations as in Figure
where z; € {0,1}M, Y 25 =1, x, € RE for t € [T).

Zl z2 ... ZT
X1 X2 XT

Figure 3: A hidden Markov model.

The joint distribution factorizes over the graph:

T

T
p(xl:T7Z1:T) :p(Zl) H Zt\Zt 1 Hp Xt|Zt (6)
t=1

t=2

Now consider the parameterization of CPDs. Let w € RM be the initial state distribution and A € RMxM
be the transition matrix. The emission density f(-) is parameterized by ¢, at state 7. In other words,

M
p(z1i = 1) =m, p(z1) = Hﬁfua (7)
i=1
M M
(25 = Uzi—1 = 1) = aqj, P(z¢|ze—1) H H S t=2,...,T (8)
i=17=1
M
p(xelzu = 1) = f(xe: ), p(xilz) = Hf(Xn(ﬁ ), t=1,...,T. (9)
i=1

Let 6 = (m, A, {¢;}}£,) be the set of parameters of the HMM. Given the empirical distribution p of x1.7, we
would like to find MLE of 8 by solving the following problem:

meax Ex,.r~p [logpo(x1:7)] - (10)

However the marginal likelihood is intractable due to summation over M7’ terms:
o(X1.7) ZPG X1.7, Z1.T)- (11)
z1.T7
An alternative is to use the EM algorithm as we saw in the class.

1. [10 points] Show that the EM updates can take the following form:

0" < argmax Ey, .5 [F(x1.7;6)] (12)
0
where
M T M M
F(x1.1;0) = Z z1;) log m; +ZZZ€ -1, 215) log aij +ZZW zi) log f(xi;¢05)  (13)
t=2 i=1 j=1 t=1 i=1

and v and & are the posterior expectations over current parameters 0:

Y(2ti) = Ezl:Twpé(zl:T|x1:T) [Zn] = pé(zti =1xur), t=1,...,T (14)

E(zt—1,is 2t5) = Egypmpy (aror xar) [B1-1,205] = Pglze—1,25 = Uxar), t=2,...,T (15)



2. [0 points] (No need to answer.) Suppose v and £ are given, and we use isotropic Gaussian x¢|zy; = 1 ~
N(p;,021) as the emission distribution. Then the parameter updates have the following closed form:

WZ X EXl:TNﬁ [’7(211)] (16)
rr

azj o By pnp Z&(zt—l,uztj)] (17)
t=2

[T
X1.7~D _Zt:l V(Zti)xt]
T
Exl:TNﬁ [thl ’Y(Zti)}
[T
Exyiomp | e Y0l — 4l

By | D V(210) K |

3. [10 points] We will use the belief propagation algorithm (Koller and Friedman, 2009, Alg. 10.2) to
perform inference for all marginal queries:

’Y(Zt) :pé(zt‘xl:T)a t= 17"'aT (20)
g(ztflvzt) :pé(zt717Zt|X1:T)~ t = 27"'7T (21)

For convenience, the notation 6 will be omitted from now on.

Derive the following BP updates:

) = e stm) (22)
1

§(ze-1,2¢) = Z(x0r) - c(z-1,%1) (23)
(24)

where
S(Zt) = Zt)ﬂ(zt)a t= 13 ce 7T (25)
(z1—1,2¢) = p(2¢|2e—1)p(x¢t|2e)(2e—1)B(2¢), t=2,...,T (26)
Z(x1r) =Y s(z) (27)

and

a(z1) = p(z1)p(x1|21) (28)
a(z) = p(xilz) Y plzlz1)a(zi), t=2,...,T (29)
B(zi—1) = Zp(zt|zt,1)p(xt|zt)6(zt), t=2,...,T (30)
Blar) =1 (31)

4. [0 points] (No need to answer.) Implemented as above, the («, 8)-recursion is likely to encounter
numerical instability due to repeated multiplication of small values. One way to mitigate the numerical
issue is to scale («, 3) messages at each step ¢, so that the scaled values are always in some appropriate
range, while not affecting the inference result for (v, §).



Recall that the forward message is in fact a joint distribution

o(ze) = p(X1:t, 2). (32)

Define scaled messages by re-normalizing o w.r.t. z;:

1
A = 33
a<zt) Z(Xl t) Oé(Zt), ( )
Z(x1.4) = Z a(z) (34)
Zt
Furthermore, define
= Z(Xl)a (35)
Z(Xlzt)
ry=——r— t=2...,T 36
" Z(x1-1) (36)
Notice that Z(x1.t) = r1---r¢, hence
R 1
a(z¢) = LTy “o(z). (37)
Plugging & into forward messages, the new G-recursion is
. 1
a(z1) = " - p(z1)p(x1|z1) (38)
—_———
&(z1)
. 1 .
&(ze) = - - p(xt|zt) ZP(Zt|Zt—1)0¢(Zt—1)~ t=2,...,T (39)
t Zt—1

a(z¢)
Since & is normalized, each r; serves as the normalizing constant:
re=Y_ dlz). (40)
k43

Now switch focus to 8. In order to make the inference for (v, &) invariant of scaling, 8 has to be scaled
in a way that counteracts the scaling on «. Plugging & into the marginal queries,

(60 = Zy T a0 (41)
£(ze-1,2¢) = Z(><11;T) (2| Ze—1)p(Xe|Ze) 71—t - G(Be—1) B(2e)- (42)

Since Z(x1.1) = r1...77, a natural scaling scheme for g is

Blar) = L —Blmo), t=2...T (43)
Blzr) = Blzr), (44)
which simplifies the expression for marginals (7, €) to
Y(ze) = &ze) B(ze), (45)
€(aim1,2) = - ez )pbxla)d (1) Ba). (46)



The new B—recursion can be obtained by plugging B into backward messages:

B(zi-1) Zp 7|z 1)p(xi|ze)B(ze), t=2,...,T (47)
Blzr) = 1. (48)
In other words, B(z,_1) is scaled by 1/r;, the normalizer of é(z;).
The full algorithm is summarized below.
Algorithm 1 Exact inference for (v, &)
(a) Scaled forward message for ¢t = 1:
a(z1) = p(z1)p(x1|21) (49)
r = Z C~¥(Z1) (50)
zq
1
a(z1) = — - a(z1) (51)
1
(b) Scaled forward message for t =2,...,T"
&ze) = p(xelze) D p(melze—1)a(ze1) (52)
Zi—1
re=Y_ a(z) (53)
. .
a(zy) = — - a(ze) (54)
Tt
(¢) Scaled backward message for t =T + 1:
Blzr) =1 (55)
(d) Scaled backward message for t =T, ...,2:
Zt 1) Zp 2¢|z—1)p(xe|2e) B (Zt) (56)
(e) Singleton marginal for t =1,...,T":
v(ze) = @(Zt)B(Zt) (57)
(f) Pairwise marginal for t =2,...,T":
1 A )
§(ze—1,2¢) = - p(2ze|Ze—1)p(%e|2) (24— 1) B(24) (58)
t

5. [10 points] We will implement the EM algorithm (also known as Baum-Welch algorithm), where
E-step performs exact inference and M-step updates parameter estimates. Please complete the TODO
blocks in the provided template baum_welch.py and submit it to Gradescope. The template contains
a toy problem to play with. The submitted code will be tested against randomly generated problem

instances.
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