Probabilistic Graphical Models

Max-margin learning of GM

Eric Xing
Lecture 23, Apr 8, 2015

Reading:
Classical Predictive Models

- Input and output space: \(\mathcal{X} \triangleq \mathbb{R}^{M_x} \quad \mathcal{Y} \triangleq \{-1, +1\} \)

- Predictive function \(h(x) : y^* = h(x) \triangleq \arg\max_{y \in \mathcal{Y}} F(x, y; w) \)

- Examples:
 \[
 F(x, y; w) = g(w^T f(x, y))
 \]

- Learning:
 \[
 \hat{w} = \arg\min_{w \in \mathcal{W}} \ell(x, y; w) + \lambda R(w)
 \]
 where \(\ell(\cdot) \) represents a convex loss, and \(R(w) \) is a regularizer preventing overfitting

- **Logistic Regression**
 - Max-likelihood (or MAP) estimation
 \[
 \max_w \mathcal{L}(D; w) \triangleq \sum_{i=1}^{N} \log p(y^i|x^i; w) + \mathcal{N}(w)
 \]
 \[
 \ell_{LL}(x, y; w) \triangleq \ln \sum_{y' \in \mathcal{Y}} \exp\{w^T f(x, y')\} - w^T f(x, y)
 \]

- **Support Vector Machines (SVM)**
 - Max-margin learning
 \[
 \min_{w, \xi} \frac{1}{2} w^T w + C \sum_{i=1}^{N} \xi_i \\
 \text{s.t. } \forall i, \forall y' \neq y^i : w^T \Delta f_i(y') \geq 1 - \xi_i, \ \xi_i \geq 0.
 \]
 \[
 \ell_{MM}(x, y; w) \triangleq \max_{y' \in \mathcal{Y}} w^T f(x, y') - w^T f(x, y) + \ell'(y', y)
 \]

© Eric Xing @ CMU, 2005-2015
Classical Predictive Models

- Input and output space: $X \triangleq \mathbb{R}^M_x$ $Y \triangleq \{-1, +1\}$

- Learning:
 $$\hat{w} = \arg \min_{w \in \mathcal{W}} \ell(x, y; w) + \lambda R(w)$$

 where $\ell(\cdot)$ represents a convex loss, and $R(w)$ is a regularizer preventing overfitting

 - Logistic Regression
 - Max-likelihood (or MAP) estimation
 $\max_w \mathcal{L}(\mathcal{D}; w) \triangleq \sum_{i=1}^N \log p(y^i|x^i; w) + \mathcal{N}(w)$
 - Correlates to a Log loss with L2 R
 $\ell_{LL}(x, y; w) \triangleq \ln \sum_{y' \in \mathcal{Y}} \exp\{w^T f(x, y')\} - w^T f(x, y)$

 - Support Vector Machines (SVM)
 - Max-margin learning
 $$\min_{w, \xi} \frac{1}{2} w^T w + C \sum_{i=1}^N \xi_i; \quad \text{s.t. } \forall i, \forall y' \neq y^i : w^T \Delta f_i(y') \geq 1 - \xi_i, \quad \xi_i \geq 0.$$
 - Correlates to a hinge loss with L2 R
 $\ell_{MM}(x, y; w) \triangleq \max_{y' \in \mathcal{Y}} w^T f(x, y') - w^T f(x, y) + \ell(y', y)$

Advantages:
1. Full probabilistic semantics
2. Straightforward Bayesian or direct regularization
3. Hidden structures or generative hierarchy

Advantages:
1. Dual sparsity: few support vectors
2. Kernel tricks
3. Strong empirical results

© Eric Xing @ CMU, 2005-2015
Structured Prediction Problem

- Unstructured prediction

\[x = \begin{pmatrix} x_{11} & x_{12} & \ldots \end{pmatrix} \quad y = \begin{pmatrix} 0/1 \end{pmatrix} \]

- Structured prediction
 - Part of speech tagging
 \[x = \text{“Do you want sugar in it?”} \quad \Rightarrow \quad y = \langle \text{verb pron verb noun prep pron} \rangle \]
 - Image segmentation

\[x = \begin{pmatrix} x_{11} & x_{12} & \ldots \\ x_{21} & x_{22} & \ldots \\ \vdots & \vdots & \vdots \end{pmatrix} \quad y = \begin{pmatrix} y_{11} & y_{12} & \ldots \\ y_{21} & y_{22} & \ldots \\ \vdots & \vdots & \vdots \end{pmatrix} \]
OCR example

Sequential structure
Image Segmentation

- Jointly segmenting/annotating images
- Image-image matching, image-text matching
- Problem:
 - Given structure (feature), learning θ
 - Learning sparse, interpretable, predictive structures/features

$$p_{\theta}(y \mid x) = \frac{1}{Z(\theta, x)} \exp \left\{ \sum_c \theta_c f_c(x, y_c) \right\}$$
Dependency parsing of Sentences

Challenge:
Structured outputs, and globally constrained to be a valid tree
Structured Prediction Graphical Models

- **Input and output space**: \(\mathcal{X} \triangleq \mathbb{R}_{X_1} \times \ldots \times \mathbb{R}_{X_K}, \quad \mathcal{Y} \triangleq \mathbb{R}_{Y_1} \times \ldots \times \mathbb{R}_{Y_{K'}} \)

<table>
<thead>
<tr>
<th>Model</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conditional Random Fields (CRFs) (Lafferty et al 2001)</td>
<td>Based on a Logistic Loss (LR)</td>
</tr>
<tr>
<td></td>
<td>Max-likelihood estimation (point-estimate)</td>
</tr>
<tr>
<td>(\mathcal{L}(\mathcal{D}; \mathbf{w}) \triangleq \log \sum_{\mathbf{y}'} \exp(\mathbf{w}^T \mathbf{f}(\mathbf{x}, \mathbf{y}')))</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(-\mathbf{w}^T \mathbf{f}(\mathbf{x}, \mathbf{y}))</td>
</tr>
</tbody>
</table>

Max-margin Markov Networks (M³Ns) (Taskar et al 2003)	Based on a Hinge Loss (SVM)	
	Max-margin learning (point-estimate)	
\(\mathcal{L}(\mathcal{D}; \mathbf{w}) \triangleq \log \max_{\mathbf{y}'} \mathbf{w}^T \mathbf{f}(\mathbf{x}, \mathbf{y}') \)		
	\(-\mathbf{w}^T \mathbf{f}(\mathbf{x}, \mathbf{y}) + \ell(\mathbf{y}', \mathbf{y})\)	

- Markov properties are encoded in the feature functions \(\mathbf{f}(\mathbf{x}, \mathbf{y}) \)

© Eric Xing @ CMU, 2005-2015
Structured Prediction Graphical Models

- **Conditional Random Fields (CRFs)** (Lafferty et al 2001)
 - Based on a Logistic Loss (LR)
 - Max-likelihood estimation (point-estimate)

\[
\mathcal{L}(\mathcal{D}; \mathbf{w}) \triangleq \log \sum_{y'} \exp(\mathbf{w}^\top f(x, y')) - \mathbf{w}^\top f(x, y) + R(\mathbf{w})
\]

- **Max-margin Markov Networks (M3Ns)** (Taskar et al 2003)
 - Based on a Hinge Loss (SVM)
 - Max-margin learning (point-estimate)

\[
\mathcal{L}(\mathcal{D}; \mathbf{w}) \triangleq \log \max_{y'} \mathbf{w}^\top f(x, y') - \mathbf{w}^\top f(x, y) + \ell(y', y) + R(\mathbf{w})
\]

Challenges:
- **SPARSE** “Interpretable” prediction model
- **Prior** information of structures
- **Latent** structures/variables
- **Time** series and non-stationarity
- **Scalable** to large-scale problems (e.g., 10^4 input/output dimension)
Comparing to unstructured predictive models

- **Input and output space:** \(\mathcal{X} \triangleq \mathbb{R}^{M_x} \quad \mathcal{Y} \triangleq \{-1, 1\} \)

- **Learning:**
 \[
 \hat{w} = \arg \min_{w \in \mathcal{W}} \ell(x, y; w) + \lambda R(w)
 \]

 where \(\ell(\cdot) \) represents a convex loss, and \(R(w) \) is a regularizer preventing overfitting.

- **Logistic Regression**
 - Max-likelihood (or MAP) estimation
 \[
 \max_w \mathcal{L}(\mathcal{D}; w) \triangleq \sum_{i=1}^{N} \log p(y^i|x^i; w) + \mathcal{N}(w)
 \]
 - Corresponds to a Log loss with L2 R
 \[
 \ell_{LL}(x, y; w) \triangleq \ln \sum_{y' \in \mathcal{Y}} \exp\{w^T f(x, y')\} - w^T f(x, y)
 \]

- **Support Vector Machines (SVM)**
 - Max-margin learning
 \[
 \min_{w, \xi} \frac{1}{2} w^T w + C \sum_{i=1}^{N} \xi_i;
 \]
 \[
 \text{s.t. } \forall i, \forall y' \neq y^i : w^T \Delta f_i(y') \geq 1 - \xi_i, \quad \xi_i \geq 0.
 \]
 - Corresponds to a hinge loss with L2 R
 \[
 \ell_{MM}(x, y; w) \triangleq \max_{y' \in \mathcal{Y}} w^T f(x, y') - w^T f(x, y) + \ell'(y', y)
 \]
Structured models

$h(x) = \arg\max_{y \in \mathcal{Y}(x)} s(x, y)$

space of feasible outputs

Assumptions:

\[score(x, y) = w^\top f(x, y) = \sum_p w^\top f(x_p, y_p) \]

linear combination of features

sum of part scores:
• index p represents a part in the structure
Large Margin Estimation

- Given training example \((x, y^*)\), we want:
 \[\arg \max_y w^T f(x, y) = y^* \]
 \[w^T f(x, y^*) > w^T f(x, y) \quad \forall y \neq y^* \]
 \[w^T f(x, y^*) \geq w^T f(x, y) + \gamma \ell(y^*, y) \quad \forall y \]

- Maximize margin \(\gamma\)
- Mistake weighted margin \(\gamma \ell(y^*, y)\)

\[\ell(y^*, y) = \sum_i I(y^*_i \neq y_i) \quad \# \text{ of mistakes in } y \]

Taskar et al. 03
Large Margin Estimation

- Recall from SVMs:
 - Maximizing margin γ is equivalent to minimizing the square of the L2-norm of the weight vector w:

- New objective function:

$$
\min_w \frac{1}{2} \|w\|^2 \\
\text{s.t. } w^T f(x_i, y_i) \geq w^T f(x_i, y'_i) + \ell(y_i, y'_i), \quad \forall i, y'_i \in \mathcal{Y}_i
$$
OCR Example

- We want:
\[
\arg\max_{\text{word}} w^T f(\text{brace}, \text{word}) = \text{“brace”}
\]

- Equivalently:
\[
\begin{align*}
w^T f(\text{brace}, \text{“brace”}) &> w^T f(\text{brace}, \text{“aaaaa”}) \\
w^T f(\text{brace}, \text{“brace”}) &> w^T f(\text{brace}, \text{“aaaab”}) \\
\vdots \\
w^T f(\text{brace}, \text{“brace”}) &> w^T f(\text{brace}, \text{“zzzzz”})
\end{align*}
\]
Brute force enumeration of constraints:

\[
\min \frac{1}{2}||w||^2 \\
 w^T f(x, y^*) \geq w^T f(x, y) + \ell(y^*, y), \quad \forall y
\]

- The constraints are exponential in the size of the structure

Alternative: min-max formulation

- add only the most violated constraint

\[
y' = \arg \max_{y \neq y^*} [w^T f(x^i, y) + \ell(y^i, y)]
\]

add to QP: \[w^T f(x^i, y^i) \geq w^T f(x^i, y') + \ell(y^i, y')\]

- Handles more general loss functions
- Only polynomial # of constraints needed
Min-max Formulation

\[
\min \quad \frac{1}{2} \|w\|^{2}
\]

\[
w^{\top} f(x, y^*) \geq \max_{y \neq y^*} \ w^{\top} f(x, y) + \ell(y^*, y)
\]

- Key step: convert the maximization in the constraint from discrete to continuous
 - This enables us to plug it into a QP

\[
\max_{y \neq y^*} \ w^{\top} f(x, y) + \ell(y^*, y) \quad \leftrightarrow \quad \max_{z \in \mathcal{Z}} \ (F^{\top} w + \ell)^{\top} z
\]

discrete optim. \quad **continuous optim.**

- How to do this conversion?
 - Linear chain example in the next slides
y ⇒ z map for linear chain structures

OCR example: y = ’ABABB’;
z’s are the indicator variables for the corresponding classes (alphabet)

<table>
<thead>
<tr>
<th></th>
<th>z₁(m)</th>
<th>z₂(m)</th>
<th>z₃(m)</th>
<th>z₄(m)</th>
<th>z₅(m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>B</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>:</td>
<td>:</td>
<td>:</td>
<td>:</td>
<td>:</td>
<td>:</td>
</tr>
<tr>
<td>B</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>z₁₂(m, n)</th>
<th>z₂₃(m, n)</th>
<th>z₃₄(m, n)</th>
<th>z₄₅(m, n)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0 1 . 0</td>
<td>0 0 . 0</td>
<td>0 1 . 0</td>
<td>0 0 . 0</td>
</tr>
<tr>
<td>B</td>
<td>0 0 . 0</td>
<td>1 0 . 0</td>
<td>0 0 . 0</td>
<td>0 1 . 0</td>
</tr>
<tr>
<td>:</td>
<td>. . . 0</td>
<td>. . . 0</td>
<td>. . . 0</td>
<td>. . . 0</td>
</tr>
<tr>
<td>B</td>
<td>0 0 0 0</td>
<td>0 0 0 0</td>
<td>0 0 0 0</td>
<td>0 0 0 0</td>
</tr>
</tbody>
</table>
Rewriting the maximization function in terms of indicator variables:

\[
\begin{align*}
\max_z & \quad \sum_{j,m} z_j(m) \left[w^\top f_{\text{node}}(x_j, m) + \ell_j(m) \right] \\
& \quad + \sum_{jk,m,n} z_{jk}(m, n) \left[w^\top f_{\text{edge}}(x_{jk}, m, n) + \ell_{jk}(m, n) \right] \\
& \quad \text{subject to} \quad z_j(m) \geq 0; \quad z_{jk}(m, n) \geq 0; \\
& \quad \sum_m z_j(m) = 1 \\
& \quad \sum_n z_{jk}(m, n) = z_j(m) \\
\end{align*}
\]

\[
\begin{bmatrix}
0 & 1 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
1 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
\end{bmatrix}
\]
Min-max formulation

- **Original problem:**
 \[
 \min \quad \frac{1}{2} ||w||^2 \\
 w^T f(x, y^*) \geq \max_y w^T f(x, y) + \ell(y^*, y)
 \]

- **Transformed problem:**
 \[
 \min \quad \frac{1}{2} ||w||^2 \\
 w^T f(x, y^*) \geq \max_{z \geq 0; \ A z = b} q^T z \quad \text{where} \quad q^T = w^T F + \ell^T
 \]

 - Has integral solutions \(z \) for chains, trees
 - Can be fractional for untriangulated networks
Min-max formulation

- Using strong Lagrangian duality:
 (beyond the scope of this lecture)

\[
\max_{\substack{z \geq 0; \\
A z = b;}} q^T z = \min_{\mu \geq q} b^T \mu
\]

- Use the result above to minimize jointly over \(w \) and \(\mu \):

\[
\min_{w, \mu} \frac{1}{2} ||w||^2 \\
\text{s.t. } w^T f(x, y^*) \geq b^T \mu; \\
A^T \mu \geq q;
\]
Min-max formulation

\[
\min_{w, \mu} \frac{1}{2} ||w||^2 \\
\text{s.t.} \quad w^T f(x, y^*) \geq b^T \mu; \\
A^T \mu \geq (w^T F + \ell)^T
\]

- Formulation produces compact QP for
 - Low-treewidth Markov networks
 - Associative Markov networks
 - Context free grammars
 - Bipartite matchings
 - Any problem with compact LP inference
Results: Handwriting Recognition

Length: ~8 chars
Letter: 16x8 pixels
10-fold Train/Test
5000/50000 letters
600/6000 words

Models:
Multiclass-SVMs
CRFs
M^3 nets

Error (average per-character)

45% error reduction over linear CRFs
33% error reduction over multiclass SVMs
Results: Hypertext Classification

- WebKB dataset
 - Four CS department websites: 1300 pages/3500 links
 - Classify each page: faculty, course, student, project, other
 - Train on three universities/test on fourth

53% error reduction over SVMs
38% error reduction over RMNs

Taskar et al 02
MLE versus max-margin learning

- **Likelihood-based estimation**
 - Probabilistic (joint/conditional likelihood model)
 - Easy to perform Bayesian learning, and incorporate prior knowledge, latent structures, missing data
 - Bayesian or direct regularization
 - Hidden structures or generative hierarchy

- **Max-margin learning**
 - Non-probabilistic (concentrate on input-output mapping)
 - Not obvious how to perform Bayesian learning or consider prior, and missing data
 - Support vector property, sound theoretical guarantee with limited samples
 - Kernel tricks

Maximum Entropy Discrimination (MED) (Jaakkola, et al., 1999)

- Model averaging
 \[
 \hat{y} = \text{sign} \int p(\mathbf{w})F(x; \mathbf{w}) \, d\mathbf{w} \quad (y \in \{+1, -1\})
 \]

- The optimization problem (binary classification)
 \[
 \min_{p(\Theta)} KL(p(\Theta)\|p_0(\Theta))
 \]
 \[
 \text{s.t.} \quad \int p(\Theta)[y_i F(x; \mathbf{w}) - \xi_i] \, d\Theta \geq 0, \forall i,
 \]

where \(\Theta \) is the parameter \(\mathbf{w} \) when \(\xi \) are kept fixed or the pair \((\mathbf{w}, \xi) \) when we want to optimize over \(\xi \)
Maximum Entropy Discrimination Markov Networks

- Structured MaxEnt Discrimination (SMED):

\[P_1 : \min_{p(w), \xi} KL(p(w) \| p_0(w)) + U(\xi) \]

s.t. \(p(w) \in \mathcal{F}_1, \xi_i \geq 0, \forall i. \)

generalized maximum entropy or regularized KL-divergence

- Feasible subspace of weight distribution:

\[\mathcal{F}_1 = \{ p(w) : \int p(w)[\Delta F_i(y; w) - \Delta \ell_i(y)] \, dw \geq -\xi_i, \forall i, \forall y \neq y^i \}, \]

expected margin constraints.

- Average from distribution of \(M^3 \)Ns

\[h_1(x; p(w)) = \arg \max_{y \in \mathcal{Y}(x)} \int p(w) F(x, y; w) \, dw \]
Solution to MaxEnDNet

- **Theorem:**

 - **Posterior Distribution:**

 \[
 p(w) = \frac{1}{Z(\alpha)} p_0(w) \exp \left\{ \sum_{i,y} \alpha_i(y) [\Delta F_i(y; w) - \Delta \ell_i(y)] \right\}
 \]

 - **Dual Optimization Problem:**

 \[
 \text{D1 : } \max_{\alpha} - \log Z(\alpha) - U^*(\alpha)
 \]
 \[
 \text{s.t. } \alpha_i(y) \geq 0, \ \forall i, \ \forall y,
 \]

 \[U^*(\cdot) \text{ is the conjugate of the } U(\cdot), \text{ i.e., } U^*(\alpha) = \sup_{\xi} \left(\sum_{i,y} \alpha_i(y)\xi_i - U(\xi) \right)\]
Gaussian MaxEnDNet (reduction to M^3N)

- **Theorem**

 Assume

 $F(x, y; w) = w^T f(x, y), U(\xi) = C \sum_i \xi_i$, and $p_0(w) = \mathcal{N}(w|0, I)$

 $p(w) = \mathcal{N}(w|\mu_w, I)$, where $\mu_w = \sum_{i,y} \alpha_i(y) \Delta f_i(y)$

 $\max_{\alpha} \sum_{i,y} \alpha_i(y) \Delta \ell_i(y) - \frac{1}{2} \| \sum_{i,y} \alpha_i(y) \Delta f_i(y) \|^2$

 s.t. $\sum_y \alpha_i(y) = C; \alpha_i(y) \geq 0, \forall i, \forall y$.

- Thus, MaxEnDNet subsumes M^3Ns and admits all the merits of max-margin learning

- Furthermore, MaxEnDNet has at least three advantages ...
Three Advantages

- An averaging Model: PAC-Bayesian prediction error guarantee (Theorem 3)

\[
P_{\mathcal{Q}}(M(h, x, y) \leq 0) \leq P_{\mathcal{D}}(M(h, x, y) \leq \gamma) + O\left(\sqrt{\frac{\gamma^{-2}KL(p||p_0)\ln(\mathcal{N}|\mathcal{Y}|) + \ln N + \ln \delta^{-1}}{N}}\right).
\]

- Entropy regularization: Introducing useful biases
 - Standard Normal prior => reduction to standard M^3N (we’ve seen it)
 - Laplace prior => Posterior shrinkage effects (sparse M^3N)

\[
\min_{\mu, \xi} \sqrt{\lambda} \sum_{k=1}^{K} \left(\sqrt{\mu_k^2 + \frac{1}{\lambda}} - \frac{1}{\sqrt{\lambda}} \log \frac{\sqrt{\lambda} \mu_k^2 + 1 + 1}{2}\right) + C \sum_{i=1}^{N} \xi_i
\]

 s.t. \(\mu^T \Delta f_i(y) \geq \Delta f_i(y) - \xi_i; \quad \xi_i \geq 0, \quad \forall i, \forall y \neq y^i. \)

- Integrating Generative and Discriminative principles (next class)
 - Incorporate latent variables and structures (PoMEN)
 - Semisupervised learning (with partially labeled data)
Laplace MaxEnDNet (primal sparse M³N)
(Zhu and Xing, ICML 2009)

- Laplace Prior:
 \[p_0(w) = \prod_{k=1}^{K} \frac{\sqrt{\lambda}}{2} e^{-\sqrt{\lambda}|w_k|} = \left(\frac{\sqrt{\lambda}}{2} \right)^K e^{-\sqrt{\lambda}\|w\|} \]

- Corollary 4:
 - Under a Laplace MaxEnDNet, the posterior mean of parameter vector \(w \) is:
 \[\forall k, \langle w_k \rangle_p = \frac{2\eta_k}{\lambda - \eta_k^2} \]
 where the vector \(\eta \) is a linear combination of "support vectors":
 \[\eta = \sum_{i} \alpha_i(y)\Delta f_i(y) \]

- The Gaussian MaxEnDNet and the regular M³N has no such shrinkage
 - there, we have
 \[\langle w \rangle_p = \eta \iff \forall k, \langle w_k \rangle_p = \eta_k \]
Corollary 5: LapMEDN corresponding to solving the following primal optimization problem:

$$\min_{\mu, \xi} |\mu| + C \sum_{i=1}^{N} \xi_i$$

s.t. $\mu^T \Delta f_i(y) \geq \Delta \ell_i(y) - \xi_i; \ \xi_i \geq 0, \ \forall i, \ \forall y \neq y^i.$

- KL norm:
 $$\|\mu\|_{KL} \triangleq \sum_{k=1}^{K} \left(\sqrt{\mu_k^2 + \frac{1}{\lambda}} - \frac{1}{\sqrt{\lambda}} \log \frac{\sqrt{\lambda \mu_k^2 + 1} + 1}{2} \right)$$

L_1 and L_2 norms

KL norms
Recall Primal and Dual Problems of M^3Ns

- **Primal problem:**

 \[\text{P0 (M}^3\text{N)} : \min_{\mathbf{w}, \xi} \frac{1}{2} \| \mathbf{w} \|^2 + C \sum_{i=1}^{N} \xi_i \]

 s.t. \(\forall i, \forall \mathbf{y} \neq \mathbf{y}^i : \mathbf{w}^\top \Delta \mathbf{f}_i(y) \geq \Delta \ell_i(\mathbf{y}) - \xi_i, \quad \xi_i \geq 0 \),

- **Algorithms**
 - Cutting plane
 - Sub-gradient
 - ...

- **Dual problem:**

 \[\text{D0 (M}^3\text{N)} : \max_{\alpha} \sum_{i,y} \alpha_i(\mathbf{y}) \Delta \ell_i(\mathbf{y}) - \frac{1}{2} \eta^\top \eta \]

 s.t. \(\forall i, \forall \mathbf{y} : \sum \alpha_i(\mathbf{y}) = C; \quad \alpha_i(\mathbf{y}) \geq 0. \)

 where \(\eta = \sum_{i,y} \alpha_i(\mathbf{y}) \Delta \mathbf{f}_i(y). \)

- **Algorithms:**
 - SMO
 - Exponentiated gradient
 - ...

\[\mathbf{w}^* = \eta^* = \sum_{i,y} \alpha_i^*(\mathbf{y}) \Delta \mathbf{f}_i(\mathbf{y}). \]

- So, M^3N is dual sparse!

\[\mathbf{y}^* = h(\mathbf{x}) \triangleq \arg \max_{\mathbf{y}} F(\mathbf{x}, \mathbf{y}; \mathbf{w}) \]

© Eric Xing @ CMU, 2005-2015
Variational Learning of LapMEDN

- Exact primal or dual function is hard to optimize

\[
\min_{\mu, \xi} \sum_{k=1}^{K} \left(\sqrt{\mu_k^2 + \frac{1}{\lambda}} - \frac{1}{\sqrt{\lambda}} \log \frac{\sqrt{\mu_k^2 + 1} + 1}{2} \right) + C \sum_{i=1}^{N} \xi_i
\]

s.t. \(\mu_i^T \Delta \xi_i(y) \geq \Delta \xi_i(y) - \xi_i; \xi_i \geq 0, \forall i, \forall y \neq y^i. \)

\[
\max_{\sum \alpha_i(y) = C} \sum_{i,y} \alpha_i(y) \Delta \xi_i(y) - \sum_{k=1}^{K} \log \frac{\lambda}{\lambda - \eta_k^2}
\]

- Use the hierarchical representation of Laplace prior, we get:

\[
KL(p||p_0) = -H(p) - \langle \log \int p(w|\tau)p(\tau|\lambda) \, d\tau \rangle_p
\]

\[
\leq -H(p) - \left\langle \int q(\tau) \log \frac{p(w|\tau)p(\tau|\lambda)}{q(\tau)} \, d\tau \right\rangle_p \triangleq \mathcal{L}(p(w), q(\tau))
\]

- We optimize an upper bound:

\[
\min_{p(w) \in \mathcal{F}_1; q(\tau); \xi} \mathcal{L}(p(w), q(\tau)) + U(\xi)
\]

- Why is it easier?

 - Alternating minimization leads to nicer optimization problems

<table>
<thead>
<tr>
<th>Keep (q(\tau)) fixed</th>
<th>Keep (p(w)) fixed</th>
</tr>
</thead>
<tbody>
<tr>
<td>- The effective prior is normal</td>
<td>- Closed form solution (\bar{q}(\tau)) and its expectation</td>
</tr>
<tr>
<td>(\forall k: p_0(w_k</td>
<td>\tau_k) = \mathcal{N}(w_k</td>
</tr>
</tbody>
</table>

An M^3N optimization problem! Closed-form solution!
Algorithmic issues of solving M³Ns

- **Primal problem:**
 \[
 \text{P0 (M³N)} : \min_{w, \xi} \frac{1}{2} ||w||^2 + C \sum_{i=1}^{N} \xi_i \\
 \text{s.t. } \forall i, \forall y \neq y^i : w^\top \Delta f_i(y) \geq \Delta \ell_i(y) - \xi_i, \\
 \xi_i \geq 0,
 \]

- **Algorithms**
 - Cutting plane
 - Sub-gradient
 - ...

- **Dual problem:**
 \[
 \text{D0 (M³N)} : \max_{\alpha} \sum_{i,y} \alpha_i(y) \Delta \ell_i(y) - \frac{1}{2} \eta^\top \eta \\
 \text{s.t. } \forall i, \forall y : \sum_{y} \alpha_i(y) = C; \ \alpha_i(y) \geq 0.
 \]
 where \(\eta = \sum_{i,y} \alpha_i(y) \Delta f_i(y). \)

- **Algorithms:**
 - SMO
 - Exponentiated gradient
 - ...

- **Nonlinear Features with Kernels**
 - Generative entropic kernels [Martins et al, JMLR 2009]
 - Nonparametric RKHS embedding of rich distributions [on going]

- **Approximate decoders for global features**
 - LP-relaxed Inference (polyhedral outer approx.) [Martins et al, ICML 09, ACL 09]
 - Balancing Accuracy and Runtime: Loss-augmented inference
Experimental results on OCR datasets

Structured output

© Eric Xing @ CMU, 2005-2015
Experimental results on OCR datasets

(CRFs, L_1–CRFs, L_2–CRFs, M^3Ns, L_1–M^3Ns, and LapMEDN)

- We randomly construct OCR100, OCR150, OCR200, and OCR250 for 10 fold CV.
Feature Selection
Sensitivity to Regularization Constants

- L_1-CRFs are much sensitive to regularization constants; the others are more stable
- LapM3N is the most stable one

L_1-CRF and L_2-CRF:
- 0.001, 0.01, 0.1, 1, 4, 9, 16

M3N and LapM3N:
- 1, 4, 9, 16, 25, 36, 49, 64, 81
Summary:
Margin-based Learning Paradigms

SVM
\[
y = \text{sign}(w^T x + b)
\]
\[
\min_{w, \xi} \frac{1}{2} w^T w + C \sum_{i=1}^{N} \xi_i;
\text{s.t. } y_i(w^T x_i + b) \geq 1 - \xi_i, \forall i.
\]

MED
\[
y = \text{sign}(\langle w | f(x) \rangle_{p(w)})
\]
\[
\min_{p, \xi} KL(p||p_0) + C \sum_{i=1}^{N} \xi_i;
\text{s.t. } y_i(f(x_i))_{p(w)} \geq 1 - \xi_i, \forall i.
\]

Structured prediction
\[
y^* = \arg \max_y w^T f(x, y; w)
\]
\[
\min_{w, \xi} \frac{1}{2} \|w\|^2 + C \sum_{i=1}^{N} \xi_i;
\text{s.t. } w^T \Delta f_\xi(y) \geq \Delta f_\xi(y) - \xi_i \geq 0, \forall i, \forall y \neq y^i
\]

MaxEnDNet
\[
y^* = \arg \max_y (w^T f(x, y; w))_{p(w)}
\]
\[
\min_{p(w), \xi} KL(p||p_0) + U(\xi);
\text{s.t. } \int p(w)[\Delta f_\xi(y; w) - \Delta f_\xi(y)] dw \geq -\xi_i, \xi_i \geq 0, \forall i, \forall y \neq y^i.
\]
Open Problems

- Unsupervised CRF learning and MaxMargin Learning
 - Only X, but not Y (sometimes part of Y), is available
 - We want to recognize a pattern that is maximally different from the rest!
 - What does margin or conditional likelihood mean in these cases? Given only \(\{X_n\}\), how can we define the cost function?

\[
\text{margin} = w^T (F(y_n, x_n) - F(y'_n, x_n))
\]

\[
p_\theta(y | x) = \frac{1}{Z(\theta, x)} \exp\left\{ \sum_c \theta_c f_c(x, y_c) \right\}
\]

- Algorithmic challenge
Remember: Elements of Learning

- Here are some important elements to consider before you start:
 - **Task:**
 - Embedding? Classification? Clustering? Topic extraction? …
 - **Data and other info:**
 - Input and output (e.g., continuous, binary, counts, …)
 - Supervised or unsupervised, of a blend of everything?
 - Prior knowledge? Bias?
 - **Models and paradigms:**
 - BN? MRF? Regression? SVM?
 - Bayesian/Frequents? Parametric/Nonparametric?
 - **Objective/Loss function:**
 - MLE? MCLE? Max margin?
 - Log loss, hinge loss, square loss? …
 - **Tractability and exactness trade off:**
 - Online? Batch? Distributed?
 - **Evaluation:**
 - Visualization? Human interpretability? Perplexity? Predictive accuracy?
- It is better to consider one element at a time!