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 Directed edges give causality relationships (Bayesian 
Network or Directed Graphical Model):

 Undirected edges simply give correlations between 
variables (Markov Random Field or Undirected Graphical 
model):

Two types of GMs
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P(X1, X2, X3, X4, X5, X6, X7, X8)

= P(X1) P(X2) P(X3| X1) P(X4| X2) P(X5| X2)
P(X6| X3, X4) P(X7| X6) P(X8| X5, X6)

P(X1, X2, X3, X4, X5, X6, X7, X8)

= 1/Z exp{E(X1)+E(X2)+E(X3, X1)+E(X4, X2)+E(X5, X2)
+ E(X6, X3, X4)+E(X7, X6)+E(X8, X5, X6)}
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Review: independence properties 
of DAGs
 Defn: let Il(G) be the set of local independence properties 

encoded by DAG G, namely:

 Defn: A DAG G is an I-map (independence-map) of P 
if Il(G)I(P)

 A fully connected DAG G is an I-map for any distribution, 
since Il(G)I(P) for any P.

 Defn: A DAG G is a minimal I-map for P if it is an I-map for P, 
and if the removal of even a single edge from G renders it not 
an I-map.

 A distribution may have several minimal I-maps
 Each corresponding to a specific node-ordering
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P-maps
 Defn: A DAG G is a perfect map (P-map) for a distribution P if 

I(P)I(G).
 Thm: not every distribution has a perfect map as DAG.

 Pf by counterexample. Suppose we have a model where
AC | {B,D}, and BD | {A,C}. 
This cannot be represented by any Bayes net.

 e.g., BN1 wrongly says BD | A,  BN2 wrongly says BD.

A

C

D B

C A

D B

BN1 BN2

A

C

D B

MRF
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P-maps
 Defn: A DAG G is a perfect map (P-map) for a distribution P if 

I(P)I(G).
 Thm: not every distribution has a perfect map as DAG.

 Pf by counterexample. Suppose we have a model where
AC | {B,D}, and BD | {A,C}. 
This cannot be represented by any Bayes net.

 e.g., BN1 wrongly says BD | A,  BN2 wrongly says BD.

 The fact that G is a minimal I-map for P is far from a guarantee that G captures 
the independence structure in P

 The P-map of a distribution is unique up to I-equivalence between networks. That 
is, a distribution P can have many P-maps, but all of them are I-equivalent.
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Undirected graphical models 
(UGM)

 Pairwise (non-causal) relationships
 Can write down model, and score specific configurations of 

the graph, but no explicit way to generate samples
 Contingency constrains on node configurations

X1 X4

X2

X3

X5
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A Canonical Example: 
understanding complex scene …

?air or water ?© Eric Xing @ CMU, 2005-2017
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A Canonical Example
 The grid model

 Naturally arises in image processing, lattice physics, etc.
 Each node may represent a single "pixel", or an atom

 The states of adjacent or nearby nodes are "coupled" due to pattern continuity or 
electro-magnetic force, etc.

 Most likely joint-configurations usually correspond to a  "low-energy" state  
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Social networks

The New Testament Social Networks
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Protein interaction networks
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Modeling Go
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Information retrieval 

topic

text

image
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Representation
 Defn: an undirected graphical model represents a distribution 

P(X1 ,…,Xn) defined by an undirected graph H, and a set of 
positive potential functions yc associated with the cliques of 
H, s.t.

where Z is known as the partition function:

 Also known as Markov Random Fields, Markov networks …
 The potential function can be understood as an contingency 

function of its arguments assigning "pre-probabilistic" score of 
their joint configuration.   


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
Cc

ccn Z
xxP )(),,( x1
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
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I. Quantitative Specification: 
Cliques
 For G={V,E}, a complete subgraph (clique) is a subgraph 

G'={V'V,E'E} such that nodes in V' are fully interconnected
 A (maximal) clique is a complete subgraph s.t. any superset 

V"V' is not complete.
 A sub-clique is a not-necessarily-maximal clique.

 Example: 
 max-cliques = {A,B,D}, {B,C,D}, 
 sub-cliques = {A,B}, {C,D}, … all edges and singletons 

A

C

D B
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Gibbs Distribution and Clique 
Potential
 Defn: an undirected graphical model represents a distribution 

P(X1 ,…,Xn) defined by an undirected graph H, and a set of 
positive potential functions c associated with cliques of H, 
s.t.

where Z is known as the partition function:

 Also known as Markov Random Fields, Markov networks …
 The potential function can be understood as an contingency 

function of its arguments assigning "pre-probabilistic" score of 
their joint configuration.   





Cc

ccn Z
xxP )(),,( x1
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x

(A Gibbs distribution)
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Interpretation of Clique Potentials

 The model implies XZ|Y. This independence statement 
implies (by definition) that the joint must factorize as:

 We can write this as:                                            , but

 cannot have all potentials be marginals
 cannot have all potentials be conditionals

 The positive clique potentials can only be thought of as 
general "compatibility", "goodness" or "happiness" functions 
over their variables, but not as probability distributions.

)|()|()(),,( yzpyxpypzyxp 
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),()|(),,(
)|(),(),,(
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 For discrete nodes, we can represent P(X1:4) as two 3D tables 
instead of one 4D table

Example UGM – using max 
cliques 
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 We can represent P(X1:4) as 5 2D tables instead of one 4D table
 Pair MRFs, a popular and simple special case
 I(P')    vs.   I(P")  ? D(P')    vs.   D(P")  

Example UGM – using subcliques 
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Example UGM – canonical 
representation 
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 Most general, subsume P' and P" as special cases
 I(P)    vs.   I(P')    vs.   I(P")

D(P)    vs.   D(P')    vs.   D(P")
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II: Independence properties:
 Now let us ask what kinds of distributions can be represented 

by undirected graphs (ignoring the details of the particular 
parameterization).

 Defn: the global Markov properties of a UG H are

Y

ZX

 );(sep:))(I YZXYZXH H
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Global Markov Independencies
 Let H be an undirected graph:

 B separates A and C if every path from a node in A to a node 
in C passes through a node in B:

 A probability distribution satisfies the global Markov property
if for any disjoint A, B, C, such that B separates A and C, A is 
independent of C given B:

);(sep BCAH

 );(sep:)(I BCABCAH H
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Local Markov independencies 
 For each node Xi  V, there is unique Markov blanket of Xi, 

denoted MBXi, which is the set of neighbors of Xi in the graph 
(those that share an edge with Xi)

 Defn: 
The local Markov independencies associated with H is:

Iℓ(H): {Xi  V – {Xi } – MBXi | MBXi :  i),

In other words, Xi is independent of the rest of the nodes in the graph given 
its immediate neighbors
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Soundness and completeness of 
global Markov property
 Defn: An UG H is an I-map for a distribution P if I(H)  I(P), 

i.e., P entails I(H).
 Defn: P is a Gibbs distribution over H if it can be represented 

as

 Thm (soundness): If P is a Gibbs distribution over H, then H
is an I-map of P.

 Thm (completeness): If sepH(X; Z |Y), then X P Z |Y in 
some P that factorizes over H.


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
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Other Markov properties
 For directed graphs, we defined I-maps in terms of local 

Markov properties, and derived global independence.
 For undirected graphs, we defined I-maps in terms of global 

Markov properties, and will now derive local independence.
 Defn: The pairwise Markov independencies associated with 

UG H = (V;E) are

 e.g., 

 EYXYXVYXHp  },{:},{\)(I

},,{ 43251 XXXXX 

1 2 3 4 5
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Relationship between local and 
global Markov properties
 Thm 5.5.5. If P |= Il(H) then P |= Ip(H). 
 Thm 5.5.6. If P = I(H) then P |= Il(H).
 Thm 5.5.7. If P > 0 and P |= Ip(H), then P |= I(H).

 Corollary (5.5.8): The following three statements are equivalent for 
a positive distribution P:

P |= Il(H)
P |= Ip(H)
P |= I(H)

 This equivalence relies on the positivity assumption.
 We can design a distribution locally
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Hammersley-Clifford Theorem
 If arbitrary potentials are utilized in the following product formula for 

probabilities, 

then the family of probability distributions obtained is exactly that set 
which respects the qualitative specification (the conditional 
independence relations) described earlier 

 Thm : Let P be a positive distribution over V, and H a Markov 
network graph over V. If H is an I-map for P, then P is a Gibbs 
distribution over H.
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
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Perfect maps
 Defn: A Markov network H is a perfect map for P if for any X; 

Y;Z we have that

 Thm: not every distribution has a perfect map as UGM.
 Pf by counterexample. No undirected network can capture all and only the 

independencies encoded in a v-structure X Z Y .

 YZXPYZXH |);(sep  
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Exponential Form
 Constraining clique potentials to be positive could be inconvenient (e.g., 

the interactions between a pair of atoms can be either attractive or 
repulsive). We represent a clique potential c(xc)  in an unconstrained 
form using a real-value "energy" function c(xc):

For convenience, we will call c(xc) a potential when no confusion arises from the context.

 This gives the joint a nice additive strcuture

where the sum in the exponent is called the "free energy":

 In physics, this is called the "Boltzmann distribution".
 In statistics, this is called a log-linear model.
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Example: Boltzmann machines

 A fully connected graph with pairwise (edge) potentials on 
binary-valued nodes (for                                  ) is called a 
Boltzmann machine

 Hence the overall energy function has the form:

1

3

4 2

   1011 ,or  ,  ii xx

























Cxxx
Z

xx
Z

xxxxP

i
ii

ij
jiij

ij
jiij





exp

)(exp),,,( ,

1

1
4321

)()()()()(    xxxxxH T
ij jiji

© Eric Xing @ CMU, 2005-2017 29



Ising models
 Nodes are arranged in a regular topology (often a regular 

packing grid) and connected only to their geometric 
neighbors.

 Same as sparse Boltzmann machine, where ij0 iff i,j are 
neighbors.
 e.g., nodes are pixels, potential function encourages nearby pixels to have similar 

intensities.

 Potts model: multi-state Ising model.
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hidden units

visible units

{ }∑ ∑∑
,

,, )(-),(+)(+)(exp=)|,(
j ji

jijijijjj
i

iii Ahxhxhxp θ

Restricted Boltzmann Machines
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Restricted Boltzmann Machines
The Harmonium  (Smolensky –’86)

hidden units

visible units
History:
Smolensky (’86), Proposed the architechture.
Freund & Haussler (’92), The “Combination Machine” (binary), learning with projection pursuit.
Hinton (’02), The “Restricted Boltzman Machine” (binary), learning with contrastive divergence. 
Marks & Movellan (’02), Diffusion Networks (Gaussian).
Welling, Hinton, Osindero (’02), “Product of Student-T Distributions” (super-Gaussian)
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)|(~ xhph

)|(~ hxpx

Properties of RBM
 Factors are marginally dependent.

 Factors are conditionally 
independent given observations on 
the visible nodes. 

 Iterative Gibbs sampling.

 Learning with contrastive 
divergence 

)|()|( xx ii hPhP 
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how do we couple them?

 ∏ )(exp∝)(ind
i

iii xfp x
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jjj hgp h
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ix

A Constructive Definition
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jh

They map to the RBM random field:
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vector of  local 
sufficient statistics 
(features)

coupling in the 
log-domain with
shifted parameters

ix

A Constructive Definition
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An RBM for Text Modeling

words counts

topics

[ ]∏ )∑+exp(+1
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xi = n: word i has count n

hj = 3: topic j has strength 3
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Conditional Random Fields









 
c

ccc yxf
xZ

xyp ),(exp
),(

1)|( 
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A AA AX2 X3X1 XT

Y2 Y3Y1 YT... 

... 

A AA AX2 X3X1 XT

Y2 Y3Y1 YT... 

... 

Y1 Y2 Y5…

X1 … Xn

 Discriminative

 Doesn’t assume that features 
are independent

 When labeling Xi future 
observations are taken into 
account

© Eric Xing @ CMU, 2005-2017

37



Conditional Models
 Conditional probability P(label sequence y | observation sequence x)

rather than joint probability P(y, x)
 Specify the probability of possible label sequences given an observation 

sequence

 Allow arbitrary, non-independent features on the observation 
sequence X

 The probability of a transition between labels may depend on past 
and future observations

 Relax strong independence assumptions in generative models
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Conditional Distribution
 If the graph G = (V, E) of Y is a tree, the conditional distribution over 

the label sequence Y = y, given X = x, by the Hammersley Clifford 
theorem of random fields is:

─ x is a data sequence
─ y is a label sequence 
─ v is a vertex from vertex set V = set of label random variables
─ e is an edge from edge set E over V
─ fk and gk are given and fixed. gk is a Boolean vertex feature; fk is a Boolean edge 

feature
─ k is the number of features
─ are parameters to be estimated
─ y|e is the set of components of y defined by edge e
─ y|v is the set of components of y defined by vertex v

1 2 1 2( , , , ; , , , ); andn n k k          

(y | x) exp ( , y | , x) ( , y | , x)  
 

 
  

 
 k k e k k v

e E,k v V ,k

p f e g v

Y1 Y2 Y5

…

X1 … Xn
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(y | x) exp ( , y | , x) ( , y |1
(x)

, x)  
 

 
  

 
 k k e k k v

e E,k v V ,k
p f e g v

Z

Conditional Distribution (cont’d)
 CRFs use the observation-dependent normalization Z(x) for 

the conditional distributions:

 Z(x) is a normalization over the data sequence x
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Conditional Random Fields

 Allow arbitrary dependencies 
on input

 Clique dependencies on labels

 Use approximate inference for 
general graphs



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

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1
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Structure: an undirected 
graph

• Meaning: a node is 
conditionally independent of 
every other node in the 
network given its Directed 
neighbors

• Local contingency functions 
(potentials) and the cliques in 
the graph completely 
determine the joint dist. 

• Give correlations between 
variables, but no explicit way 
to generate samples

X

Y1 Y2

Summary: Conditional Independence 
Semantics in an MRF
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E

R

B

A

C

E

R

B

A

C

Where is the graph structure 
come from?

The goal:
 Given set of independent samples (assignments of random 

variables), find the best (the most likely?) graphical model 
topology

ML Structural Learning for completely observed GMs 

(B,E,A,C,R)=(T,F,F,T,F)
(B,E,A,C,R)=(T,F,T,T,F)

……..     
(B,E,A,C,R)=(F,T,T,T,F)
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Information Theoretic 
Interpretation of ML
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Information Theoretic 
Interpretation of ML (con'd)



  

 

 


















































i
i

i
Gi

i x
ii

i x iG

GiGi
Gi

i x i

i

G

GiGi
Gi

i x
GiGiGi

GG

xHMxIM

xpxpM
xpp

xp
xpM

xp
xp

p
xp

xpM

xpxpM

GDpDG

i

iGii i

ii

i

Gii i

ii

i

Gii

iii

)(ˆ),(ˆ

)(ˆlog)(ˆ
)(ˆ)(ˆ

),,(ˆ
log),(ˆ

)(ˆ
)(ˆ

)(ˆ
),,(ˆ

log),(ˆ

),|(ˆlog),(ˆ

),|(ˆlog);,(

)(

, )(

)(|)(
)(

, )(

)(|)(
)(

,
)(|)()(

)(

)(

)(





























x

x
x

x

x
x

x

xx

x

x

x

l

Decomposable score and a function of the graph structure

© Eric Xing @ CMU, 2005-2017



Structural Search
 How many graphs over n nodes?

 How many trees over n nodes?

 But it turns out that we can find exact solution of an optimal 
tree (under MLE)!
 Trick: in a tree each node has only one parent!
 Chow-liu algorithm
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Chow-Liu tree learning algorithm
 Objection function:

 Chow-Liu:
 For each pair of variable xi and xj

 Compute empirical distribution:

 Compute mutual information:

 Define a graph with node x1,…, xn

 Edge (I,j) gets weight 
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Chow-Liu algorithm (con'd)
 Objection function:

 Chow-Liu:
Optimal tree BN
 Compute maximum weight spanning tree
 Direction in BN: pick any node as root, do breadth-first-search to define directions
 I-equivalence:
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Structure Learning for general 
graphs
 Theorem:

 The problem of learning a BN structure with at most d parents is 
NP-hard for any (fixed) d≥2

 Most structure learning approaches use heuristics
 Exploit score decomposition 
 Two heuristics that exploit decomposition in different ways

 Greedy search through space of node-orders

 Local search of graph structures
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Summary
 Undirected graphical models capture “relatedness”, “coupling”, 

“co-occurrence”, “synergism”, etc. between entities
 Local and global independence properties identifiable via graph separation criteria
 Defined on clique potentials

 Can be used to define either joint or conditional distributions
 Generally intractable to compute likelihood due to presence of 

“partition function”
 Therefore not only inference, but also likelihood-based learning is difficult in general

 Important special cases:
 Ising models
 RBM
 CRF

 Learning GM structures: 
 the Chow-Liu Algorithm
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