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Probabilistic Graphical Models

Generalized linear models

Reading: KF-chap 17
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Parameterizing graphical models |:¢
e Bayesian network:
PX) =] P(x,1X,)
:(1) 2;2 E? g:i A~N(”a’ za) B~N(”b! zb)
. ‘ Or ‘ Or
?

O+ Dd=00V -0

a0 | a%"* [ a'b% | a'b?
c® | 045 1 0.9 0.7
c' | 0.55 0 0.1 0.3

wWCcoOCS=——=300

C~N(A+B, %)
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Recall Linear Regression -

e Let us assume that the target variable and the mputs are
related by the equation:

=0'x, +¢,

where ¢ is an error term of unmodeled effects or random noise

e Now assume that ¢ follows a Gaussian N(0,0), then we have:

1 -0"x.)°

p(yi | xi;g) = \/ZG exp(_ (yi 20_2 j

e We can use LMS algorithm, which is a gradient
ascent/descent approach, to estimate the parameter
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Recall: Logistic Regression

(sigmoid classifier, perceptron, etc.) o

—
e The condition distribution: a Bernoulli

p(y]x)= ()" A= u@x)™
where u is a logistic function -

1
X) = -
) l+e™

e \We can used the brute-force gradient method as in LR

e But we can also apply generic laws by observing the p(y|x) is
an exponential family function, more specifically, a
generalized linear model!
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Parameterizing graphical models

e Markov random fields

(X)——GXP{ Z¢(X )} —GXP{ H(x)}

]
p(X)= Eexp{ Z 0,X. X, + Z 91.0)(1}
i,jeN,; i
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Restricted Boltzmann Machines ot

hidden units

)")‘\"\

visible units

p(x,h|0)=expl 20¢.(x,)+ 260,6,(h)+ 20, 4, (x,.h,)- A®) |
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Conditional Random Fields oo
G e Discriminative
& () .. pmx>=Z(;,x)exp{gecﬁ<x,yc)}

&
e @ @ @ e X’'s are assumed as features
that are inter-dependent
x) ) x) .. &
4

e When labeling X, future

Q{ e @ observations are taken into

account
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Conditional Distribution :

e Ifthe graph G=(V, E) of Y is a tree, the conditional distribution over
the label sequence Y =Yy, given X = x, by the Hammersley Clifford
theorem of random fields is:

1
p,(yIx)=——exp| D A fi(eyl..x)+ D 18, y],.x)
Z(X) ecEk vel k
—  xis a data sequence ()—() ()
— yis alabel sequence \. g
— vis a vertex from vertex set V = set of label random variables X; ... X,

— eis an edge from edge set E over V

— f.and g, are given and fixed. g, is a Boolean vertex feature; f, is a Boolean edge
feature

— ks the index number of the features

- =, A, A0, 1,0, 1), A, and . are parameters to be estimated
— Y|, is the set of components of y defined by edge e

— Y|, is the set of components of y defined by vertex v
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2-D Conditional Random Fields ot

Pg(Y|X)=

{Z f(X.Y,) }

W‘ o Allow arbitrary dependencies
ol on input

e Clique dependencies on labels

e Use approximate inference for
general graphs
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Exponential family,
a basic building block

e For a numeric random variable X
p(x|7) = h(x)exply" T(x) - A(n)}

Z(177) h(x) exp{nTT(x)}

is an exponential family distribution with natural (canonical) parameter »

e Function T(x) is a sufficient statistic.
e Function A(7) = log Z(7) is the log normalizer.

e Examples: Bernoulli, multinomial, Gaussian, Poisson,
gamma,...
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Example: Multivariate Gaussian coce
Distribution oo

e For a continuous vector random variable XeRk:

_ 1 I PN
) GXP{ 2 ”\“)g

p(x
Moment parameter

1 . . .
:Wexp{—%tr@ 1xxT)+ p'E -1’y 1,u—10g‘2‘}
e EXxponential family representation Natural parameter

-1

= [E‘Iy;—%vec(E_l )]: [nl,vec(nz )]= = > pand M, =—32
T(x)= [x;vec(xxT )]
A7) =4 u" 27 u+loglE| = — L tr(momyn ) - log(-27,)
h(x)=(2r)""

e Note: a k-dimensional Gaussian is a (d+d?)-parameter distribution with a (d+d?)-
element vector of sufficient statistics (but because of symmetry and positivity,
parameters are constrained and have lower degree of freedom)
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Example: Multinomial distribution | :¢

e For a binary vector random variable X ~ multi(x | 7),
p(x‘ﬂ) =Ty e = exp{z x, In ﬂk}
k
K-1 K-1 K-1
=exps ) x, Inrm, J{I—Zx,{jln(l— T, }

[
S|
=
N
4
[E—
=
TN
[
[
T =~
—_ Lo
S
=
~

=expy ) X, ln£

e EXxponential family representation

[l

T(x)=[x]

A(n) =- ln[l - KZ:lﬂAj = ln(ZK: et j
k=1 k1

h(x)=1
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T
Why exponential family? o
e Moment generating property
dA _ d | 1 d
%—% 0gZ(n)= ﬁ% Z(n)
1
Z(n)d J.h(x)exp{n T(x)}
(1 hx)expln ()}
Z(1n)
= E[T(x)]
G jT2<x)h(x)eXp{’7TT Oy [ M0 TWi, 1 d /0,
dn* Z(n) Z(n) Z(n) dn

= E[r?(v)]- E[T(0)]
= Var[T(x)]

© Eric Xing @ CMU, 2005-2017
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Moment estimation -

e \We can easily compute moments of any exponential family
distribution by taking the derivatives of the log normalizer

A(n).
e The g™ derivative gives the g'" centered moment.
—dA(f]) = mecan
dn
2
d A(Zﬂ) = variance
dn

e \When the sufficient statistic is a stacked vector, partial
derivatives need to be considered.
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Moment vs canonical parameters |:¢

e The moment parameter u can be derived from the natural
(canonical) parameter

LD Flroo)= x A
dn :
e A(n)is convex since
d® A(n) 7
i = Var|T(x)]> 0 Ty

e Hence we can invert the relationship and infer the canonical

parameter from the moment parameter (1-to-1):
def

n=w(u)

e A distribution in the exponential family can be parameterized not only by 7 —the
canonical parameterization, but also by # —the moment parameterization.
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MLE for Exponential Family -

e For iid data, the log-likelihood is

¢(7;D) =log [T h(x,) exply T(x,) - A(n)|

= logh(x,)+ (UTZ T(xn)) — NA(1)

e [ake derivatives and set to zero:

814(’7) IZT
Y T(x,)
N on N %

Hyie ZWZT(%)
e This amounts to moment matching.
e We can infer the canonical parameters using 7,z =¥ (L)

© Eric Xing @ CMU, 2005-2017
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Sufficiency -

o For p(x]6), T(x) is sufficient for @if there is no information in X
regarding @ beyond that in T(x).

e We can throw away X for the purpose of inference w.r.t. 4.

e Bayesian view @ :@ ;@ p(@1T(x),x)=p0|T(x))

e Frequentist view
(5

e The Neyman factorization theorem
T(x) is sufficient for @if

CO—@—©

p(x,T(x),0) =y, (T (x), )y, (x,T(x))
= p(x[0) = g(T(x),0)h(x,T(x))

© Eric Xing @ CMU, 2005-2017 17
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0000
0000
o000
o0
Examples o
e Gaussian:
n=[2" - Svee(s )
T(x)z[x;vec(xxr)] :i T :i
A(n):%,uTZ_llu-l—%log‘Z‘ = Hue Nzn: 1(x,) Nzn:xn

h(x)=Q2z)*"*

Multinomial:
‘ Al

_ 1
T(x)= [x] . . = Hyip = N Zn: Xy
A(n) = —ln[l - ﬂk] = ln[z et j
k=1 k=1
h(x)=1
e Poisson: 7 = log
T(x)=x 1
Alm)y=A=¢" = Hyre = ﬁzxn
h(x)= l
x!
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Bayesian est. -

© Eric Xing @ CMU, 2005-2017 19



Generalized Linear Models
(GLIMs)

e The graphical model

Linear regression
Discriminative linear classification
Commonality:
model E (¥)=1=/(6"X)
What is p()? the cond. dist. of VY.
What is f()? the response function.

e GLIM

The observed input x is assumed to enter into the model via a linear

combination of its elements & = @' x

The conditional mean u is represented as a function (&) of & where fis

known as the response function

The observed output y is assumed to be characterized by an
exponential family distribution with conditional mean .

© Eric Xing @ CMU, 2005-2017
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GLIM, cont. :

0

T~ f 4 EXP
—— H—T]

x/§

Y

p(y117) = h(y)expiy” (x)y - A7)
= p(y1,8) = h(y, @) expts (7" () y— A@) )|

e The choice of exp family is constrained by the nature of the data Y
e Example: vy is a continuous vector - multivariate Gaussian
y is a class label & Bernoulli or multinomial

e The choice of the response function
e Following some mild constrains, e.g., [0,1]. Positivity ...
e Canonical response function: f = (")

In this case "x directly corresponds to canonical parameter 7.
© Eric Xing @ CMU, 2005-2017
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Example canonical response
functions

Model Canonical response function
(zaussian =1

Bernoulli i=1/(1+e")
multinomial i = n;/ Z; el
Poisson 1= ¢

galnma f=—n"

© Eric Xing @ CMU, 2005-2017
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MLE for GLIMs with natural 34
response :

e Log-likelihood
/= Z logh(y,)+ Z (HTxnyn ~ A(Un))

e Derivative of Log-likelihood

¢ an , _ dAG) dmj

46 - dn. dé

=> (v, —u,)x,
é ) This is a fixed point function
=X (y—u) because u is a function of 8

e Online learning for canonical GLIMs

e Stochastic gradient ascent = least mean squares (LMS) algorithm:

0" =0'+ply, — . J,

where u' = (9’ )T x, and p 1isa step size

© Eric Xing @ CMU, 2005-2017 23



Batch learning for canonical cece
GLIMs oe

e The Hessian matrix R
x=| &
d?¢ d du S
H = = — X = X _rn _ o
dgdeT dQT Zn:(yn lun) n Zn: ndHT __ywxn _
1
~""dn. do :
LV ]

d :
=-> x, Hux® sincen =0"x
- dn,

= X"Wx

where X =|xT | is the design matrix and

W =diag %,,d’u—N]
dn, dn,y

which can be computed by calculating the 2"? derivative of A(7,)
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Recall LMS ot

e Cost function in matrix form: - X —-
1 n X: o X.Z o
J(O)=— To— )2 :
(0) ZZ(X, ) I
1 =\I - _yl_
— - (X0-7)(X0-
2( y) (X0-5) |

e [0 minimize J(6), take derivative and set to zero:

V,J = %Vetr(QTXTXé’—HTXT)? ~5' X0+5"7)
=S| X'X0=X"y

1 T T ~T T —
=V tr@" X' X0 -2V ,try° X0 +V ,t
2( otr? o oty XO+Vptry y) The normal equations
:%(XTX¢9+XTX¢9—2XT)7) U
—1
= X"X0-X"3=0 0 =(x"x) X"y
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Iteratively Reweighted Least cece
Squares (IRLS) os

e Recall Newton-Raphson methods with cost function J
Ht+1 _ et _H_IVQJ

e \We now have
V,J = XT(y_ﬂ)

H=-X"WX 0 =(x"x) x5y
e Now: 0" =0'+H'V ¢
=(xwx )XW xe + X7 (y- 1))
. =(x"wx) x'ws

where the adjusted response is z'=X0"+ (Wf)_l(y —u')

e This can be understood as solving the following " Iteratively
reweighted least squares " problem

0" =arg min(z - X60) W (z-X6)

© Eric Xing @ CMU, 2005-2017 26



Example 1: logistic regression
(sigmoid classifier) o

—

e [he condition distribution: a Bernoulli
p(y]x) = pu(x)" (- pu(x)"

where u is a logistic function

1
1(x) = o
e p(y|x) is an exponential family function, witt

1
Elylx]=u=1—o5

e and canonical response function

e Mmean.

77:95:<9Tx

e IRLS LI,
i

(=)
W= -
© Eric Xing @ (le\ﬁ(Y gg’OS_-Zélfv ) 27



Logistic regression: practical 4+
iIssues :

e |tis very common to use regularized maximum likelihood.

1
o oo
e

p(0) ~Normal(0, 177)

1(0) =Y log(o( yné’Txn))—%QT@

p(y==1x,0) =

e |IRLS takes O(Nd®) per iteration, where N = number of training cases and d =
dimension of input x.

e Quasi-Newton methods, that approximate the Hessian, work faster.
e Conjugate gradient takes O(Nd) per iteration, and usually works best in practice.
e Stochastic gradient descent can also be used if N is large c.f. perceptron rule:

V,l = (1—0(yn9Txn))yn , — A0

© Eric Xing @ CMU, 2005-2017
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Example 2: linear regression o°
—

e The condition distribution: a Gaussian y |

1 1
0,%) = —expl——(y— u(x)) = (v - u

Rescale = h(x) exp{— %Z‘l (nT (x)y— A(n))}
where w is a linear function

p(y

u(x)=0"x=n(x)
e p(y|x) is an exponential family function, with

e Mmean. E[y|x]:Iu :QTX

e and canonical response function

T
n=£=0x
e IRLS du_, ot =(x"wx) xwz

—_— = B t oo
dp = =(x"x)x"(xe+ (- u)) = 0=(X"X)"'X"Y
w=1I :9f+(XTX)_1XT(y—ut)

Steepest descent Normal equation
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Simple GMs are the building
blocks of complex BNs

u,o
O
Parametric and nonparametric methods X
X
X Y
Linear, conditional mixture, nonparametric O O
Q Q
Generative and discriminative approach X X
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B ol (o
(incomplete)
genealogy
of graphical
models

EBoltzmann
Machines

SBM,

;

Cooperative
Weotor
Suantization

/

Factorial HRMM
y )
/d'ls‘[rib

mix - mixiure

red-dim : reduced
dimension

dyn Jdynamics
distrib : distributed
representation

nonlin D nonlinear
switch  switching

Giaussian

The structures of most GMs
(e.g., all listed here), are not
learned from data, but
designed by human.

But such designs are useful
and indeed favored because
thereby human knowledge
are put into good use ...

Linear

Mixture of /
Gaussians -
ATAw) . M X
edd-0lm
Mixture of
H MM =
[malks
hAixture of
Factor Analyzers
red-dirm
dyn
mix
Factor Analysis Switching
FCA
( ) State-space
- dyn Models
nanlin
Ah'

Maonlinear
Saussian

oBeligf Nets

ICA
&
/ \ nonlin

2005-2017

Cynamical
Systems (SSMMs)

Monlinear
Cynamical
Dystems

Mixture of
LDSs
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MLE for general BNs -

e If we assume the parameters for each CPD (a GLIM) are
globally independent, and all nodes are fully observed, then
the log-likelihood function decomposes into a sum of local
terms, one per node:

£(0;D)=log p(D|6) =log] | (H p(x,;|x,, .0, j = [Z log p(x,, | Xn,ﬁfaé’i)j

i

X .0
0 1 X4 |
v 0 Xs |
A2 0
1 X) ;
: i 0 0.7
AX " oe
R s oo o M&
X1 X | i 0.2
! 0.1
’ 1 0 1
: Xz
X 0 1
(I
.10
] Xs
X3 1

e Therefore, MLE-based parameter estimation of GM reduces
to local est. of each GLIM

© Eric Xing @ CMU, 2005-2017
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How to define parameter prior? o

M
Factorization: p(X=x)=[]p(xx,)

Local Distributions
defined by, e.g., multinomial parameters:

p(x;|x.)=0,

AssumptiOnS (Geiger & Heckerman 97,99):
e Complete Model Equivalence
e Global Parameter Independence
e Local Parameter Independence
e Likelihood and Prior Modularityericxing @ cmu, 2005-2017
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Global & Local Parameter ggg:
Independence oo

m Global Parameter Independence
For every DAG model:

P, 1) =11 r@16)

For every node: P (eCalHAlarm:YES)

qi
p0 1) =]]p@,, 16
j=1 |

P(HCalHAlarm:NO)

© Eric Xing @ CMU, 2005-2017 34
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Parameter Independence,
Graphical View o

Global Parameter
Independence

Local Parameter
Independence

~( X5 sample 1

— sample 2

Provided all variables are observed in all cases, we can perform
Bayesian update each parameter independently 1!
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Which PDFs Satisfy Our coce

o000
ASS um ptlonS? (Geiger & Heckerman 97,99) :.
e Discrete DAG Models: x|z ~Multi(9)
N . F(Zak) | :
Dirichlet prior: P(0) = Tre H@k = C(a)H 0;

k

e Gaussian DAG Models: x;|7] ~Normal(y,X)

1
@7)"* | VY|

1
Normal prior: p(ulv,¥)= E GXP{—E(ﬂ —v)¥ 7 (u —V)}

Normal-Wishart prior:

p(ulv,a,, W)= Normal(v, (a#W)_ll

p(W|a,,T)=c(n,a,)|T|™ W[ """ exp{% tr{Tw}},

where W =371,
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Summary: Parameterizing GM

e For exponential family dist., MLE amounts to moment
matching

o GLIM:

e Natural response
e lteratively Reweighted Least Squares as a general algorithm

e GLIMs are building blocks of most GMs in practical use

e Parameter independence and appropriate priors

© Eric Xing @ CMU, 2005-2017
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