Proportional Graphical Models

Bayesian nonparametrics: The Indian buffet process

Avinava Dubey
Lecture 19, March 25, 2015

Recap of last lecture

- Dirichlet process: a distribution over discrete probability distributions with infinitely many atoms.
- Can be used to create a nonparametric version of a finite mixture model.
Recap of last lecture

- We can think of the Dirichlet process in a number of ways:
 - The infinite limit of a Dirichlet distribution.
 - A rich-get richer predictive distribution over the next data point (Chinese restaurant process, Polya urn scheme).
 - An iterative procedure for generating samples from the Dirichlet process – the stick breaking representation.

Limitations of a simple mixture model

- The Dirichlet distribution and the Dirichlet process are great if we want to cluster data into non-overlapping clusters.
- However, DP/Dirichlet mixture models cannot share features between clusters.
- In many applications, data points exhibit properties of multiple latent features
 - Images contain multiple objects.
 - Actors in social networks belong to multiple social groups.
 - Movies contain aspects of multiple genres.
Latent variable models

- Latent variable models allow each data point to exhibit *multiple* features, to *varying degrees*.
- Example: Factor analysis
 \[X = W A^T + \epsilon \]
 - Rows of \(A \) = latent features
 - Rows of \(W \) = datapoint-specific weights for these features
 - \(\epsilon \) = Gaussian noise.
- Example: LDA
 - Each document represented by a *mixture* of features.

Infinite latent feature models

- Problem: How to choose the number of features?
- Example: Factor analysis
 \[X = W A^T + \epsilon \]
 - Each column of \(W \) (and row of \(A \)) corresponds to a feature.
 - Question: Can we make the number of features *unbounded* a posteriori, as we did with the DP?
 - Solution: allow *infinitely many* features a priori – ie let \(W \) (or \(A \)) have infinitely many columns (rows).
 - Problem: We can’t represent infinitely many features!
 - Solution: make our infinitely large matrix *sparse*.

Griffiths and Ghaharamani, 2006
The CRP: A distribution over binary matrices

- Recall that the CRP gives us a distribution over partitions of our data.
- We can represent this as a distribution over binary matrices, where each row corresponds to a data point, and each column to a cluster.

A sparse, finite latent variable model

- We want a sparse model – so let
 \[X = WA^T + \epsilon \]
 \[W = Z \odot V \]
 for some sparse matrix Z.
- Place a beta-Bernoulli prior on Z:
 \[\pi_k \sim \text{Beta}\left(\frac{\alpha}{K}, 1\right), \ k = 1, \ldots, K \]
 \[z_{nk} \sim \text{Bernoulli}(\pi_k), \ n = 1, \ldots, N. \]
A sparse, finite latent variable model

If we integrate out the π_k, the marginal probability of a matrix Z is:

$$p(Z) = \prod_{k=1}^{K} \int \left(\prod_{n=1}^{N} p(z_{nk}|\pi_k) \right) p(\pi_k) d\pi_k$$

$$= \prod_{k=1}^{K} \frac{B(m_k + \alpha/K, N - m_k + 1)}{B(\alpha/K, 1)}$$

$$= \prod_{k=1}^{K} \frac{\alpha \Gamma(m_k + \alpha/K)\Gamma(N - m_k + 1)}{K \Gamma(N + 1 + \alpha/K)}$$

where $m_k = \sum_{n=1}^{N} z_{nk}$

- This is exchangeable (doesn’t depend on the order of the rows or columns)

How is this sparse?
An equivalence class of matrices

- We can naively take the infinite limit by taking K to infinity.
- Because all the columns are equal in expectation, as K grows we are going to have more and more empty columns.
- We do not want to have to represent infinitely many empty columns!
- Define an equivalence class $[Z]$ of matrices where the non-zero columns are all to the left of the empty columns.
- Let $lof(.)$ be a function that maps binary matrices to left-ordered binary matrices – matrices ordered by the binary number made by their rows.

Left-ordered matrices

Figure 5: Binary matrices and the left-ordered form. The binary matrix on the left is transformed into the left-ordered binary matrix on the right by the function $lof(.)$. This left-ordered matrix was generated from the exchangeable Indian buffet process with $\alpha = 10$. Empty columns are omitted from both matrices.

Image from Griffiths and Ghahramani, 2011
How big is the equivalence set?

- All matrices in the equivalence set \([Z]\) are equiprobable (by exchangeability of the columns), so if we know the size of the equivalence set, we know its probability.
- Call the vector \((z_{1k}, z_{2k}, \ldots, z_{(n-1)k})\) the history of feature \(k\) at data point \(n\) (a number represented in binary form).
- Let \(K_h\) be the number of features possessing history \(h\), and let \(K_+\) be the total number of features with non-zero history.
- The total number of lof-equivalent matrices in \([Z]\) is

\[
\binom{K}{K_0 \cdots K_{2N-1}} = \frac{K!}{\prod_{n=0}^{2N-1} K_n!}
\]

Probability of an equivalence class of finite binary matrices.

- If we know the size of the equivalence class \([Z]\), we can evaluate its probability:

\[
p([Z]) = \sum_{Z \in [Z]} p(Z) = \frac{K!}{\prod_{n=0}^{2N-1} K_n!} \prod_{k=1}^{K} \frac{\alpha \Gamma(m_k + \alpha/K) \Gamma(N - m_k + 1)}{\Gamma(N + 1 + \alpha/K)}
\]

\[
= \frac{\alpha^{K_+}}{\prod_{n=1}^{2N-1} K_n! K_0! K_+} \left(\prod_{j=1}^{N} \frac{N!}{j + \alpha/K} \right)^K \prod_{k=1}^{K} \frac{(N - m_k)! \Gamma(m_k - 1 + \alpha/K)}{N!}
\]

© A. Dubey, S. Williamson, E. Xing @ CMU, 2014-15
Taking the infinite limit

- We are now ready to take the limit of this finite model as K tends to infinity:

\[
\frac{\alpha^{K+}}{\prod_{n=1}^{2N-1} K_n!} \frac{K!}{K_0!K^{K+}} \left(\frac{N!}{\prod_{j=1}^{N} j + \frac{\alpha}{K}} \right)^K \prod_{k=1}^{K+} \frac{(N - m_k)! \prod_{j=1}^{m_k-1} (j + \frac{\alpha}{K})}{N!}
\]

\[
\downarrow K \to \infty
\]

\[
\frac{\alpha^{K+}}{\prod_{n=1}^{2N-1} K_n!} 1 \exp\{-\alpha H_N\} \prod_{k=1}^{K+} \frac{(N - m_k)! (m_k - 1)!}{N!}
\]

Predictive distribution: The Indian buffet process

- We can describe this model in terms of the following restaurant analogy.
 - A customer enters a restaurant with an infinitely large buffet
 - He helps himself to Poisson(α) dishes.
Predictive distribution: The Indian buffet process

- We can describe this model in terms of the following restaurant analogy.
 - A customer enters a restaurant with an infinitely large buffet
 - He helps himself to Poisson(\(\alpha\)) dishes.
 - The \(n\)th customer enters the restaurant
 - He helps himself to each dish with probability \(m_k/n\)
 - He then tries Poisson(\(\alpha/n\)) new dishes

© A. Dubey, S. Williamson, E. Xing @ CMU, 2014-15
Example

Proof that the IBP is lof-equivalent to the infinite beta-Bernoulli model

- What is the probability of a matrix Z?
- Let $K^{(n)}_1$ be the number of new features in the nth row.

$$p(Z) = \prod_{n=1}^{N} p(z_n | z_{1:(n-1)})$$

$$= \prod_{n=1}^{N} \text{Poisson} \left(\frac{\alpha}{n} \sum_{k=1}^{K_+} \left(\sum_{i=1}^{n-1} z_{ik} \right)^{z_{nk}} \left(n - \sum_{i=1}^{n-1} z_{ik} \right) \right)$$

$$= \prod_{n=1}^{N} \frac{\alpha^{K_+}}{\left(\frac{\alpha}{n} \right)^{K_+} K_+!} e^{-\alpha/n} \prod_{k=1}^{K_+} \left(\sum_{i=1}^{n-1} z_{ik} \right)^{z_{nk}} \left(n - \sum_{i=1}^{n-1} z_{ik} \right)^{1-z_{nk}}$$

$$= \frac{\alpha^{K_+}}{\prod_{n=1}^{N} K_+^{(n)}!} \exp\left(-\alpha I_N\right) \prod_{k=1}^{K_+} \frac{N - m_k!(m_k - 1)!}{N!}$$

- If we include the cardinality of $[Z]$, this is the same as before
Properties of the IBP

- "Rich get richer" property – “popular” dishes become more popular.
- The number of nonzero entries for each row is distributed according to Poisson(α) – due to exchangeability.
- Recall that if $x_1 \sim \text{Poisson}(\alpha_1)$ and $x_2 \sim \text{Poisson}(\alpha_2)$, then $x_1 + x_2 \sim \text{Poisson}(\alpha_1 + \alpha_2)$
 - The number of nonzero entries for the whole matrix is distributed according to Poisson(Nα).
 - The number of non-empty columns is distributed according to Poisson(αH).

Building latent feature models using the IBP

- We can use the IBP to build latent feature models with an unbounded number of features.
- Let each column of the IBP correspond to one of an infinite number of features.
- Each row of the IBP selects a finite subset of these features.
- The rich-get-richer property of the IBP ensures features are shared between data points.
- We must pick a likelihood model that determines what the features look like and how they are combined.
A linear Gaussian model

- General form of latent factor model: \(\mathbf{X} = \mathbf{W} \mathbf{A}^\top + \mathbf{\varepsilon} \)
- Simplest way to make an infinite factor model:
 - Sample \(\mathbf{W} \sim \text{IBP}(\alpha) \)
 - Sample \(\mathbf{a}_k \sim \mathcal{N}(0, \sigma_a^2 \mathbf{I}) \)
 - Sample \(\mathbf{\varepsilon}_{nk} \sim \mathcal{N}(0, \sigma_\varepsilon^2) \)

Griffiths and Ghahramani, 2006

Knowles and Ghahramani, 2007

© A. Dubey, S. Williamson, E. Xing @ CMU, 2014-15
A binary model for latent networks

- **Motivation:** Discovering latent causes for observed binary data
- **Example:**
 - Data points = patients
 - Observed features = presence/absence of symptoms
 - Goal: Identify biologically plausible “latent causes” – eg illnesses.
- **Idea:**
 - Each latent feature is associated with a set of symptoms
 - The more features a patient has that are associated with a given symptom, the more likely that patient is to exhibit the symptom.

Wood et al, 2006

We can represent this in terms of a *Noisy-OR* model:

\[
Z \sim \text{IBP}(
\alpha
) \\
y_{dk} \sim \text{Bernoulli}(p) \\
p(x_{nd} = 1 | Z, Y) = 1 - (1 - \lambda)\sum y_{ik}^T (1 - \epsilon)
\]

- **Intuition:**
 - Each patient has a set of latent causes.
 - For each symptom, we toss a coin with probability \(\lambda \) for each latent cause that is “on” for that patient and associated with that feature, plus an extra coin with probability \(\epsilon \).
 - If any of the coins land heads, we exhibit that feature.
Inference in the IBP

- Recall inference methods for the DP:
 - Gibbs sampler based on the exchangeable model.
 - Gibbs sampler based on the underlying Dirichlet distribution
 - Variational inference
 - Particle filter.

- We can construct analogous samplers for the IBP

Inference in the restaurant scheme

- Recall the exchangeability of the IBP means we can treat any data point as if it’s our last.
- Let K_+ be the total number of used features, excluding the current data point.
- Let Θ be the set of parameters associated with the likelihood – eg the Gaussian matrix A in the linear Gaussian model
- The prior probability of choosing one of these features is m_k/N
- The posterior probability is proportional to
 \[
 p(z_{nk} = 1|x_n, Z_{-nk}, \Theta) \propto m_k f(x_n|z_{nk} = 1, Z_{-nk}, \Theta)
 \]
 \[
 p(z_{nk} = 0|x_n, Z_{-nk}, \Theta) \propto (N - m_k) f(x_n|z_{nk} = 0, Z_{-nk}, \Theta)
 \]
- In some cases we can integrate out Θ, otherwise we must sample this.

Griffiths and Gharamani, 2006
Inference in the restaurant scheme

- In addition, we must propose adding new features.
- Metropolis Hastings method:
 - Let K^*_{old} be the number of features appearing only in the current data point.
 - Propose $K^*_{\text{new}} \sim \text{Poisson}(\alpha/N)$, and let Z^* be the matrix with K^*_{new} features appearing only in the current data point.
 - With probability
 \[
 \min \left(1, \frac{f(x_n|Z^*, \Theta)}{f(x_n|Z, \Theta)} \right)
 \]
 accept the proposed matrix.

Beta processes and the IBP

- Recall the relationship between the Dirichlet process and the Chinese restaurant process:
 - The Dirichlet process is a prior on probability measures (distributions)
 - We can use this probability measure as cluster weights in a clustering model – cluster allocations are i.i.d. given this distribution.
 - If we integrate out the weights, we get an exchangeable distribution over partitions of the data – the Chinese restaurant process.
- De Finetti’s theorem tells us that, if a distribution X_1, X_2, \ldots is exchangeable, there must exist a measure conditioned on which X_1, X_2, \ldots are i.i.d.
Recall the finite beta-Bernoulli model:

\[\pi_k \sim \text{Beta} \left(\frac{\alpha}{K}, 1 \right) \]
\[z_{nk} \sim \text{Bernoulli}(\pi_k) \]

- The \(z_{nk} \) are i.i.d. given the \(\pi_k \), but are exchangeable if we integrate out the \(\pi_k \).
- The corresponding distribution for the IBP is the \emph{infinite limit} of the beta random variables, as \(K \) tends to infinity.
- This distribution over discrete measures is called the \textbf{beta process}.
- Samples from the beta process have infinitely many atoms with masses between 0 and 1.

Question: Can we obtain the posterior distribution of the column probabilities in closed form?

Answer: Yes!
- Recall that each atom of the beta process is the infinitesimal limit of a Beta\((\alpha/K, 1)\) random variable.
- Our observations for that atom are a Binomial\((\pi_N, N)\) random variable.
- We know the beta distribution is conjugate to the Binomial, so the posterior is the infinitesimal limit of a Beta\((\alpha/K+m_N, N+1-m_N)\) random variable.
A stick-breaking construction for the beta process

- We can construct the beta process using the following stick-breaking construction:
- Begin with a stick of unit length.
- For $k=1,2,…$
 - Sample a beta$(\alpha,1)$ random variable μ_k.
 - Break off a fraction μ_k of the stick. This is the k^{th} atom size.
 - Throw away what’s left of the stick.
 - Recurse on the part of the stick that you broke off

$$\pi_k = \prod_{j=1}^{k} \mu_j \quad \mu_j \sim \text{Beta}(\alpha, 1)$$

- Note that, unlike the DP stick breaking construction, the atoms will not sum to one.

Inference in the stick-breaking construction

- We can also perform inference using the stick-breaking representation
 - Sample $Z|\pi, \Theta$
 - Sample $\pi|Z$
- The posterior for atoms for which $m_k>0$ is beta distributed.
- The atoms for which $m_k=0$ can be sampled using the stick-breaking procedure.
- We can use a slice sampler to avoid representing all of the atoms, or using a fixed truncation level.
A two-parameter extension

- In the IBP, the parameter α governs both the number of nonempty columns and the number of features per data point.
- We might want to decouple these properties of our model.
- Reminder: We constructed the IBP as the limit of a finite beta-Bernoulli model where

$$
\pi_k \sim \text{Beta} \left(\frac{\alpha}{K}, 1 \right)
$$

$$
z_{nk} \sim \text{Bernoulli}(\pi_k)
$$

- We can modify this to incorporate an extra parameter:

$$
\pi_k \sim \text{Beta} \left(\frac{\alpha \beta}{K}, \beta \right)
$$

$$
z_{nk} \sim \text{Bernoulli}(\pi_k)
$$

Sollich, 2005

A two-parameter extension

- Our restaurant scheme is now as follows:
 - A customer enters a restaurant with an infinitely large buffet
 - He helps himself to Poisson(α) dishes.
 - The n^{th} customer enters the restaurant
 - He helps himself to each dish with probability $m_i/(\beta + n - 1)$
 - He then tries Poisson($\alpha \beta/(\beta + n - 1)$) new dishes

- Note
 - The number of features per data point is still marginally Poisson(α).
 - The number of non-empty columns is now

$$
\text{Poisson} \left(\alpha \sum_{n=1}^{N} \frac{\beta}{\beta + n - 1} \right)
$$

- We recover the IBP when $\beta = 1$.
Two parameter IBP: examples

Image from Griffiths and Ghahramani, 2011

Other distributions over infinite, exchangeable matrices

- Recall the beta-Bernoulli process construction of the IBP.
- We start with a beta process – an infinite sequence of values between 0 and 1 that are distributed as the infinitesimal limit of the beta distribution.
- We combine this with a Bernoulli process, to get a binary matrix.
- If we integrate out the beta process, we get an exchangeable distribution over binary matrices.
- Integration is straightforward due to the beta-Bernoulli conjugacy.
- Question: Can we construct other infinite matrices in this way?
The infinite gamma-Poisson process

- The gamma process can be thought of as the infinitesimal limit of a sequence of gamma random variables.
- Alternatively,

\[
\text{if } D \sim \text{DP}(\alpha, H) \\
\text{and } \gamma \sim \text{Gamma}(\alpha, 1) \\
\text{then } G = \gamma D \sim \text{GaP}(\alpha H)
\]

- The gamma distribution is conjugate to the Poisson distribution.

The infinite gamma-Poisson process

- We can associate each atom \(v_k\) of the gamma process with a column of a matrix (just like we did with the atoms of a beta process)
- We can generate entries for the matrix as \(z_{nk} \sim \text{Poisson}(v_k)\)

IBP \hspace{2cm} \text{infinite gamma-Poisson}

Titsias, 2008
The infinite gamma-Poisson process

- Predictive distribution for the n^{th} row:
 - For each existing feature, sample a count $z_{nk} \sim \text{NegBinom}(m_k, n/(n+1))$

<p>| | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>2</td>
<td>4</td>
<td>7</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>2</td>
<td>9</td>
<td>4</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>1</td>
<td>6</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>3</td>
<td>6</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

© A. Dubey, S. Williamson, E. Xing @ CMU, 2014-15
The infinite gamma-Poisson process

- Predictive distribution for the n^{th} row:
 - For each existing feature, sample a count $z_{nk} \sim \text{NegBinom}(m_k, n/(n+1))$

\[
\begin{array}{cccccccc}
4 & 2 & 4 & 7 & 0 & 0 & 0 & 0 \\
5 & 0 & 2 & 9 & 4 & 1 & 0 & 0 \\
3 & 2 & 1 & 6 & 2 & 1 & 0 & 0 \\
7 & 1 & 3 & 6 & 3 & 0 & 0 & 0 \\
5 & 0 &
\end{array}
\]
The infinite gamma-Poisson process

- Predictive distribution for the n^{th} row:
 - For each existing feature, sample a count $z_{nk} \sim \text{NegBinom}(m_k, n/(n+1))$
 - Sample $K^*_n \sim \text{NegBinom}(\alpha, n/(n+1))$

\[\begin{array}{cccccccc}
4 & 2 & 4 & 7 & 0 & 0 & 0 & 0 \\
5 & 0 & 2 & 9 & 4 & 1 & 0 & 0 \\
3 & 2 & 1 & 6 & 2 & 1 & 0 & 0 \\
7 & 1 & 3 & 6 & 3 & 0 & 0 & 0 \\
5 & 0 & 4 & 5 & 2 & 0 & & \\
\end{array}\]