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Probabilistic Graphical Models

Variational Inference:
Loopy Belief Propagation

= = Reading: See class website
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Inference Problems

e Compute the likelihood of observed data
e Compute the marginal distribution p(z4) over a particular subset

ofnodes ACV

e Compute the conditional distribution p(zalre) for disjoint subsets A

and B
e Compute a mode of the density & = a

e Methods we have

rg max p(x)
reX'™

-

[ Brute force ] [ Elimination ] I:>

\_

Message Passing

(Forward-backward , Max-product
/IBP, Junction Tree)

\

J

Individual computations independent
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Sharing intermediate terms
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Sum-Product Revisited °°

e Tree-structured GMs

1 , o .
play,--- ) = 7 H g () H Wst(Ts, 1) t

sV (s,t)EE

e Message Passing on Trees:

;"lf,_,,ﬁ{.rs}%HZ{{,H,{M T )M( ;} H M, (a ;)}

' ueN(t)\s
e On trees, converge to a unique fixed point after a finite number of iterations
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Junction Tree Revisited o
e General Algorithm on Graphs with Cycles — —
425 258 526
478 689
o Steps: => Triangularization => Construct JTs

=> Message Passing on Clique Trees

L - R S
~ — )

Oc(re) ',]
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Local Consistency :

e Given a set of functions {r¢, C € C} and {75, S € S} associated
with the cliques and separator sets

e They are locally consistent if:
ZT_*;(:F%J =1, VS esS

o

Z T;_'_*{.'r’.‘i---) = T5 {.I’ﬁ_:;:l.. \7"{.'? = {1 S _ (."-'

Tn|Te=xs

e For junction trees, local consistency is equivalent to global
consistency!
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An Ising model on 2-D image o

e Nodes encode hidden
information (patch-
identity).

e They receive local
information from the
image (brightness,
color).

e Information is
propagated though the
graph over its edges.

e Edges encode
‘compatibility’ between
nodes.
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Why Approximate Inference? E

e \Why can’t we just run junction tree on this graph?

1
px)=— exp{z O, X. X+, 91.0)(!}
1<J I

e If NxN grid, tree width at least N

e N can be a huge number(~1000s of pixels)

e If N~O(1000), we have a clique with 219 entries
© Eric Xing @ CMU, 2005-2017 7



Approaches to inference

e Exact inference algorithms

e The elimination algorithm
e Message-passing algorithm (sum-product, belief propagation)
e The junction tree algorithms

e Approximate inference techniques
e Variational algorithms
Loopy belief propagation
Mean field approximation
e Stochastic simulation / sampling methods
e Markov chain Monte Carlo methods
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Loopy Belief Propogation
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Recap: Belief Propagation
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e BP Message-update Rules

Mi—)j(xj) oc Zvlzj(xi’xj)l//i(xi)HMk—)i(xi)

T

T external evidence

k

Compatibilities (interactions)

k@ O —©O

b, (x;) o« Wi(xi)HMk (x;)

e BP on trees always converges to exact marginals (cf. Junction

tree algorithm)
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Region graphs (Factor Graph)
e It will be useful to look explicitly at the messages being

passed
e Messages from variable to factors
e Messages from factors to variables
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Beliefs and messages in FG o
fl\i b,(x;) < f,(x;) Hma—n'(xi)
— \/ — aeN (i)
T T T
“beliefs” “messages”
m,_,,(x;)= Hmc%i(xi)
1 l ceN(i)\a
. b (X ) f(X . |
ﬁ(P ?: (X)) % £,00) [T ()

m, ,;(x;)= Z fa(Xa) Hmj—m(xj)

X, \x; jeN(a)\i
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What if the graph is loopy? :

—




Belief Propagation on loopy
graphs

Mki

oo
|

j @——

-

e BP Message-update Rules

|

k
o Text.ernal evidence
Compatibilities (interactions)

e May not converge or converge to a wrong solution
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M, (x;)cx Z W (L X )y (x, )HMle (x;) b, (x;) cy,(x, )H M, (x;)
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Loopy Belief Propagation o

e A fixed point iteration procedure that tries to minimize F .
e Start with random initialization of messages and beliefs

e While not converged do

b(x;)oc [ m.i(x) b, (X,)oc £,(X,) [, (x

aeN (i) ieN(a)
me ()= [[me () mis(x)= 2 (X)) [[mi.(,
ceN(i)\a X, \x; jeN (a)\i

e At convergence, stationarity properties are guaranteed
e However, not guaranteed to converge!
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Loopy Belief Propagation %

e If BP is used on graphs with loops, messages may circulate
indefinitely

e Butlet’s run it anyway and hope for the best ... ©

e Empirically, a good approximation is still achievable
e Stop after fixed # of iterations
e Stop when no significant change in beliefs
e If solution is not oscillatory but converges, it usually is a good approximation

Loopy-belief Propagation for Approximate Inference: An Empirical Study
Kevin Murphy, Yair Weiss, and Michael Jordan.
UAI '99 (Uncertainty in Al). ]

© Eric Xing @ CMU, 2005-2017 16



So what is going on? o

e Is it a dirty hack that you bet your luck?

v v
C— C—
A A A

o—0©
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Approximate Inference -

e Let us call the actual distribution P

PX)=1/Z]] f.(X,)

f.eF

e We wish to find a distribution O such that O is a “good”
approximation to P

e Recall the definition of KL-divergence

G (X)
KL = E X)1

o KL(Q4]|Q;)>=0
o KL(Q1||Q2)=O |ff Q1=Q2
e We can therefore use KL as a scoring function to decide a good Q

e But, KL(Q4]|Q,) = KL(QZHQ'])@EricXing@CMU, 2005-2017
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Which KL? o°

e Computing KL(P||Q) requires inference!
e But KL(Q||P) can be computed without performing inference

on P
KL(QI P = 3 00 log( )

= 0(X)logO(X)-) O(X)log P(X)
=—H,(X)-E,log P(X)

e Using P(X)=U/Z[]f.(X,)
f,eF

KL(Q|| P) = ~H ,(X)~ E, log(1/ Z [ ] £,(X.))
f,eF

=-H,(X)-logl/Z- ) E,log f,(X,)
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Optimization function

+logZ

KL(Q|| P)={-H,(X)- Y E,log f.(X,)
fa€F
N ~ J
F(P,Q)

o Wewillcall F(P,Q) the “Free energy” *
o [(P,P)=?

e F(P,Q)>=F(P,P)
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The Energy Functional -

e Letus look at the functional

F(P,Q)=-H,(X)- ) E,log f.(X,)

f.eF

e ) E,logf,(X, canbe computed if we have marginals over each f,
fueF

o Hy,=-) O(X)logO(X) is harder! Requires summation over all
possibIXe values

e Computing F, is therefore hard in general.

e Approach 1: Approximate F(P,0) with easy to compute Ig(P,Q)

© Eric Xing @ CMU, 2005-2017
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Tree Energy Functionals -

e Consider a tree structured distribution

e The probabrlrty can be written as: H(x) = Hb (x, H bl.(xl.)l‘d"

° =—ZZb Jind, (x,)+ 2, 1219 Ying(x
. _ o Yin 2% ) )in
N

=l t st P + b =1 =B =1 —F — 15— 1
e involves summation over edggs and yertices and is therefore easy to compute
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Bethe Approximation to Gibbs 43+

o0

Free Energy .

e For a general graph, choose F(P,0) = Fyaa

H e = ZZb )inb, ( Zd 1219 )nb,(x

Frue = XT3, ) fﬂ >0~ )Th (s i <fa<xa>>—Hbm

e Called “Bethe apprOX|mat|on after the phyS|C|st Hans Bethe

Fbethe—1712+F23+ +F7+F78 F F 2F ZF — I

e Equal to the exact Gibbs free e enerqy when the factor graph is a tree
© Eric Xing'@ CMU, 2005-2017

e In general, Hg. is Nnot the same as the H of a tree
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Bethe Approximation

e Pros:

e Easy to compute, since entropy term involves sum over pairwise and
single variables

e Cons:
o F'(P,0)=F,,. may or may not be well connected to F(P,Q)
e |Itcould, in general, be greater, equal or less than F(P,Q)

e Optimize each b(x,)'s.
e For discrete belief, constrained opt. with Lagrangian multiplier

e For continuous belief, not yet a general formula
e Not always converge
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Bethe Free Energy for FG E
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Minimizing the Bethe Free Energy

° L:FBethe_I_Z}/i{l_Zbi(xi)}

+2, 20 2 Aax) bl

a ieN(a) x;

e Set derivative to zero




Constrained Minimization of the 444

Bethe Free Energy e

L=Fyepe+ D 7,42 b:(x)—1}

%> zzaxx,-){zba(zfa)—a(xi)}

a ieN(a) x; X, \x;

oL .
B —> b.(x,) exp( ;)z (x, )j
oL . B
aba (Xa) =0 ::> ba(Xa) eXp{ Ea (Xa)—i_ieNz(a)lai(Xi)j
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Bethe = BP on FG ot

e \We had:
bi<xi>ocexp[

PIHC )J ba(Xa)%eXp(—logﬂ(Xa)+ Ziai(xi)j

aeN() o
o Identify J,(x)=logim,,,(x)=log []m(x)
e to obtain BP equations: beN (i)2a

' b(x;) o< f,(x;) Hma—n(x)

— L— T GEN(i)T

1 “beliefs” “messages’”

1 1 b(X)x f,(X)T] []m_i(x)

d ieN(a)ceN(i)\a

| The “belief” is the BP approximation of
the marginal probability.
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BP Message-update Rules

USing ba—w' (’\l/) = Zba (Xa)awe get

X, \x;

ma—)i(xi): Z fa(Xa) H

Hmbaj(xj)

X, \x; jeN(a)\i beN(j)\a

( A sum product algorithm )

I a

O— O
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Summary so far :

P(X)= I/ZHf (X,)

: ! = F(P.Q)=-Hy(X) _fZEQ el

+Zl d,) Zb Jlogh(x

F(P,Q)= Zzb log
B T _ ieN(a)
@memg@cmuizo%%;(xi>Oce"p( )

N

aeN (i)




The Theory Behind LBP 4+

e For a distribution p(X|60) associated with a complex graph,
computing the marginal (or conditional) probability of arbitrary
random variable(s) is intractable

e Variational methods
e formulating probabilistic inference as an optimization problem:

q =a1‘gl?ei5n { Fyna(Dsq) }

b,(x,) , .
Fyone ZZ[) fa(xa) Zl d Zb lnb <fa(xa)> Hyone

q : a (tractable) probability distribution
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The Theory Behind LBP e

e But we do not optimize g(X) explicitly, focus on the set of beliefs
- eg, b= {bi,j = T(xiaxj)a b, =7(x;,)}
e Relax the optimization problem

e approximate objective: Hq ~ F(b)

e relaxed feasible set:
M—>M, (M, 2M)

b’ =argmin | (E), +F(b) |

e The loopy BP algorithm: beM

o

e afixed point iteration procedure that tries to solve b*

© Eric Xing @ CMU, 2005-2017 32



The Theory Behind LBP e

e But we do not optimize g(X) explicitly, focus on the set of beliefs
- €8, b= {bi,j :T(xi:xj)a b, =7(x,)}
e Relax the optimization problem

e approximate objective: H,,.po = H(b/.d., b)

M,={ 20| 7(x) =1 r(x;,x,)=7(x,) |

e relaxed feasible set:

* .
b" =argmin { (E), +F(b) |
e The loopy BP algorithm: 2o
e afixed point iteration procedure that tries to solve b*

© Eric Xing @ CMU, 2005-2017 33



Region-based Approximations to
the Gibbs Free Energy («ikuchi, 1951)

Exact: &[g(X)] (intractable)
Regions: 6[{6.(X.)}]




Generalized Belief Propagation -

e Belief in a region is the product of:
e Local information (factors in region)
e Messages from parent regions
e Messages into descendant regions from parents who are not descendants.

e Message-update rules obtained by enforcing marginalization
constraints.
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Generalized Belief Propagation
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Generalized Belief Propagation e
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Generalized Belief Propagation
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Some results

local magnetization

O BP
B GBP
] Exact

variable node
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Summary

e \We defined an objective function (F) for approximate
inference

e However, we found that optimizing this function was hard

e We first approximated objective function F to simpler F, .
e Minima of F_. turned out to be fixed points of BP

e Then we extended this to more complicated approximations

e The resulting algorithms come under a family called Generalized Belief
Propagation

e Next class, we will cover other methods of approximations
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