Probabilistic Graphical Models

Theory of Variational Inference: Inner and Outer Approximation

Eric Xing
Lecture 14, March 2, 2015

Reading: W & J Book Chapters

© Eric Xing @ CMU, 2005-2015
Roadmap

- Two families of approximate inference algorithms
 - Loopy belief propagation (sum-product)
 - Mean-field approximation

- Are there some connections of these two approaches?

- We will re-exam them from a **unified** point of view based on the variational principle:
 - Loop BP: **outer** approximation
 - Mean-field: **inner** approximation
Variational Methods

- “Variational”: fancy name for optimization-based formulations
 - i.e., represent the quantity of interest as the solution to an optimization problem
 - approximate the desired solution by relaxing/approximating the intractable optimization problem

Examples:
- Courant-Fischer for eigenvalues:
 \[\lambda_{\text{max}}(A) = \max_{\|x\|_2=1} x^T A x \]

- Linear system of equations:
 \[A x = b, A \succ 0, x^* = A^{-1} b \]
 - variational formulation:
 \[x^* = \arg \min_x \left\{ \frac{1}{2} x^T A x - b^T x \right\} \]
 - for large system, apply conjugate gradient method
Inference Problems in Graphical Models

- Undirected graphical model (MRF):

\[p(x) = \frac{1}{Z} \prod_{C \in \mathcal{C}} \psi_C(x_C) \]

- The quantities of interest:
 - marginal distributions:
 \[p(x_i) = \sum_{x_j, j \neq i} p(x) \]
 - normalization constant (partition function):
 \[Z \]

- Question: how to represent these quantities in a variational form?

- Use tools from (1) exponential families; (2) convex analysis
Exponential Families

- Canonical parameterization

\[p_\theta(x_1, \cdots, x_m) = \exp \left\{ \theta^T \phi(x) - A(\theta) \right\} \]

- Log normalization constant:

\[A(\theta) = \log \int \exp\{\theta^T \phi(x)\} dx \]

 - it is a convex function (Prop 3.1)

- Effective canonical parameters:

\[\Omega := \left\{ \theta \in \mathbb{R}^d | A(\theta) < +\infty \right\} \]
Graphical Models as Exponential Families

- Undirected graphical model (MRF):

\[p(x; \theta) = \frac{1}{Z(\theta)} \prod_{C \in C} \psi(x_C; \theta_C) \]

- MRF in an exponential form:

\[p(x; \theta) = \exp \left\{ \sum_{C \in C} \log \psi(x_C; \theta_C) - \log Z(\theta) \right\} \]

- \(\log \psi(x_C; \theta_C) \) can be written in a linear form after some parameterization
Example: Gaussian MRF

- Consider a zero-mean multivariate Gaussian distribution that respects the Markov property of a graph
 - Hammersley-Clifford theorem states that the precision matrix also respects the graph structure

\[\Lambda = \Sigma^{-1} \]

- Gaussian MRF in the exponential form
 \[p(x) = \exp \left\{ \frac{1}{2} \langle \Theta, xx^T \rangle - A(\Theta) \right\}, \text{ where } \Theta = -\Lambda \]

- Sufficient statistics are
 \[\{ x_s^2, s \in V; x_s x_t, (s, t) \in E \} \]
Example: Discrete MRF

\[\theta_t(x_t) \] \hspace{1cm} \theta_{st}(x_s, x_t) \hspace{1cm} \theta_s(x_s) \]

Indicators:

\[\mathbb{I}_{j}(x_s) = \begin{cases} 1 & \text{if } x_s = j \\ 0 & \text{otherwise} \end{cases} \]

Parameters:

\[\theta_s = \{ \theta_{s;j}, j \in \mathcal{X}_s \} \]
\[\theta_{st} = \{ \theta_{st;jk}, (j, k) \in \mathcal{X}_s \times \mathcal{X}_t \} \]

- In exponential form

\[p(x; \theta) \propto \exp \left\{ \sum_{s \in V} \sum_{j} \theta_{s;j} \mathbb{I}_{j}(x_s) + \sum_{(s,t) \in E} \theta_{st;jk} \mathbb{I}_{j}(x_s) \mathbb{I}_{k}(x_t) \right\} \]
Why Exponential Families?

- Computing the expectation of sufficient statistics (mean parameters) given the canonical parameters yields the marginals

\[\mu_{s;j} = \mathbb{E}_p[I_j(X_s)] = \mathbb{P}[X_s = j] \quad \forall j \in \mathcal{X}_s, \]

\[\mu_{st;jk} = \mathbb{E}_p[I_{st;jk}(X_s, X_t)] = \mathbb{P}[X_s = j, X_t = k] \quad \forall (j, k) \in \mathcal{X}_s \times \mathcal{X}_t. \]

- Computing the normalizer yields the log partition function (or log likelihood function)

\[\log Z(\theta) = A(\theta) \]
Computing Mean Parameter: Bernoulli

- A single Bernoulli random variable

\[p(x; \theta) = \exp\{\theta x - A(\theta)\}, \ x \in \{0, 1\}, \ A(\theta) = \log(1 + e^\theta) \]

- Inference = Computing the mean parameter

\[\mu(\theta) = \mathbb{E}_\theta[X] = 1 \cdot p(X = 1; \theta) + 0 \cdot p(X = 0; \theta) = \frac{e^\theta}{1 + e^\theta} \]

- Want to do it in a variational manner: cast the procedure of computing mean (summation) in an optimization-based formulation
Conjugate Dual Function

- Given any function $f(\theta)$, its conjugate dual function is:

\[
f^*(\mu) = \sup_{\theta} \{ \langle \theta, \mu \rangle - f(\theta) \}
\]

- Conjugate dual is always a **convex** function: point-wise supremum of a class of linear functions
Dual of the Dual is the Original

- Under some technical condition on f (convex and lower semi-continuous), the dual of dual is itself:

$$f = (f^*)^*$$

$$f(\theta) = \sup_{\mu} \{ \langle \theta, \mu \rangle - f^*(\mu) \}$$

- For log partition function

$$A(\theta) = \sup_{\mu} \{ \langle \theta, \mu \rangle - A^*(\mu) \}, \quad \theta \in \Omega$$

- The dual variable μ has a natural interpretation as the mean parameters
Computing Mean Parameter: Bernoulli

- The conjugate \(A^*(\mu) := \sup_{\theta \in \mathbb{R}} \{ \mu \theta - \log[1 + \exp(\theta)] \} \)

- Stationary condition \(\mu = \frac{e^\theta}{1 + e^\theta} \) \((\mu = \nabla A(\theta)) \)

- If \(\mu \in (0, 1) \), \(\theta(\mu) = \log \left(\frac{\mu}{1 - \mu} \right) \), \(A^*(\mu) = \mu \log(\mu) + (1 - \mu) \log(1 - \mu) \)

- If \(\mu \not\in [0, 1] \), \(A^*(\mu) = +\infty \)

- We have \(A^*(\mu) = \begin{cases}
\mu \log \mu + (1 - \mu) \log(1 - \mu) & \text{if } \mu \in [0, 1] \\
+\infty & \text{otherwise.}
\end{cases} \)

- The variational form: \(A(\theta) = \max_{\mu \in [0,1]} \{ \mu \cdot \theta - A^*(\mu) \} \).

- The optimum is achieved at \(\mu(\theta) = \frac{e^\theta}{1 + e^\theta} \). This is the mean!
Remark

- The last few identities are not coincidental but rely on a deep theory in general exponential family.
 - The dual function is the negative entropy function
 - The mean parameter is restricted
 - Solving the optimization returns the mean parameter and log partition function

- Next step: develop this framework for general exponential families/graphical models.

- However,
 - Computing the conjugate dual (entropy) is in general intractable
 - The constrain set of mean parameter is hard to characterize
 - Hence we need approximation
Computation of Conjugate Dual

- Given an exponential family
 \[p(x_1, \ldots, x_m; \theta) = \exp \left\{ \sum_{i=1}^{d} \theta_i \phi_i(x) - A(\theta) \right\} \]

- The dual function
 \[A^*(\mu) := \sup_{\theta \in \Omega} \{ \langle \mu, \theta \rangle - A(\theta) \} \]

- The stationary condition:
 \[\mu - \nabla A(\theta) = 0 \]

- Derivatives of \(A \) yields mean parameters
 \[\frac{\partial A}{\partial \theta_i}(\theta) = \mathbb{E}_\theta[\phi_i(X)] = \int \phi_i(x)p(x; \theta) \, dx \]

- The stationary condition becomes
 \[\mu = \mathbb{E}_\theta[\phi(X)] \]

- Question: for which \(\mu \in \mathbb{R}^d \) does it have a solution \(\theta(\mu) \)?
Computation of Conjugate Dual

- Let’s assume there is a solution $\theta(\mu)$ such that $\mu = \mathbb{E}_{\theta(\mu)}[\phi(X)]$

- The dual has the form

 \[A^*(\mu) = \langle \theta(\mu), \mu \rangle - A(\theta(\mu)) \]
 \[= \mathbb{E}_{\theta(\mu)}[\langle \theta(\mu), \phi(X) \rangle - A(\theta(\mu))] \]
 \[= \mathbb{E}_{\theta(\mu)}[\log p(X; \theta(\mu))] \]

- The entropy is defined as

 \[H(p(x)) = - \int p(x) \log p(x) \, dx \]

- So the dual is $A^*(\mu) = -H(p(x; \theta(\mu))$ when there is a solution $\theta(\mu)$
Complexity of Computing Conjugate Dual

- The dual function is implicitly defined:

\[\mu \xrightarrow{(\nabla A)^{-1}} \theta(\mu) \xrightarrow{-H(p_{\theta(\mu)})} A^*(\mu) \]

- Solving the inverse mapping \(\mu = E_{\theta}[\phi(X)] \) for canonical parameters \(\theta(\mu) \) is nontrivial.

- Evaluating the negative entropy requires high-dimensional integration (summation).

- Question: for which \(\mu \in \mathbb{R}^d \) does it have a solution \(\theta(\mu) \)? i.e., the domain of \(A^*(\mu) \).
 - the ones in marginal polytope!
Marginal Polytope

- For any distribution \(p(x) \) and a set of sufficient statistics \(\phi(x) \), define a vector of mean parameters

\[
\mu_i = \mathbb{E}_p[\phi_i(X)] = \int \phi_i(x)p(x) \, dx
\]

- \(p(x) \) is not necessarily an exponential family

- The set of all realizable mean parameters

\[
\mathcal{M} := \{ \mu \in \mathbb{R}^d \mid \exists p \text{ s.t. } \mathbb{E}_p[\phi(X)] = \mu \}.
\]

- It is a convex set

- For discrete exponential families, this is called marginal polytope
Convex Polytope

- Convex hull representation

\[\mathcal{M} = \left\{ \mu \in \mathbb{R}^d \mid \sum_{x \in \mathcal{X}^m} \phi(x)p(x) = \mu, \text{ for some } p(x) \geq 0, \sum_{x \in \mathcal{X}^m} p(x) = 1 \right\} \]

\[\triangleq \text{conv}\{\phi(x), x \in \mathcal{X}^m\} \]

- Half-plane representation

 - Minkowski-Weyl Theorem: any non-empty convex polytope can be characterized by a finite collection of linear inequality constraints

\[\mathcal{M} = \left\{ \mu \in \mathbb{R}^d \mid a_j^\top \mu \geq b_j, \forall j \in \mathcal{J} \right\}, \]

where |\mathcal{J}| is finite.
Example: Two-node Ising Model

- Sufficient statistics: \(\phi(x) := (x_1, x_2, x_1x_2) \)
- Mean parameters:
 \[
 \mu_1 = \mathbb{P}(X_1 = 1), \mu_2 = \mathbb{P}(X_2 = 1) \\
 \mu_{12} = \mathbb{P}(X_1 = 1, X_2 = 1)
 \]

- Two-node Ising model
 - Convex hull representation
 \(\text{conv}\{(0, 0, 0), (1, 0, 0), (0, 1, 0), (1, 1, 1)\} \)
 - Half-plane representation
 \[
 \begin{align*}
 \mu_1 & \geq \mu_{12} \\
 \mu_2 & \geq \mu_{12} \\
 \mu_{12} & \geq 0 \\
 1 + \mu_{12} & \geq \mu_1 + \mu_2
 \end{align*}
 \]
Marginal Polytope for General Graphs

- Still doable for connected binary graphs with 3 nodes: 16 constraints
- For tree graphical models, the number of half-planes (facet complexity) grows only \textit{linearly} in the graph size
- General graphs?
 - extremely hard to characterize the marginal polytope
Variational Principle (Theorem 3.4)

- The dual function takes the form

\[A^*(\mu) = \begin{cases} -H(p_{\theta(\mu)}) & \text{if } \mu \in \mathcal{M}^\circ \\ +\infty & \text{if } \mu \notin \overline{\mathcal{M}}. \end{cases} \]

- \(\theta(\mu)\) satisfies \(\mu = \mathbb{E}_{\theta(\mu)}[\phi(X)]\)
- The log partition function has the variational form

\[A(\theta) = \sup_{\mu \in \mathcal{M}} \left\{ \theta^T \mu - A^*(\mu) \right\} \]

- For all \(\theta \in \Omega\), the above optimization problem is attained uniquely at \(\mu(\theta) \in \mathcal{M}^\circ\) that satisfies

\[\mu(\theta) = \mathbb{E}_\theta[\phi(X)] \]
Example: Two-node Ising Model

- The distribution \(p(x; \theta) \propto \exp\{\theta_1 x_1 + \theta_2 x_2 + \theta_{12} x_{12}\} \)
 - Sufficient statistics \(\phi(x) = \{x_1, x_2, x_{12}\} \)

- The marginal polytope is characterized by

- The dual has an explicit form

\[
A^*(\mu) = \mu_{12} \log \mu_{12} + (\mu_1 - \mu_{12}) \log(\mu_1 - \mu_{12}) + (\mu_2 - \mu_{12}) \log(\mu_2 - \mu_{12}) \\
+ (1 + \mu_{12} - \mu_1 - \mu_2) \log(1 + \mu_{12} - \mu_1 - \mu_2)
\]

- The variational problem \(A(\theta) = \max_{\{\mu_1, \mu_2, \mu_{12}\} \in M} \{\theta_1 \mu_1 + \theta_2 \mu_2 + \theta_{12} \mu_{12} - A^*(\mu)\} \)

- The optimum is attained at

\[
\mu_1(\theta) = \frac{\exp\{\theta_1\} + \exp\{\theta_1 + \theta_2 + \theta_{12}\}}{1 + \exp\{\theta_1\} + \exp\{\theta_2\} + \exp\{\theta_1 + \theta_2 + \theta_{12}\}}
\]
Variational Principle

- **Exact variational formulation**

\[A(\theta) = \sup_{\mu \in \mathcal{M}} \{ \theta^T \mu - A^*(\mu) \} \]

- \(\mathcal{M} \): the marginal polytope, difficult to characterize
- \(A^* \): the negative entropy function, no explicit form

- **Mean field method**: non-convex inner bound and exact form of entropy

- **Bethe approximation and loopy belief propagation**: polyhedral outer bound and non-convex Bethe approximation
Mean Field Approximation
For an exponential family with sufficient statistics \(\phi \) defined on graph \(G \), the set of realizable mean parameter set

\[
\mathcal{M}(G; \phi) := \{ \mu \in \mathbb{R}^d \mid \exists p \text{ s.t. } \mathbb{E}_p[\phi(X)] = \mu \}
\]

- Idea: restrict \(p \) to a subset of distributions associated with a tractable subgraph

\[
\Omega := \{ \theta \in \mathbb{R}^d | A(\theta) < +\infty \}
\]

\[
\Omega(F_0) := \{ \theta \in \Omega \mid \theta_{(s,t)} = 0 \ \forall (s, t) \in E \}. \quad \Omega(T) := \{ \theta \in \Omega \mid \theta_{(s,t)} = 0 \ \forall (s, t) \notin E(T) \}.
\]
Mean Field Methods

- For a given tractable subgraph F, a subset of canonical parameters is
 \[\mathcal{M}(F; \phi) := \{ \tau \in \mathbb{R}^d \mid \tau = \mathbb{E}_\theta[\phi(X)] \text{ for some } \theta \in \Omega(F) \} \]

- Inner approximation
 \[\mathcal{M}(F; \phi)^o \subseteq \mathcal{M}(G; \phi)^o \]

- Mean field solves the relaxed problem
 \[\max_{\tau \in \mathcal{M}_F(G')} \{ \langle \tau, \theta \rangle - A_F^*(\tau) \} \]

- \(A_F^* = A^*_F \mid_{\mathcal{M}_F(G)} \) is the exact dual function restricted to \(\mathcal{M}_F(G) \)
Example: Naïve Mean Field for Ising Model

- Ising model in \{0,1\} representation
 \[
p(x) \propto \exp \left\{ \sum_{s \in V} x_s \theta_s + \sum_{(s,t) \in E} x_s x_t \theta_{st} \right\}
 \]

- Mean parameters
 \[
 \mu_s = \mathbb{E}_p[X_s] = \mathbb{P}[X_s = 1] \quad \text{for all } s \in V, \text{ and}
 \]
 \[
 \mu_{st} = \mathbb{E}_p[X_s X_t] = \mathbb{P}[(X_s, X_t) = (1,1)] \quad \text{for all } (s,t) \in E.
 \]

- For fully disconnected graph \(F \),
 \[
 \mathcal{M}_F(G) := \{ \tau \in \mathbb{R}^{|V| + |E|} \mid 0 \leq \tau_s \leq 1, \forall s \in V, \tau_{st} = \tau_s \tau_t, \forall (s, t) \in E \}
 \]

- The dual decomposes into sum, one for each node
 \[
 A^*_F(\tau) = \sum_{s \in V} [\tau_s \log \tau_s + (1 - \tau_s) \log(1 - \tau_s)]
 \]

© Eric Xing @ CMU, 2005-2015
Example: Naïve Mean Field for Ising Model

- Mean field problem

\[
A(\theta) \geq \max_{(\tau_1, \ldots, \tau_m) \in [0,1]^m} \left\{ \sum_{s \in V} \theta_s \tau_s + \sum_{(s,t) \in E} \theta_{st} \tau_s \tau_t - A_F^*(\tau) \right\}
\]

- The same objective function as in free energy based approach

- The naïve mean field update equations

\[
\tau_s \leftarrow \sigma \left(\theta_s + \sum_{t \in N(s)} \theta_s \tau_t \right)
\]

- Also yields lower bound on log partition function
Geometry of Mean Field

- Mean field optimization is always non-convex for any exponential family in which the state space \mathcal{X}^m is finite.

- Recall the marginal polytope is a convex hull

 \[\mathcal{M}(G) = \text{conv}\{\phi(e); e \in \mathcal{X}^m\} \]

- $\mathcal{M}_F(G)$ contains all the extreme points
 - If it is a strict subset, then it must be non-convex.

- Example: two-node Ising model

 \[\mathcal{M}_F(G) = \{0 \leq \tau_1 \leq 1, 0 \leq \tau_2 \leq 1, \tau_{12} = \tau_1 \tau_2\} \]
 - It has a parabolic cross section along $\tau_1 = \tau_2$, hence non-convex.
Bethe Approximation
and Sum-Product
Sum-Product/Belief Propagation Algorithm

- **Message passing rule:**

\[
M_{ts}(x_s) \leftarrow \kappa \sum_{x'_t} \left\{ \psi_{st}(x_s, x'_t) \psi_t(x'_t) \prod_{u \in N(t)/s} M_{ut}(x'_t) \right\}
\]

- **Marginals:**

\[
\mu_s(x_s) = \kappa \psi_s(x_s) \prod_{t \in N(s)} M^*_{ts}(x_s)
\]

- **Exact** for trees, but **approximate** for loopy graphs (so called loopy belief propagation)

- **Question:**
 - How is the algorithm on trees related to variational principle?
 - What is the algorithm doing for graphs with cycles?
Tree Graphical Models

- Discrete variables $X_s \in \{0, 1, \ldots, m_s - 1\}$ on a tree $T = (V, E)$

- Sufficient statistics:

$$
\begin{align*}
\mathbb{I}_j(x_s) & \quad \text{for } s = 1, \ldots, n, \quad j \in \mathcal{X}_s \\
\mathbb{I}_{jk}(x_s, x_t) & \quad \text{for } (s, t) \in E, \quad (j, k) \in \mathcal{X}_s \times \mathcal{X}_t
\end{align*}
$$

- Exponential representation of distribution:

$$
p(X; \theta) \propto \exp\left\{ \sum_{s \in V} \theta_s(x_s) + \sum_{(s,t) \in E} \theta_{st}(x_s, x_t) \right\}
$$

where $\theta_s(x_s) := \sum_{j \in \mathcal{X}_s} \theta_{s;j} \mathbb{I}_j(x_s)$ (and similarly for $\theta_{st}(x_s, x_t)$)

- Mean parameters are marginal probabilities:

$$
\begin{align*}
\mu_{s;j} &= \mathbb{E}_p[\mathbb{I}_j(X_s)] = \mathbb{P}[X_s = j] \quad \forall j \in \mathcal{X}_s, \\
\mu_s(x_s) &= \sum_{j \in \mathcal{X}_s} \mu_{s;j} \mathbb{I}_j(x_s) = \mathbb{P}(X_s = x_s) \\
\mu_{st;jk} &= \mathbb{E}_p[\mathbb{I}_{st;jk}(X_s, X_t)] = \mathbb{P}[X_s = j, X_t = k] \quad \forall (j, k) \in \mathcal{X}_s \times \mathcal{X}_t, \\
\mu_{st}(x_s, x_t) &= \sum_{(j, k) \in \mathcal{X}_s \times \mathcal{X}_t} \mu_{st;jk} \mathbb{I}_{jk}(x_s, x_t) = \mathbb{P}(X_s = x_s, X_t = x_t)
\end{align*}
$$
Marginal Polytope for Trees

- Recall marginal polytope for general graphs

\[\mathcal{M}(G) = \{ \mu \in \mathbb{R}^d \mid \exists p \text{ with marginals } \mu_{s;j}, \mu_{st;jk} \} \]

- By junction tree theorem (see Prop. 2.1 & Prop. 4.1)

\[\mathcal{M}(T) = \left\{ \mu \geq 0 \mid \sum_{x_s} \mu_s(x_s) = 1, \sum_{x_t} \mu_{st}(x_s, x_t) = \mu_s(x_s) \right\} \]

- In particular, if \(\mu \in \mathcal{M}(T) \), then

\[p_\mu(x) := \prod_{s \in V} \mu_s(x_s) \prod_{(s,t) \in E} \frac{\mu_{st}(x_s, x_t)}{\mu_s(x_s) \mu_t(x_t)}. \]

has the corresponding marginals
Decomposition of Entropy for Trees

- For trees, the entropy decomposes as

\[H(p(x; \mu)) = - \sum_x p(x; \mu) \log p(x; \mu) \]

\[= \sum_{s \in V} \left(- \sum_{x_s} \mu_s(x_s) \log \mu_s(x_s) \right) - H_s(\mu_s) \]

\[- \sum_{(s,t) \in E} \left(\sum_{x_s, x_t} \mu_{st}(x_s, x_t) \log \frac{\mu_{st}(x_s, x_t)}{\mu_s(x_s) \mu_t(x_t)} \right) \]

\[= \sum_{s \in V} H_s(\mu_s) - \sum_{(s,t) \in E} I_{st}(\mu_{st}), \text{KL-Divergence} \]

- The dual function has an explicit form \(A^*(\mu) = -H(p(x; \mu)) \)
Exact Variational Principle for Trees

• Variational formulation

\[A(\theta) = \max_{\mu \in \mathcal{M}(T)} \left\{ \langle \theta, \mu \rangle + \sum_{s \in V} H_s(\mu_s) - \sum_{(s,t) \in E} I_{st}(\mu_{st}) \right\} \]

• Assign Lagrange multiplier \(\lambda_{ss} \) for the normalization constraint \(C_{ss}(\mu) := 1 - \sum_{x_s} \mu_s(x_s) = 0 \) and \(\lambda_{ts}(x_s) \) for each marginalization constraint \(C_{ts}(x_s; \mu) := \mu_s(x_s) - \sum_{x_t} \mu_{st}(x_s, x_t) = 0 \)

• The Lagrangian has the form

\[\mathcal{L}(\mu, \lambda) = \langle \theta, \mu \rangle + \sum_{s \in V} H_s(\mu_s) - \sum_{(s,t) \in E} I_{st}(\mu_{st}) + \sum_{s \in V} \lambda_{ss} C_{ss}(\mu) + \sum_{(s,t) \in E} \left[\sum_{x_t} \lambda_{st}(x_t) C_{st}(x_t) + \sum_{x_s} \lambda_{ts}(x_s) C_{ts}(x_s) \right] \]
Lagrangian Derivation

- Taking the derivatives of the Lagrangian w.r.t. μ_s and μ_{st}

$$\frac{\partial L}{\partial \mu_s(x_s)} = \theta_s(x_s) - \log \mu_s(x_s) + \sum_{t \in \mathcal{N}(s)} \lambda_{ts}(x_s) + C$$

$$\frac{\partial L}{\partial \mu_{st}(x_s, x_t)} = \theta_{st}(x_s, x_t) - \log \frac{\mu_{st}(x_s, x_t)}{\mu_s(x_s)\mu_t(x_t)} - \lambda_{ts}(x_s) - \lambda_{st}(x_t) + C'$$

- Setting them to zeros yields

$$\mu_s(x_s) \propto \exp\{\theta_s(x_s)\} \prod_{t \in \mathcal{N}(s)} \exp\{\lambda_{ts}(x_s)\} M_{ts}(x_s)$$

$$\mu_s(x_s, x_t) \propto \exp\{\theta_s(x_s) + \theta_t(x_t) + \theta_{st}(x_s, x_t)\} \times$$

$$\prod_{u \in \mathcal{N}(s) \setminus t} \exp\{\lambda_{us}(x_s)\} \prod_{v \in \mathcal{N}(t) \setminus s} \exp\{\lambda_{vt}(x_t)\}$$
Lagrangian Derivation (continued)

- Adjusting the Lagrange multipliers or messages to enforce

\[C_{ts}(x_s; \mu) := \mu_s(x_s) - \sum_{x_t} \mu_{st}(x_s, x_t) = 0 \]

yields

\[M_{ts}(x_s) \leftarrow \sum_{x_t} \exp \{ \theta_t(x_t) + \theta_{st}(x_s, x_t) \} \prod_{u \in \mathcal{N}(t) \setminus s} M_{ut}(x_t) \]

- Conclusion: the message passing updates are a Lagrange method to solve the stationary condition of the variational formulation
BP on Arbitrary Graphs

- Two main difficulties of the variational formulation

\[A(\theta) = \sup_{\mu \in \mathcal{M}} \{ \theta^T \mu - A^*(\mu) \} \]

- The marginal polytope \(\mathcal{M} \) is hard to characterize, so let’s use the tree-based outer bound

\[\mathbb{L}(G) = \left\{ \tau \geq 0 \mid \sum_{x_s} \tau_s(x_s) = 1, \sum_{x_t} \tau_{st}(x_s, x_t) = \tau_s(x_s) \right\} \]

These locally consistent vectors \(\tau \) are called pseudo-marginals.

- Exact entropy \(-A^*(\mu) \) lacks explicit form, so let’s approximate it by the exact expression for trees

\[-A^*(\tau) \approx H_{\text{Bethe}}(\tau) := \sum_{s \in V} H_s(\tau_s) - \sum_{(s,t) \in E} I_{st}(\tau_{st}). \]
Bethe Variational Problem (BVP)

- Combining these two ingredient leads to the Bethe variational problem (BVP):

\[
\max_{\tau \in \mathbb{L}(G)} \left\{ \langle \theta, \tau \rangle + \sum_{s \in V} H_s(\tau_s) - \sum_{(s,t) \in E} I_{st}(\tau_{st}) \right\}.
\]

- A simple structured problem (differentiable & constraint set is a simple convex polytope)

- Loopy BP can be derived as an iterative method for solving a Lagrangian formulation of the BVP (Theorem 4.2); similar proof as for tree graphs

- A set of pseudo-marginals given by Loopy BP fixed point in any graph if and only if they are local stationary points of BVP
Geometry of BP

- Consider the following assignment of pseudo-marginals
 - Can easily verify \(\tau \in \mathbb{L}(G) \)
 - However, \(\tau \not\in \mathcal{M}(G) \) (need a bit more work)

- Tree-based outer bound
 - For any graph, \(\mathcal{M}(G) \subseteq \mathbb{L}(G) \)
 - Equality holds if and only if the graph is a tree

- Question: does solution to the BVP ever fall into the gap?
 - Yes, for any element of outer bound \(\mathbb{L}(G) \) it is possible to construct a distribution with it as a fixed point (Wainwright et. al. 2003)
Consider a fully connected graph with

\[\mu_s(x_s) = \begin{bmatrix} 0.5 & 0.5 \end{bmatrix} \quad \text{for } s = 1, 2, 3, 4 \]

\[\mu_{st}(x_s, x_t) = \begin{bmatrix} 0.5 & 0 \\ 0 & 0.5 \end{bmatrix} \quad \forall (s, t) \in E. \]

- It is globally valid: \(\tau \in \mathcal{M}(G) \); realized by the distribution that places mass 1/2 on each of configuration (0,0,0,0) and (1,1,1,1)

- \(H_{\text{Bethe}}(\mu) = 4 \log 2 - 6 \log 2 = -2 \log 2 < 0, \)
- \(-A^*(\mu) = \log 2 > 0. \)
Remark

- This connection provides a **principled basis** for applying the sum-product algorithm for loopy graphs

- However,
 - Although there is always a fixed point of loopy BP, there is no guarantees on the convergence of the algorithm on loopy graphs
 - The Bethe variational problem is usually non-convex. Therefore, there are no guarantees on the global optimum
 - Generally, no guarantees that $A_{\text{Bethe}}(\theta)$ is a lower bound of $A(\theta)$

- Nevertheless,
 - The connection and understanding suggest a number of avenues for improving upon the ordinary sum-product algorithm, via progressively better approximations to the entropy function and outer bounds on the marginal polytope (Kikuchi clustering)
Summary

- Variational methods in general turn inference into an optimization problem via exponential families and convex duality

- The exact variational principle is intractable to solve; there are two distinct components for approximations:
 - Either inner or outer bound to the marginal polytope
 - Various approximation to the entropy function

- **Mean field**: non-convex inner bound and exact form of entropy
- **BP**: polyhedral outer bound and non-convex Bethe approximation
- **Kikuchi and variants**: tighter polyhedral outer bounds and better entropy approximations (Yedidia et. al. 2002)