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Two types of GMs S

e Directed edges give causality relationships (Bayesian
Network or Directed Graphical Model):

P(Xy, Xo, Xz, X4 Xe, Xer X1 Xg)

:@ P(X;) PCX5| X)) P Xg| X5)
P(Xs| X3, Xg) POX7| Xe AP (Xgl Xs, X85)

e Undirected edges simply give correlations between
variables (Markov Random Field or Undirected Graphical

model):
P(Xy, Xy Xy Xy Xe, Xy X Xg)
ke ) % (o )% |
= UIZ exp{BRAFHE(K)HE(Kg, XHEQ, X)HE(Ks, X,) =,
+ E(Xg, X3y X)HE(X7, Xe)+H(Xg, Xs; = o
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Review: independence properties | s
of DAGs oo

e Defn: let I,(&) be the set of local independence properties
encoded by DAG G, namely:

I(G) = X LZ|Y :dsepq (X;Z
e Defn: A DAG G is an I-map (independence-map) of P
if I,(6)< I(P)

e A fully connected DAG & is an |I-map for any distribution,
since I,(6)=9c I(P) for any P.

e Defn: A DAG G is a minimal I-map for P if it is an I-map for P,
and if the removal of even a single edge from & renders it not
an |-map.

e A distribution may have several minimal I-maps

e Each corresponding to a specific node-ordering
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Z@/ < ¢ 0000
P-maps

e Defn: A DAG G is a perfect map (P-map) for a distribution P if
I(P)=I(5).
e Thm: not every distribution has a perfect map as DAG.

e Pf by counterexample. Suppose we have a model where

T (A LT8O and BID] {A,C}D)

This cannot be represented by any Bayes net.

e.g., BN1 wrongly says B1D | A, BN2 wrongly says B LD.

PO
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P-maps

e Defn: A DAG G is a perfect map (P-map) for a distribution P if
I(P)=I(6).

e Thm: not every distribution has a perfect map as DAG.
e Pf by counterexample. Suppose we have a model where
ALC|{B,D}, and B1D |{A,C}.
This cannot be represented by any Bayes net.

e.g., BN1 wrongly says B1D | A, BN2 wrongly says B LD.

e The fact that G is a minimal I-map for P is far from a guarantee that G captures
the independence structure in P

e The P-map of a distribution is unique up to l-equivalence between networks. That
is, a distribution P can have many P-maps, but all of them are I-equivalent.
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Undirected graphical models cece
(UGM) oo

X, @

e Pairwise (non-causal) relationships

e (Can write down model, and score specific configurations of
the graph, but no explicit way to generate samples

e Contingency constrains on node configurations
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A Canonical Example: 434
understanding complex scene ... | 3¢
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A Canonical Example S

e The grid model

o000
0000
00010
0000
00000

o000

e Naturally arises in image processing, lattice physics, etc.

e Each node may represent a single "pixel", or an atom

The states of adjacent or nearby nodes are "coupled" due to pattern continuity or
electro-magnetic force, etc.

Most likely joint-configurations usually correspond to a "low-energy" state
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Social networks

-_ME”“ Judah _
gFharaoh {time DfMDSES},ﬁarnn GJHlicodemus

ahah «Erastus Sar
o 2Sarah  _Noah

Tiberias
i braham— ®E558  aristarchus

ghary (mother of Jesusy Stephen
.Jnseph (father of Jesus)  gloses (brother of Jesus)

wllitle g yaeop - @ames (brotherof Jesus) eMark e oy

LTychicus .Mnses .Davicl Titus _oFelix

.Elijah -Elarnal:nas

|saac
goSamuel

oE53U gfsaial @ th= Baptist [ —poemas
, .I Silas
2L ain glary (wife of Clopas) p
Pilate B5US Jlero
eJoseph . Sbel . gluke
ghlary Magdalens Claudius
etTEw .Herncl Antipas) -
.I'u'latthew s p aFEstus
oJUtlas (son of James) s Petel -“J':'IU'“':'aTimntlw
eSimon (of Cyrene) .James (son.of Zebedes) G Epaphras
udas Iscariot ebedes SANNAs
@/oseph (of Arimathea) gHerdias — ghApollos
ames (sonof Alphaeus '. Marthe w/onah
.‘J ( P ) gbarabbas Jiary (of Bethany)

@Filip (the apostie) @ artholomew gCaiaphas  _priscilla gAquila

.Thnmas.»ﬂ.lphaeus (father of James)
LFhilip (the evangelist)
Jielchizedels

The New Testament Social Networks
© Eric Xing @ CMU, 2005-2017 9



Protein interaction networks
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Modeling Go

This is the middle position of a Go game.
Overlaid is the estimate for the probability of
becoming black or white for every intersection.
Large sguares mean the probability is higher.

© Eric Xing @ CMU, 2005-2017
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Information retrieval
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Representation o

e Defn: an undirected graphical model represents a distribution
P(X,,...,X,) defined by an undirected graph H, and a set of
positive potential functions y, associated with the cliques of

H, s.t. I
, 1 Yo Yo Xy <P
P(xl,...,xn):—H@ UG
~— Z ceC v
™

where Z is known as the partition function:

2} 3 TIve

X, ceC

e Also known as Markov Random Fields, Markov networks ...

e The potential function can be understood as an contingency
function of its arguments assigning "pre-probabilistic” score of
their joint configuration.
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l. Quantitative Specification: 1
Cliques -

e For G={V,E}, a complete subgraph (clique) is a subgraph
G={V'cV,E'cE} such that nodes in V'are fully interconnected

e A (maximal) clique is a complete subgraph s.t. any superset
"S5V'is not complete.

e A sub-clique is a not-necessarily-maximal clique.

e Example:

e max-cliques = {@D}, {@1@})

e sub-cliques = {A,B}, {C,D}, ...~ all edges and singletons

© Eric Xing @ CMU, 2005-2017 14



Gibbs Distribution and Clique 434
Potential .

e Defn: an undirected graphical model represents a distribution
P(X,,...,X,) defined by an undirected graph H, and a set of
positive potential functions g, associated with cliques of H,
s.t.

P(X,..., X, ch (X.)  (AGibbs distribution)

ceC
where Z is known as the partition function:

Z_ Z Hl//c(x)

X, ceC

e Also known as Markov Random Fields, Markov networks ...

e The potential function can be understood as an contingency
function of its arguments assigning "pre-probabilistic" score of
their joint configuration.

© Eric Xing @ CMU, 2005-2017 15



Interpretation of Clique Potentials | ¢

S &ee

e The model implies X1LZ|Y. This independence statement
implies (by definition) that the 'octorize as:

e We can write this as:  PX:V:2)=pX.YIPEIY)  put

p(x,y,z)=pX|y)p(z,y)
\

e cannot have all potentials be marginals
e cannot have all potentials be conditionals

e The positive clique potentials can only be thought of as
general "compatibility”, "goodness" or "happiness” functions
over their variables, but not as probability distributions.

© Eric Xing @ CMU, 2005-2017 16



Example UGM - using max 1
cligues 4

A,B,D @
o T

G W (X124) Ve (Xa34)

1
@'/(Xla X23X3,X4) :?WC(X124)XWC(XZ34)

/ = Z Vo (Xp4) X W (X334)

X1,X2,X3,X4

e For discrete nodes, we can represent P(X,.,) as two 3D tables
instead of one 4D table

© Eric Xing @ CMU, 2005-2017 17



Example UGM - using subcliques | :¢

n 1
1>X2>X3>X4):i| |Wij(xij)
ij

Pty Xy <o) 1
= Wi (X)W 14 (X1 )W 23 (X035 )W 24 (X240 )W 34 (X34)
=AY by dki - -
= Z HWij (Xij)

X1,X2,X3,X4 |]

e We can represent P(X,.,) as 5 2D tables instead of one 4D table
e Pair MRFs, a popular and simple special case

e,

o I(P) & I(P") ? D(P) 2. D(P")

© Eric Xing @ CMU, 2005-2017 18



Example UGM - canonical 1
representation oo

o P (X;, X2, X3, Xy)

Q.e :% X124 XV (X234)
X ‘//1@'7”14 (X1 W 23 (Xp3)W 24 (Xp4 W/ 34 (X34)

G XYW, (X)W 3 (X3 4 (X4)

W (X104) X W (Xp34)
L= Z X W12 (X1 W1a (X1 )W 23 (X03)W 24 (X4 )W 34 (X34)
e XY (X)W 2 (X)W 3 (X)W 4 (X4)

e Most general, subsume P' and P" as special cases
e I(P) vs. I(P) vs. I(P")
D(P) vs. D(P') vs. D(P")
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v, oo
4 CY )
o0

ll: Independence pererties: .

e Now let us ask what kinds of distributions can be represented
by undirected graphs (ignoring the details of the particular
parameterization).

e Defn: the globaPMarkov properties of a UG H are
I(H) = {X 1 2|V):sep,, (X;Z[Y)]

X

© Eric Xing @ CMU, 2005-2017
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Global Markov Independencies o

e Let Hbe an undirected graph:

X4
zYC

e B separates A and C if every path from a node in A to a node
iIn C passes through a node in B: sep, (A;C|B)

e A probability distribution satisfies the global Markov property
if for any disjoint A, B, C, such that B separates Aand C, A is
independent of C given B: 1(H)= {A L C[B:sepy (AC B)}

© Eric Xing @ CMU, 2005-2017 21




Local Markov independencies e

e For each node X; € V, there is unique Markov blanket of X,
denoted MB,;, which is the set of neighbors of X in the graph
(those that share an edge with X;)

X | X8 XN - Y, | Xmi;
Cp (e et = POl Kb,

e Defn:
The local Markov independencies associated with H is:

I{H): {X;i LV —{X; } = MBy; | MBy; : V 1),

In other words, X; is independent of the rest of the nodes in the graph given
its immediate neighbors

© Eric Xing @ CMU, 2005-2017 22



Soundness and completeness of | 382
global Markov property -

e Defn: An UG His an |-map for a distribution P if [(H) < I(P),
l.e., P entails I(H).

e Defn: Pis a Gibbs distribution over H if it can be represented
as

P(XI""’Xn):ZiHl//c(Xc)

ceC

e Thm (soundness): If Pis a Gibbs distribution over H, then H
Is an I-map of P.

e Thm (completeness): If —sep,(X; Z|Y),then X £ Z |Yin
some P that factorizes over H.

© Eric Xing @ CMU, 2005-2017 23



Other Markov properties S

e For directed graphs, we defined I-maps in terms of local
Markov properties, and derived global independence.

e For undirected graphs, we defined |-maps in terms of global
Markov properties, and will now derive local independence.

e Defn: The pairwise Markov independencies associated with
UG H=(VE) are

[,(H)={X LYN\{X,Y}:{X,Y} ¢ E|

* &g, X1 X5‘{X2, X3, X4}

00000

© Eric Xing @ CMU, 2005-2017
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Relationship between local and i
global Markov properties o

e Thm5.5.5.If P|=[(H) then P |=] (H).
e Thm 5.5.6. If P = I(H) then P |= I(H).
e Thm5.5.7.1fP>0and P|= [,(H), then P |= I(H).

e Corollary (5.5.8): The following three statements are equivalent for
a positive distribution P:

P |= iKH)

P |= IgH)

P|=1(H)
e This equivalence relies on the positivity assumption.
e We can design a distribution locally

© Eric Xing @ CMU, 2005-2017 25



0000
0000
o000
Hammersley-Clifford Theorem -
e |[f arbitrary potentials are utilized in the following product formula for
probabilities,
P(X,..., X, HWC(X )
L = Z HWC(X )

then the family of probability distributions obtained is exactly that set
which respects the qualitative specification (the conditional
independence relations) described earlier

e Thm : Let P be a positive distribution over V, and H a Markov
network graph over V. If His an I-map for P, then P is a Gibbs
distribution over H.

© Eric Xing @ CMU, 2005-2017 26



Perfect maps o

e Defn: A Markov network H is a perfect map for P if for any X;
Y.Z we have that

sepH(X;Z‘Y)QPlz(X 1LZY)

e Thm: not every distribution has a perfect map as UGM.

e Pf by counterexample. No undirected network can capture all and only the
independencies encoded in a v-structure X > Z < Y.

© Eric Xing @ CMU, 2005-2017 27



[C =T e e2s?

Exponential Form .

e Constraining clique potentials to be positive could be inconvenient (e.g.,
the interactions between a pair of atoms can be either attractive or
repulsive). We represent a clique potential y(x.) in an unconstrained

form using a real-value "energy" function ¢,(x.): Cb CP Lo
V. (Xc) - exp{— ¢c (XC)}

For convenience, we will call ¢,(x.) a potential when no confusion ariseﬁ from the context.

F

e This gives the joint a nice additive strcuture —\

(X)——eXp{ 2 8 (x, )} —CXP{ H (x)}

ceC

where the sum in the exponent is called the "free energy":

H(x) =) di(x,)

ceC

e In physics, this is called the "Boltzmann distribution”.
e |n statistics, this is called a log-linear model.

© Eric Xing @ CMU, 2005-2017 28



Example: Boltzmann machines

CNpS

e A fully connected graph with pairwise (edge) potentials on

binary-valued nodes (for x, e {-1+1}ar x, € {0,1}) is called a
Boltzmann machine

1
P (X, X5, X3, X4) = iexpg@@xix/\)~j }

1

:ZGXP{Z Qij-xixj -|-2405ixi -I—C}

ij i

e Hence the overall enerﬁyfunction has the form:
J:L\Q) = Zij (X = )0 (X; — ) = (X - 1) O(x— p)

© Eric Xing @ CMU, 2005-2017
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Ising models oo

e Nodes are arranged in a regular topology (often a regular
packing grid) and connected only to their geometric
neighbors.

p<><>—exp@ . J+Z@
6 (L 4)

e Same as sparse Boltzmann machine, where 6,=0 iff 1,j are
neighbors. -
e e.g., nodes are pixels, potential function encourages nearby pixels to have similar

intensiti
o Pottmlti-state Ising model. { -

© Eric Xing @ CMU, 2005-2017




Restricted Boltzmann Machines ot

hidden units

)")‘\"\

visible units

p(x.N10)=expl 20, (x)+ 20,6,(h))+ 26, 14, (%.h))- A®) |

© Eric Xing @ CMU, 2005-2017 31



Restricted Boltzmann Machines ot

The Harmonium (Smolensky —’86)

)") \ l\

hidden units

visible units

History:
Smolensky (’86), Proposed the architechture.

Freund & Haussler ('92), The “Combination Machine” (binary), learning with projection pursuit.
Hinton (’02), The “Restricted Boltzman Machine” (binary), learning with contrastive divergence.
Marks & Movellan (’02), Diffusion Networks (Gaussian).

Welling, Hinton, Osindero ('02), “Product of Student-T Distributions” (super-Gaussian)

© Eric Xing @ CMU, 2005-2017 32



Properties of RBM |/ o

e Factors are marginally dependent.

e Factors are conditionally
independent given observations on
the visible nodes.

P(h|x)=I1, P(h [x)

e lterative Gibbs sampling.

e |earning with contrastive
divergence

© Eric Xing @ CMU, 2005-2017



P fley, |33
A Constructive Definition ot

h

v J

X
pmd(hbdoCH GXP{ gjgj(hj) }
X how do we couple them?
Pind (xhaocl_[ exp{ 0, (%) }

p(x.N160)=expt 28, T,(x)+ 24,9, (hy) + ZET(6)W, g, (hy) |

© Eric Xing b CMU, 2005-2017 ’ 34



000
0000
o000
. . 3T
A Constructive Definition -
h.
) p(x|h>=H p(X, | h),
p(X \h)—exp{ 20, fu () FA(0}) }
Qia o Qia T Z\Nia{b jb(hj) - Hia T Zwia{gj (hJ)

Xi p(h ‘ X) = H p(h_ | X) vector of local
coupling in the i : sufficient statistics
log-domain with A A features
shgifted parametters p(h- [ x) = CXP{ Zﬂ’jbgjb(h')_FB '(‘Mjb}) } (feamres)

Ao=2, +ZWbe (%) =2, +ZWbe(x)

1a la
ia

They map to the RBM random field:

p(x,h|6) = exp! Z f.(x)+ 24,3, (h)+ Ef (X)W, ,§;(h) |

© Eric Xlngb CMU, 2005-2017 35



An RBM for Text Modeling o

h; = 3: topic ] has strength 3
hyER, (h)= ZW, X

X; = n: word I has count n

X; €1

words counts

@ H Normalhj[ ZVVU. X1 ]
J
Gox > I i, [N, s |

| Y

= p(x) <exp{ % ;X -logT(x,) -log T(N - %))+ + = (5w, %, P

© Eric Xing @ CMU, 2005-2017 36



Conditional Random Fields

e Discriminative

|
Py (Y IX)= 200 exp{Zﬁc fo (X, yc)}

c

e Doesn’t assume that features
are independent

e When labeling X; future

Q{ e @ observations are taken into

account

© Eric Xing @ CMU, 2005-2017
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Conditional Models o

e Conditional probability P(label sequence y | observation sequence x)
rather than joint probability P(y, x)

e Specify the probability of possible label sequences given an observation
sequence

e Allow arbitrary, non-independent features on the observation
sequence X

e The probability of a transition between labels may depend on past
and future observations

e Relax strong independence assumptions in generative models

© Eric Xing @ CMU, 2005-2017 38



Conditional Distribution ot

e Ifthe graph G=(V,E)of Y is a tree, the conditional distribution over
the label sequence Y =Yy, given X = x, by the Hammersley Clifford
theorem of random fields is:

Pu(y %) exp| DA A&Vl + Sy ATT )

ecEk
— xis a data sequence @i@\
— yis alabel sequence $
— vis avertex from vertex set V = set of label random variables Xy oee X,

— eis an edge from edge set E over V

— f.and g, are given and fixed. g, is a Boolean vertex feature; f, is a Boolean edge
feature

— ks the number of features

- =, A, A, 1y, e, 1)y A, and g, are parameters to be estimated
— Y|, is the set of components of y defined by edge e

— Y|, is the set of components of y defined by vertex v

© Eric Xing @ CMU, 2005-2017
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Conditional Distribution (cont’d) |::

e CRFs use the observation-dependent normalization Z(x) for
the conditional distributions:

Py (Y] %)= : eXp(Zﬂkfk(ea}IL’X)_l_Z:ukgk(v,Y|v9X)j

Z(x)  \ecEk =

e Z/(x)is a normalization over the data sequence x

© Eric Xing @ CMU, 2005-2017 40



Conditional Random Fields ot

1
Pe()’ |X)_ Z(H,X)GXP{EHC‘ICC(X,YC)}

W‘ o Allow arbitrary dependencies
ol on input

e Clique dependencies on labels

e Use approximate inference for
general graphs

© Eric Xing @ CMU, 2005-2017
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Summary: Conditional Independence
Semantics in an MRF

Structure: an undirected
graph

* Meaning: a node is
conditionally independent of
every other node in the
network given its Directed
neighbors

* Local contingency functions
(potentials) and the cliques in
the graph completely
determine the joint dist.

* Give correlations between
variables, but no explicit way
to generate samples

© Eric Xing @ CMU, 2005-2017
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Where is the graph structure

come from?

The goal:

e Given set of independent samples (assignments of random

variables), find the best (the most likely?) graphical model

topology

ML Structural Learning for completely observed GMs

S &S

CORED
S

(B,E!A!C!R)=(T! F! F!T!F)
(B,E,A,C,R)=(T,F,T,T,F)

(B’E,A!C,R)=(F,T!T!T,F)

>

© Eric Xing @ CMU, 2005-2017



Information Theoretic $+4+-
Interpretation of ML -

¢(6,,G;D)=log p(D |6,G)

logH(H p(Xm N,z (G)> m(G))j
—Z(Zlog p(Xm n,7;(G)? lﬁ(G))j

COUﬂ'[(XI, . (G))

= M Z Z M log p(XI Xﬂ(G)’elﬂ(G))j

X X (G)

=M Z 2. P(xi. X, ) log P(X er(ngm(G))}

Xi:X7(6)

From sum over data points to sum over count of variable states

© Eric Xing @ CMU, 2005-2017



Information Theoretic eecs
Interpretation of ML (con'd) o

/(eeaGa D) = log ﬁ(D | eeaG)

=M Z Z ﬁ(xiaxﬁi(e))log p(X; Xﬂ(G)’QIﬁ(G))]

i XXz (G)

. ﬁ(xiaxﬁ.(e)»‘gm-(e)) P(X;)
=M P(X,X_ g )log — ' —
Z xi,§G> '(G) p(Xﬁi(G)) P(X;)

M Z Z ﬁ(xi,xm(e))log lﬁ(X.,Xﬁ(G)»Qm(G))] M Z[Z p(x.)log f)(Xi)J

i\ XX o) @(Xﬁi(e))p(xi) i
=M Z IA(Xiaxﬂi(e))_ M Z H (%)

Decomposable score and a function of the graph structure

© Eric Xing @ CMU, 2005-2017



Structural Search :

e How many graphs over n nodes? 0(2”2)
e How many trees over n nodes? O(n!)

e But it turns out that we can find exact solution of an optimal
tree (under MLE)!

e Trick: in a tree each node has only one parent!
e Chow-liu algorithm

© Eric Xing @ CMU, 2005-2017



Chow-Liu tree learning algorithm | ::

e Obijection function:

£(05,G;D)=1log p(D|6,4,G)

=

=M (XX 6) =M Y H (%)

e Chow-Liu:

For each pair of variable x; and x;
Compute empirical distribution: ~ p(X;,

Compute mutual information: (X, X j) = Z f)(xiaxj)log .

Define a graph with node xi,..., x,
Edge (l,j) gets weight f(Xi, X))

© Eric Xing @ CMU, 2005-2017
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C(G) =MD 1(X,X,, )

count(x;, X;)
M

p(Xi, X))
P(X) P(X;)




Chow-Liu algorithm (con'd) oS

e Obijection function:

¢(6,,G;D)=log p(D|6,,G)

CG)=MY I(x,x_
:MZIA(XHXMG))_MZQ(XJ = ) Z 0 Xx0)

e Chow-Liu:
Optimal tree BN
e Compute maximum weight spanning tree
e Direction in BN: pick any node as root, do breadth-first-search to define directions
e |-equivalence:

(A)
B ©

D® €
C(G)=1(A.B)+1(A,C)+1(C,D)+I(C,E)

Eric Xing @ CMU, 2005-2017




Structure Learning for general cece
graphs oo

e [heorem:

e The problem of learning a BN structure with at most d parents is
NP-hard for any (fixed) d=2

e Most structure learning approaches use heuristics

e EXxploit score decomposition
e Two heuristics that exploit decomposition in different ways

Greedy search through space of node-orders

Local search of graph structures
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Summary o

e Undirected graphical models capture “relatedness”, “coupling”,
“co-occurrence’, “synergism’, etc. between entities
e Local and global independence properties identifiable via graph separation criteria

e Defined on clique potentials
e Can be used to define either joint or conditional distributions

e Generally intractable to compute likelihood due to presence of
“partition function”
e Therefore not only inference, but also likelihood-based learning is difficult in general

e Important special cases:

e Ising models
e RBM
e CRF

e Learning GM structures:
e the Chow-Liu Algorithm
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