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Inference Problems
l Compute the likelihood of observed data
l Compute the marginal distribution            over a particular subset           

of nodes
l Compute the conditional distribution                  for disjoint subsets A

and B
l Compute a mode of the density

l Methods we have

Brute force Elimination
Message Passing
(Forward-backward , Max-product 

/BP, Junction Tree)

Sharing intermediate termsIndividual computations independent
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Sum-Product Revisited
l Tree-structured GMs

l Message Passing on Trees:

l On trees, converge to a unique fixed point after a finite number of iterations
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Junction Tree Revisited
l General Algorithm on Graphs with Cycles

l Steps:

B CS

=> Triangularization => Construct JTs

=> Message Passing on Clique Trees
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Local Consistency
l Given a set of functions                                            associated 

with the cliques and separator sets

l They are locally consistent if:

l For junction trees, local consistency is equivalent to global 
consistency!
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An Ising model on 2-D image
l Nodes encode hidden 

information (patch-
identity).

l They receive local 
information from the 
image (brightness, 
color).

l Information is 
propagated though the 
graph over its edges.

l Edges encode 
‘compatibility’ between 
nodes.
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Why Approximate Inference?
l Why can’t we just run junction tree on this graph?

l If NxN grid, tree width at least N
l N can be a huge number(~1000s of pixels)

l If N~O(1000), we have a clique with 2100 entries
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Approaches to inference
l Exact inference algorithms

l The elimination algorithm
l Message-passing algorithm (sum-product, belief propagation)
l The junction tree algorithms      

l Approximate inference techniques
l Variational algorithms

l Loopy belief propagation 
l Mean field approximation 

l Stochastic simulation / sampling methods
l Markov chain Monte Carlo methods
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Loopy Belief Propogation
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Recap: Belief Propagation

l BP Message-update Rules

l BP on trees always converges to exact marginals (cf. Junction 
tree algorithm)
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Region graphs (Factor Graph)
l It will be useful to look explicitly at the messages being 

passed 
l Messages from variable to factors
l Messages from factors to variables

l Let us represent this graphically
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Beliefs and messages in FG
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What if the graph is loopy?

Þ
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Belief Propagation on loopy 
graphs

l BP Message-update Rules

l May not converge or converge to a wrong solution
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l A fixed point iteration procedure that tries to minimize Fbethe

l Start with random initialization of messages and beliefs

l While not converged do

l At convergence, stationarity properties are guaranteed
l However, not guaranteed to converge!

Loopy Belief Propagation
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Loopy Belief Propagation
l If BP is used on graphs with loops, messages may circulate 

indefinitely

l But let’s run it anyway and hope for the best … J

l Empirically, a good approximation is still achievable
l Stop after fixed # of iterations
l Stop when no significant change in beliefs
l If solution is not oscillatory but converges, it usually is a good approximation

Loopy-belief Propagation for Approximate Inference: An Empirical Study 
Kevin Murphy, Yair Weiss, and Michael Jordan. 
UAI '99 (Uncertainty in AI). ]
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So what is going on?
l Is it a dirty hack that you bet your luck?
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Approximate Inference
l Let us call the actual distribution P

l We wish to find a distribution Q such that Q is a “good” 
approximation to P

l Recall the definition of KL-divergence

l KL(Q1||Q2)>=0
l KL(Q1||Q2)=0 iff Q1=Q2

l We can therefore use KL as a scoring function to decide a good Q
l But, KL(Q1||Q2) ¹ KL(Q2||Q1
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Which KL?
l Computing KL(P||Q) requires inference!
l But KL(Q||P) can be computed without performing inference 

on P

l Using 
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Optimization function

l We will call                 the “Free energy” *
l =?

l F(P,Q) >= F(P,P)
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The Energy Functional
l Let us look at the functional

l can be computed if we have marginals over each  fa

l is harder! Requires summation over all 
possible values

l Computing F, is therefore hard in general.
l Approach 1: Approximate with easy to compute
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Tree Energy Functionals
l Consider a tree-structured distribution

l The probability can be written as:
l

l

l involves summation over edges and vertices and is therefore easy to compute
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Bethe Approximation to Gibbs 
Free Energy

l For a general graph, choose

l Called “Bethe approximation” after the physicist Hans Bethe

l Equal to the exact Gibbs free energy when the factor graph is a tree
l In general, HBethe is not the same as the H of a tree
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Bethe Approximation
l Pros:

l Easy to compute, since entropy term involves sum over pairwise and 
single variables

l Cons:
l may or may not be well connected to
l It could, in general, be greater, equal or less than  

l Optimize each b(xa)'s. 
l For discrete belief, constrained opt. with Lagrangian multiplier 
l For continuous belief, not yet a general formula
l Not always converge
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Bethe Free Energy for FG
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Minimizing the Bethe Free Energy
l

l Set derivative to zero
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Constrained Minimization of the 
Bethe Free Energy
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Bethe = BP on FG
l We had:

l Identify
l to obtain BP equations:
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The “belief” is the BP approximation of 
the marginal probability.
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Summary so far
l
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l For a distribution p(X|q) associated with a complex graph, 
computing the marginal (or conditional) probability of arbitrary 
random variable(s) is intractable

l Variational methods
l formulating probabilistic inference as an optimization problem:
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l But we do not optimize q(X) explicitly, focus on the set of beliefs

l e.g.,

l Relax the optimization problem

l approximate objective:
l relaxed feasible set:

l The loopy BP algorithm: 
l a fixed point iteration procedure that tries to solve b*
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The Theory Behind LBP
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Exact:

Regions:

(intractable)

(Kikuchi, 1951)

Region-based Approximations to 
the Gibbs Free Energy
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l Belief in a region is the product of:
l Local information (factors in region)
l Messages from parent regions
l Messages into descendant regions from parents who are not descendants.

l Message-update rules obtained by enforcing marginalization 
constraints.

Generalized Belief Propagation  
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Some results
l
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Summary
l We defined an objective function (F) for approximate 

inference
l However, we found that optimizing this function was hard
l We first approximated objective function F to simpler Fbethe

l Minima of Fbethe turned out to be fixed points of BP

l Then we extended this to more complicated approximations
l The resulting algorithms come under a family called Generalized Belief 

Propagation

l Next class, we will cover other methods of approximations
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