Probabilistic Graphical Models

Factor Analysis and State Space Models

Eric Xing
Lecture 11, February 18, 2015

Reading: See class website
A road map to more complex dynamic models

- **Discrete**
 - **Y**
 - Mixture model
e.g., mixture of multinomials

- **Continuous**
 - **X**
 - Mixture model
e.g., mixture of Gaussians

Discrete
- **Y**
- HMM
 (for discrete sequential data, e.g., text)

Continuous
- **Y**
- HMM
 (for continuous sequential data, e.g., speech signal)

Switching SSM
- State space model

Factorial HMM
- Factor analysis

© Eric Xing @ CMU, 2005-2015
Recall multivariate Gaussian

- Multivariate Gaussian density:

\[p(x \mid \mu, \Sigma) = \frac{1}{(2\pi)^{n/2} \sqrt{\det(\Sigma)}} \exp\left\{ -\frac{1}{2} (x - \mu)^T \Sigma^{-1} (x - \mu) \right\} \]

- A joint Gaussian:

\[p\left(\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \mid \mu, \Sigma \right) = \mathcal{N}\left(\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \mid \begin{bmatrix} \mu_1 \\ \mu_2 \end{bmatrix}, \begin{bmatrix} \Sigma_{11} & \Sigma_{12} \\ \Sigma_{21} & \Sigma_{22} \end{bmatrix} \right) \]

- How to write down \(p(x_1) \), \(p(x_1 \mid x_2) \) or \(p(x_2 \mid x_1) \) using the block elements in \(\mu \) and \(\Sigma \)?

 - Formulas to remember:

\[
\begin{align*}
 p(x_2) &= \mathcal{N}(x_2 \mid m_2^m, V_2^m) \\
 m_2^m &= \mu_2 \\
 V_2^m &= \Sigma_{22} \\
 p(x_1 \mid x_2) &= \mathcal{N}(x_1 \mid m_{1|2}, V_{1|2}) \\
 m_{1|2} &= \mu_1 + \Sigma_{12} \Sigma_{22}^{-1} (x_2 - \mu_2) \\
 V_{1|2} &= \Sigma_{11} - \Sigma_{12} \Sigma_{22}^{-1} \Sigma_{21}
\end{align*}
\]
Review:
The matrix inverse lemma

- Consider a block-partitioned matrix: \(M = \begin{bmatrix} E & F \\ G & H \end{bmatrix} \)

- First we diagonalize \(M \)

\[
\begin{bmatrix} I & -FH^{-1} \\ 0 & I \end{bmatrix} \begin{bmatrix} E & F \\ G & H \end{bmatrix} \begin{bmatrix} I & 0 \\ -H^{-1}G & I \end{bmatrix} = \begin{bmatrix} E-FH^{-1}G & 0 \\ 0 & H \end{bmatrix}
\]

- Schur complement: \(M/H = E-FH^{-1}G \)

- Then we inverse, using this formula: \(XYZ = W \Rightarrow Y^{-1} = ZW^{-1}X \)

\[
M^{-1} = \left[\begin{bmatrix} E & F \\ G & H \end{bmatrix} \right]^{-1} = \left[\begin{bmatrix} I & 0 \\ -H^{-1}G & I \end{bmatrix} \left(M/H \right)^{-1} \begin{bmatrix} I & -FH^{-1} \\ 0 & I \end{bmatrix} \right]
\]

\[
= \begin{bmatrix} (M/H)^{-1} & -(M/H)^{-1}FH^{-1} \\ -H^{-1}G(M/H)^{-1} & H^{-1} + H^{-1}G(M/H)^{-1}FH^{-1} \end{bmatrix} = \begin{bmatrix} E^{-1} + E^{-1}F(M/E)^{-1}GE^{-1} & -E^{-1}F(M/E)^{-1} \\ -(M/E)^{-1}GE^{-1} & (M/E)^{-1} \end{bmatrix}
\]

- Matrix inverse lemma

\[
\left(E-FH^{-1}G \right)^{-1} = E^{-1} + E^{-1}F(H-GE^{-1}F)^{-1}GE^{-1}
\]
Review:
Some matrix algebra

- **Trace and derivatives**
 \[\text{tr}[A] = \sum_i a_{ii} \]
 - Cyclical permutations
 \[\text{tr}[ABC] = \text{tr}[CAB] = \text{tr}[BCA] \]
 - Derivatives
 \[\frac{\partial}{\partial A} \text{tr}[BA] = B^T \]
 \[\frac{\partial}{\partial A} \text{tr}[x^T Ax] = \frac{\partial}{\partial A} \text{tr}[xx^T A] = xx^T \]

- **Determinants and derivatives**
 \[\frac{\partial}{\partial A} \log|A| = A^{-1} \]
Factor analysis

- An unsupervised linear regression model

\[p(x) = \mathcal{N}(x; 0, I) \]
\[p(y|x) = \mathcal{N}(y; \mu + \Lambda x, \Psi) \]

where \(\Lambda \) is called a factor loading matrix, and \(\Psi \) is diagonal.

- Geometric interpretation

 - To generate data, first generate a point within the manifold then add noise. Coordinates of point are components of latent variable.
Marginal data distribution

- A marginal Gaussian (e.g., \(p(x) \)) times a conditional Gaussian (e.g., \(p(y|x) \)) is a joint Gaussian
- Any marginal (e.g., \(p(y) \)) of a joint Gaussian (e.g., \(p(x,y) \)) is also a Gaussian
 - Since the marginal is Gaussian, we can determine it by just computing its mean and variance. (Assume noise uncorrelated with data.)

\[
E[Y] = E[\mu + \Lambda X + W] \quad \text{where } W \sim N(0, \Psi)
\]
\[
= \mu + \Lambda E[X] + E[W]
\]
\[
= \mu + 0 + 0 = \mu
\]

\[
Var[Y] = E[(Y - \mu)(Y - \mu)^T]
\]
\[
= E[(\mu + \Lambda X + W - \mu)(\mu + \Lambda X + W - \mu)^T]
\]
\[
= E[(\Lambda X + W)(\Lambda X + W)^T]
\]
\[
= \Lambda E[XX^T]\Lambda^T + E[WW^T]
\]
\[
= \Lambda\Lambda^T + \Psi
\]
FA = Constrained-Covariance Gaussian

- Marginal density for factor analysis (y is p-dim, x is k-dim):

 $$p(y | \theta) = \mathcal{N}(y; \mu, \Lambda \Lambda^T + \Psi)$$

- So the effective covariance is the low-rank outer product of two long skinny matrices plus a diagonal matrix:

 $$\text{Cov}[y] = \Lambda \Lambda^T + \Psi$$

- In other words, factor analysis is just a constrained Gaussian model. (If Ψ were not diagonal then we could model any Gaussian and it would be pointless.)
FA joint distribution

- Model

\[p(x) = \mathcal{N}(x; 0, I) \]
\[p(y|x) = \mathcal{N}(y; \mu + \Lambda x, \Psi) \]

- Covariance between \(x \) and \(y \)

\[
\text{Cov}[X, Y] = E[(X - 0)(Y - \mu)^T] = E[X(\mu + \Lambda X + W - \mu)^T]
= E[XX^T \Lambda^T + XW^T]
= \Lambda^T
\]

- Hence the joint distribution of \(x \) and \(y \):

\[
p\left(\begin{bmatrix} x \\ y \end{bmatrix}\right) = \mathcal{N}\left(\begin{bmatrix} x \\ y \end{bmatrix} | \begin{bmatrix} 0 \\ \mu \end{bmatrix}, \begin{bmatrix} I & \Lambda^T \\ \Lambda & \Lambda \Lambda^T + \Psi \end{bmatrix}\right)
\]

- Assume noise is uncorrelated with data or latent variables.
Inference in Factor Analysis

- Apply the Gaussian conditioning formulas to the joint distribution we derived above, where

\[
\Sigma_{11} = I
\]

\[
\Sigma_{12} = \Sigma_{12}^T = \Lambda^T
\]

\[
\Sigma_{22} = (\Lambda \Lambda^T + \Psi)
\]

we can now derive the posterior of the latent variable \(\mathbf{x} \) given observation \(\mathbf{y} \), \(p(\mathbf{x}|\mathbf{y}) = \mathcal{N}(\mathbf{x}|\mathbf{m}_{1|2}, \mathbf{V}_{1|2}) \), where

\[
\mathbf{m}_{1|2} = \mu_1 + \Sigma_{12} \Sigma_{22}^{-1} (\mathbf{y} - \mu_2) = \Lambda^T (\Lambda \Lambda^T + \Psi)^{-1} (\mathbf{y} - \mu)
\]

\[
\mathbf{V}_{1|2} = \Sigma_{11} - \Sigma_{12} \Sigma_{22}^{-1} \Sigma_{21} = I - \Lambda^T (\Lambda \Lambda^T + \Psi)^{-1} \Lambda
\]

Applying the matrix inversion lemma

\[
(E - FH^{-1}G)^{-1} = E^{-1} + E^{-1}F(H - GE^{-1}F)^{-1}GE^{-1}
\]

\[
\Rightarrow \mathbf{V}_{1|2} = \left(I + \Lambda^T \Psi^{-1} \Lambda \right)^{-1}
\]

\[
\mathbf{m}_{1|2} = \mathbf{V}_{1|2} \Lambda^T \Psi^{-1} (\mathbf{y} - \mu)
\]

- Here we only need to invert a matrix of size \(|\mathbf{x}| \times |\mathbf{x}|\), instead of \(|\mathbf{y}| \times |\mathbf{y}|\).
Geometric interpretation: inference is linear projection

- The posterior is:
 \[p(x|y) = \mathcal{N}(x; m_{1|2}, V_{1|2}) \]

 \[V_{1|2} = (I + \Lambda^T \Psi^{-1} \Lambda)^{-1} \]

 \[m_{1|2} = V_{1|2} \Lambda^T \Psi^{-1} (y - \mu) \]

- Posterior covariance does not depend on observed data \(y \)!
- Computing the posterior mean is just a linear operation:
Now, assume that we are given \(\{y_n\} \) (the observation on high-dimensional data) only.

We have derived how to estimate \(x_n \) from \(P(X|Y) \).

How can we learning the model?
- Loading matrix \(\Lambda \)
- Manifold center \(\mu \)
- Variance \(\Psi \)
EM for Factor Analysis

- Incomplete data log likelihood function (marginal density of y)

$$
\ell(\theta, D) = -\frac{N}{2} \log |\Lambda \Lambda^T + \Psi| - \frac{1}{2} \sum_n (y_n - \mu)^T (\Lambda \Lambda^T + \Psi)^{-1} (y_n - \mu)
$$

$$
= -\frac{N}{2} \log |\Lambda \Lambda^T + \Psi| - \frac{1}{2} \text{tr} \left[(\Lambda \Lambda^T + \Psi)^{-1} S \right], \quad \text{where } S = \sum_n (y_n - \mu)(y_n - \mu)^T
$$

- Estimating μ is trivial: $
\hat{\mu}^{ML} = \frac{1}{N} \sum_n y_n$

- Parameters Λ and Ψ are coupled nonlinearly in log-likelihood

- Complete log likelihood

$$
\ell_c(\theta, D) = \sum_n \log p(x_n, y_n) = \sum_n \log p(x_n) + \log p(y_n | x_n)
$$

$$
= -\frac{N}{2} \log |I| - \frac{1}{2} \sum_n x_n^T x_n - \frac{N}{2} \log |\Psi| - \frac{1}{2} \sum_n (y_n - \Lambda x_n)^T \Psi^{-1} (y_n - \Lambda x_n)
$$

$$
= -\frac{N}{2} \log |\Psi| - \frac{1}{2} \sum_n \text{tr} [x_n x_n^T] - \frac{N}{2} \text{tr}[S \Psi^{-1}], \quad \text{where } S = \frac{1}{N} \sum_n (y_n - \Lambda x_n)(y_n - \Lambda x_n)^T
$$
E-step for Factor Analysis

- Compute $\langle \ell_c(\theta, D) \rangle_{p(x|y)}$

$$\langle \ell_c(\theta, D) \rangle = -\frac{N}{2} \log |\Psi| - \frac{1}{2} \sum_n \text{tr} \left[\langle X_n X_n^T \rangle \right] - \frac{N}{2} \text{tr} \left[\langle S \rangle \Psi^{-1} \right]$$

$$\langle S \rangle = \frac{1}{N} \sum_n (y_n y_n^T - y_n \langle X_n^T \rangle \Lambda^T - \Lambda \langle X_n^T \rangle y_n^T + \Lambda \langle X_n X_n^T \rangle \Lambda^T)$$

$$\langle X_n \rangle = E[X_n | y_n]$$

$$\langle X_n X_n^T \rangle = \text{Var}[X_n | y_n] + E[X_n | y_n] E[X_n | y_n]^T$$

- Recall that we have derived:

$$V_{1|2} = \left(I + \Lambda^T \Psi^{-1} \Lambda \right)^{-1} \quad m_{1|2} = V_{1|2} \Lambda^T \Psi^{-1} (y - \mu)$$

$$\Rightarrow \quad \langle X_n \rangle = m_{x_n | y_n} = V_{1|2} \Lambda^T \Psi^{-1} (y_n - \mu) \quad \text{and} \quad \langle X_n X_n^T \rangle = V_{1|2} + m_{x_n | y_n} m_{x_n | y_n}^T$$
M-step for Factor Analysis

- Take the derivatives of the expected complete log likelihood wrt. parameters.
 - Using the trace and determinant derivative rules:

\[
\frac{\partial}{\partial \Psi^{-1}} \langle \ell_c \rangle = \frac{\partial}{\partial \Psi^{-1}} \left(-\frac{N}{2} \log|\Psi| - \frac{1}{2} \sum_n \text{tr}[\langle X_n X_n^T \rangle] - \frac{N}{2} \text{tr}[\langle S \rangle \Psi^{-1}] \right) \\
= \frac{N}{2} \Psi - \frac{N}{2} \langle S \rangle \quad \Rightarrow \quad \Psi^{t+1} = \langle S \rangle
\]

\[
\frac{\partial}{\partial \Lambda} \langle \ell_c \rangle = \frac{\partial}{\partial \Lambda} \left(-\frac{N}{2} \log|\Psi| - \frac{1}{2} \sum_n \text{tr}[\langle X_n X_n^T \rangle] - \frac{N}{2} \text{tr}[\langle S \rangle \Psi^{-1}] \right) = -\frac{N}{2} \Psi^{-1} \frac{\partial}{\partial \Lambda} \langle S \rangle \\
= -\frac{N}{2} \Psi^{-1} \frac{\partial}{\partial \Lambda} \left(\frac{1}{N} \sum_n (y_n y_n^T - y_n \langle X_n^T \rangle \Lambda^T - \Lambda \langle X_n^T \rangle y_n^T + \Lambda \langle X_n X_n^T \rangle \Lambda^T) \right) \\
= \Psi^{-1} \sum_n y_n \langle X_n^T \rangle - \Psi^{-1} \Lambda \sum_n \langle X_n X_n^T \rangle \quad \Rightarrow \quad \Lambda^{t+1} = \left(\sum_n y_n \langle X_n^T \rangle \right) \left(\sum_n \langle X_n X_n^T \rangle \right)^{-1}
\]
Model Invariance and Identifiability

- There is *degeneracy* in the FA model.
- Since Λ only appears as outer product $\Lambda \Lambda^T$, the model is invariant to rotation and axis flips of the latent space.
- We can replace Λ with ΛQ for any orthonormal matrix Q and the model remains the same: $(\Lambda Q)(\Lambda Q)^T = \Lambda (QQ^T) \Lambda^T = \Lambda \Lambda^T$.
- This means that there is no “one best” setting of the parameters. An infinite number of parameters all give the ML score!
- Such models are called *un-identifiable* since two people both fitting ML parameters to the identical data will not be guaranteed to identify the same parameters.
A road map to more complex dynamic models

- **Discrete**
 - **X**
 - **Y**

- **Continuous**
 - **X**
 - **Y**

Mixture model
- e.g., mixture of multinomials
- e.g., mixture of Gaussians

HMM
- (for discrete sequential data, e.g., text)
- (for continuous sequential data, e.g., speech signal)

Factor analysis

State space model

Factorial HMM

Switching SSM
State space models (SSM)

- A sequential FA or a continuous state HMM

\[x_t = Ax_{t-1} + Gw_t \]
\[y_t = Cx_{t-1} + v_t \]
\[w_t \sim \mathcal{N}(0; Q), \quad v_t \sim \mathcal{N}(0; R) \]
\[x_0 \sim \mathcal{N}(0; \Sigma_0), \]

This is a linear dynamic system.

- In general,

\[x_t = f(x_{t-1}) + Gw_t \]
\[y_t = g(x_{t-1}) + v_t \]

where \(f \) is an (arbitrary) dynamic model, and \(g \) is an (arbitrary) observation model.
LDS for 2D tracking

- Dynamics: new position = \textit{old position} + \Delta \times \text{velocity} + \text{noise}
 (constant velocity model, Gaussian noise)

\[
\begin{pmatrix}
 x_{t}^{1} \\
 x_{t}^{2} \\
 \dot{x}_{t}^{1} \\
 \dot{x}_{t}^{2}
\end{pmatrix} = \begin{pmatrix}
 1 & 0 & \Delta & 0 \\
 0 & 1 & 0 & \Delta \\
 0 & 0 & 1 & 0 \\
 0 & 0 & 0 & 1
\end{pmatrix} \begin{pmatrix}
 x_{t-1}^{1} \\
 x_{t-1}^{2} \\
 \dot{x}_{t-1}^{1} \\
 \dot{x}_{t-1}^{2}
\end{pmatrix} + \text{noise}
\]

- Observation: project out first two components (we observe Cartesian position of object - linear!)

\[
\begin{pmatrix}
 y_{t}^{1} \\
 y_{t}^{2}
\end{pmatrix} = \begin{pmatrix}
 1 & 0 & 0 & 0 \\
 0 & 1 & 0 & 0
\end{pmatrix} \begin{pmatrix}
 x_{t}^{1} \\
 x_{t}^{2} \\
 \dot{x}_{t}^{1} \\
 \dot{x}_{t}^{2}
\end{pmatrix} + \text{noise}
\]
The inference problem 1

- Filtering \rightarrow given y_1, \ldots, y_t, estimate x_t: $P(x_t \mid y_{1:t})$
 - The Kalman filter is a way to perform exact online inference (sequential Bayesian updating) in an LDS.
 - It is the Gaussian analog of the forward algorithm for HMMs:
 $$p(X_t = i \mid y_{1:t}) = \alpha_t^i \propto p(y_t \mid X_t = i) \sum_j p(X_t = i \mid X_{t-1} = j)\alpha_{t-1}^j$$

![Diagram of a graphical model with nodes X1 to Xt and Y1 to Yt connected by arrows, illustrating the forward algorithm.]
The inference problem 2

- **Smoothing** → given y_1, \ldots, y_T, estimate x_t ($t<T$)
- The Rauch-Tung-Strievel smoother is a way to perform exact off-line inference in an LDS. It is the Gaussian analog of the forwards-backwards (alpha-gamma) algorithm:

\[p(X_t = i \mid y_{1:T}) = \gamma_i \propto \sum_j \alpha_i^j P(X_{t+1}^j \mid X_t^i) \gamma_{t+1}^j \]
2D tracking

2D filtering

2D smoothing

© Eric Xing @ CMU, 2005-2015
Kalman filtering in the brain?
Since all CPDs are linear Gaussian, the system defines a large multivariate Gaussian.

- Hence all marginals are Gaussian.
- Hence we can represent the belief state $p(X_t|y_{1:t})$ as a Gaussian with mean μ and covariance Σ.
- It is common to work with the inverse covariance (precision) matrix Σ^{-1}; this is called information form.

Kalman filtering is a recursive procedure to update the belief state:

- Predict step: compute $p(X_{t+1}|y_{1:t})$ from prior belief $p(X_t|y_{1:t})$ and dynamical model $p(X_{t+1}|X_t)$ --- time update.

- Update step: compute new belief $p(X_{t+1}|y_{1:t+1})$ from prediction $p(X_{t+1}|y_{1:t})$, observation y_{t+1} and observation model $p(y_{t+1}|X_{t+1})$ --- measurement update.
Kalman filtering derivation

- Kalman filtering is a recursive procedure to update the belief state:
 - Predict step: compute $p(X_{t+1}|y_{1:t})$ from prior belief $p(X_t|y_{1:t})$ and dynamical model $p(X_{t+1}|X_t)$ --- time update
 - Update step: compute new belief $p(X_{t+1}|y_{1:t+1})$ from prediction $p(X_{t+1}|y_{1:t})$, observation y_{t+1} and observation model $p(y_{t+1}|X_{t+1})$ --- measurement update
Predict step

- Dynamical Model: $x_{t+1} = Ax_t + Gw_t$, $w_t \sim \mathcal{N}(0; Q)$
 - One step ahead prediction of state:

- Observation model: $y_t = Cx_t + v_t$, $v_t \sim \mathcal{N}(0; R)$
 - One step ahead prediction of observation:
Predict step

- **Dynamical Model:** \(x_{t+1} = Ax_t + Gw_t \), \(w_t \sim \mathcal{N}(0; Q) \)
 - One step ahead prediction of state:
 \[
 \hat{x}_{t+1|t} = E(X_{t+1} \mid y_1, \ldots, y_t) = A\hat{x}_{t|t}
 \]
 \[
 P_{t+1|t} = E((X_{t+1} - \hat{x}_{t+1|t})(X_{t+1} - \hat{x}_{t+1|t})^T \mid y_1, \ldots, y_t)
 \]
 \[
 = E((AX_t + Gw_t - \hat{x}_{t+1|t})(AX_t + Gw_t - \hat{x}_{t+1|t})^T \mid y_1, \ldots, y_t)
 \]
 \[
 = AP_{t|t}A + GQG^T
 \]

- **Observation model:** \(y_t = Cx_t + v_t \), \(v_t \sim \mathcal{N}(0; R) \)
 - One step ahead prediction of observation:
 \[
 E(Y_{t+1} \mid y_1, \ldots, y_t) = E(CX_{t+1} + v_{t+1} \mid y_1, \ldots, y_t) = C\hat{x}_{t+1|t}
 \]
 \[
 E(Y_{t+1} - \hat{y}_{t+1|t})(Y_{t+1} - \hat{y}_{t+1|t})^T \mid y_1, \ldots, y_t) = CP_{t+1|t}C^T + R
 \]
 \[
 E(Y_{t+1} - \hat{y}_{t+1|t})(X_{t+1} - \hat{x}_{t+1|t})^T \mid y_1, \ldots, y_t) = CP_{t+1|t}
 \]
Update step

- Summarizing results from previous slide, we have

\[p(X_{t+1}, Y_{t+1}|y_{1:t}) \sim \mathcal{N}(m_{t+1}, V_{t+1}) \], where

\[
m_{t+1} = \begin{pmatrix} \hat{X}_{t+1|t} \\ \hat{C} \hat{X}_{t+1|t} \end{pmatrix}, \quad V_{t+1} = \begin{pmatrix} P_{t+1|t} & P_{t+1|t} C^T \\ CP_{t+1|t} & CP_{t+1|t} C^T + R \end{pmatrix},
\]

- Remember the formulas for conditional Gaussian distributions:

\[
p(x_1 | \mu, \Sigma) = \mathcal{N}(x_1 | \mu_1, \Sigma_{11}^1 \Sigma_{12} + \Sigma_{21} \Sigma_{22}^2)
\]

\[p(x_2) = \mathcal{N}(x_2 | m_{x2}^m, V_{x2}^m) \quad p(x_1 | x_2) = \mathcal{N}(x_1 | m_{1|x2}, V_{1|x2}) \]

\[
m_{x2}^m = \mu_2 \quad m_{1|x2} = \mu_1 + \Sigma_{12} \Sigma_{22}^{-1} (x_2 - \mu_2)
\]

\[
V_{x2}^m = \Sigma_{22} \quad V_{1|x2} = \Sigma_{11} - \Sigma_{12} \Sigma_{22}^{-1} \Sigma_{21}
\]
Kalman Filter

- **Measurement updates:**

\[
\hat{x}_{t+1|t+1} = \hat{x}_{t+1|t} + K_{t+1}(y_{t+1} - C\hat{x}_{t+1|t})
\]

\[
P_{t+1|t+1} = P_{t+1|t} - KCP_{t+1|t}
\]

- where \(K_{t+1}\) is the *Kalman gain matrix*

\[
K_{t+1} = P_{t+1|t}C^T(CP_{t+1|t}C^T + R)^{-1}
\]

- **Time updates:**

\[
\hat{x}_{t+1|t} = A\hat{x}_{t|t}
\]

\[
P_{t+1|t} = AP_{t|t}A + GQG^T
\]

- \(K_t\) can be pre-computed (since it is independent of the data).
Example of KF in 1D

- Consider noisy observations of a 1D particle doing a random walk:

\[x_{t|t-1} = x_{t-1} + w, \quad w \sim \mathcal{N}(0, \sigma_w) \]
\[z_t = x_t + v, \quad v \sim \mathcal{N}(0, \sigma_v) \]

- KF equations:

\[P_{t+1|t} = AP_{t|t} A + G Q G^T = \sigma_t + \sigma_x \]
\[\hat{x}_{t+1|t} = A \hat{x}_{t|t} = \hat{x}_{t|t} \]

\[K_{t+1} = P_{t+1|t} C^T (C P_{t+1|t} C^T + R)^{-1} = (\sigma_t + \sigma_x)(\sigma_t + \sigma_x + \sigma_z) \]

\[\hat{x}_{t+1|t+1} = \hat{x}_{t+1|t} + K_{t+1}(z_{t+1} - C \hat{x}_{t+1|t}) = \frac{(\sigma_t + \sigma_x)z_t + \sigma_z \hat{x}_{t|t}}{\sigma_t + \sigma_x + \sigma_z} \]

\[P_{t+1|t+1} = P_{t+1|t} - KCP_{t+1|t} = \frac{(\sigma_t + \sigma_x)\sigma_z}{\sigma_t + \sigma_x + \sigma_z} \]
KF intuition

- The KF update of the mean is

\[
\hat{x}_{t+1|t+1} = \hat{x}_{t+1|t} + K_{t+1}(z_{t+1} - C\hat{x}_{t+1|t}) = \frac{(\sigma_t + \sigma_x)z_t + \sigma_z\hat{x}_{t|t}}{\sigma_t + \sigma_x + \sigma_z}
\]

- the term \((z_{t+1} - C\hat{x}_{t+1|t})\) is called the *innovation*

- New belief is convex combination of updates from prior and observation, weighted by Kalman Gain matrix:

\[
K_{t+1} = P_{t+1|t} C^T (CP_{t+1|t} C^T + R)^{-1}
\]

- If the observation is unreliable, \(\sigma_z\) (i.e., \(R\)) is large so \(K_{t+1}\) is small, so we pay more attention to the prediction.

- If the old prior is unreliable (large \(\sigma_t\)) or the process is very unpredictable (large \(\sigma_x\)), we pay more attention to the observation.
Complexity of one KF step

- Let $X_t \in \mathbb{R}^{N_x}$ and $Y_t \in \mathbb{R}^{N_y}$,

- Computing $P_{t+1|t} = A P_{t|t} A + G Q G^T$ takes $O(N_x^2)$ time, assuming dense P and dense A.

- Computing $K_{t+1} = P_{t+1|t} C^T (C P_{t+1|t} C^T + R)^{-1}$ takes $O(N_y^3)$ time.

- So overall time is, in general, $\max \{N_x^2, N_y^3\}$
The inference problem 2

- Smoothing → given y_1, \ldots, y_T, estimate $x_t (t<T)$
 - The Rauch-Tung-Strievel smoother is a way to perform exact off-line inference in an LDS. It is the Gaussian analog of the forwards-backwards (alpha-gamma) algorithm:

$$p(X_t = i \mid y_{1:T}) = \gamma_i^t \propto \sum_j \alpha_i^j P(X_{t+1}^j \mid X_i^j) \gamma_{t+1}^j$$
Rauch-Tung-Strievel smoother

\[\hat{x}_{t|T} = \hat{x}_{t|t} + L_t (\hat{x}_{t+1|T} - \hat{x}_{t+1|t}) \]

\[P_{t|T} = P_{t|t} + L_t (P_{t+1|T} - P_{t+1|t}) L_t^T \]

\[L_t = P_{t|t} A^T P_{t+1|t}^{-1} \]

- General structure: KF results + the difference of the "smoothed" and predicted results of the next step
- Backward computation: Pretend to know things at t+1 — such conditioning makes things simple and we can remove this condition finally

- The difficulty:

- The trick:

\[X_t \mid y_1, \ldots, y_T \]

\[E[X \mid Z] = E[E[X \mid Y, Z] \mid Z] \]

\[Var[X \mid Z] = Var[E[X \mid Y, Z] \mid Z] + E[Var[X \mid Y, Z] \mid Z] \]

\[\hat{x}_{t|T} \overset{\text{def}}{=} E[X_t \mid y_1, \ldots, y_T] = E[E[X_t \mid X_{t+1}, y_1, \ldots, y_T] \mid y_1, \ldots, y_T] \]

\[= E[E[X_t \mid X_{t+1}, y_1, \ldots, y_T] \mid y_1, \ldots, y_T] \]

\[= E[X_t \mid X_{t+1}, y_1, \ldots, y_T] \]

Same for \(P_{t|T} \)

© Eric Xing @ CMU, 2005-2015
RTS derivation

- Following the results from previous slide, we need to derive
\[p(X_{t+1}, X_t | y_{1:t}) \sim \mathcal{N}(m, V), \]
where all the quantities here are available after a forward KF pass

- Remember the formulas for conditional Gaussian distributions:

\[
p(x_1 | x_2) = \mathcal{N}(x_2 | m_2^m, V_2^m)
\]
\[
m_2^m = \mu_2
\]
\[
V_2^m = \Sigma_{22}
\]

- The RTS smoother

\[
\hat{x}_{t|T} = E[X_t | X_{t+1}, y_1, \ldots, y_t] = \hat{x}_{t|t} + L_t (\hat{x}_{t+1|T} - \hat{x}_{t+1|t})
\]
\[
P_{t|T} = \text{def} Var[\hat{x}_{t|T} | y_{1:T}] + E[Var[X_t | X_{t+1}, y_{1t}] | y_{1T}] = P_{t|t} + L_t (P_{t+1|T} - P_{t+1|t}) L_t^T
\]
Learning SSMs

- Complete log likelihood

\[\ell_c(\theta, D) = \sum_n \log p(x_n, y_n) = \sum_n \log p(x_1) + \sum_n \sum_t \log p(x_{n,t} | x_{n,t-1}) + \sum_n \sum_t \log p(y_{n,t} | x_{n,t}) \]

\[= f_1(X_1; \Sigma_0) + f_2(\{X_t X_{t-1}^T, X_t X_t^T, X_t : \forall t \}; A, Q, G) + f_3(\{X_t X_t^T, X_t : \forall t \}; C, R) \]

- EM

 - E-step: compute \(\langle X_t X_{t-1}^T \rangle, \langle X_t X_t^T \rangle, \langle X_t \rangle | y_1, \ldots, y_T \)

 these quantities can be inferred via KF and RTS filters, etc., e.g., \(\langle X_t X_t^T \rangle \equiv \text{var}(X_t X_t^T) + \text{E}(X_t)^2 = P_{t|T} + \hat{X}_{t|T}^2 \)

 - M-step: MLE using

\[\langle \ell_c(\theta, D) \rangle = f_1(\langle X_1 \rangle; \Sigma_0) + f_2(\{\langle X_t X_{t-1}^T \rangle, \langle X_t X_t^T \rangle, \langle X_t \rangle : \forall t \}; A, Q, G) + f_3(\{\langle X_t X_t^T \rangle, \langle X_t \rangle : \forall t \}; C, R) \]

c.f., M-step in factor analysis
Nonlinear systems

- In robotics and other problems, the motion model and the observation model are often nonlinear:

\[x_t = f(x_{t-1}) + w_t, \quad y_t = g(x_t) + v_t \]

- An optimal closed form solution to the filtering problem is no longer possible.

- The nonlinear functions \(f \) and \(g \) are sometimes represented by neural networks (multi-layer perceptrons or radial basis function networks).

- The parameters of \(f \) and \(g \) may be learned offline using EM, where we do gradient descent (back propagation) in the M step, c.f. learning a MRF/CRF with hidden nodes.

- Or we may learn the parameters online by adding them to the state space: \(x_t' = (x_t, \theta) \). This makes the problem even more nonlinear.
Extended Kalman Filter (EKF)

- The basic idea of the EKF is to linearize f and g using a second order Taylor expansion, and then apply the standard KF.
 - i.e., we approximate a stationary nonlinear system with a non-stationary linear system.

$$
\begin{align*}
 x_t &= f(\hat{x}_{t-1|t-1}) + A_{\hat{x}_{t-1|t-1}} (x_{t-1} - \hat{x}_{t-1|t-1}) + w_t \\
 y_t &= g(\hat{x}_{t|t-1}) + C_{\hat{x}_{t|t-1}} (x_t - \hat{x}_{t|t-1}) + v_t
\end{align*}
$$

where $\hat{x}_{t|t-1} = f(\hat{x}_{t-1|t-1})$ and $A_{\hat{x}} \overset{\text{def}}{=} \frac{\partial f}{\partial x} \bigg|_{\hat{x}}$ and $C_{\hat{x}} \overset{\text{def}}{=} \frac{\partial g}{\partial x} \bigg|_{\hat{x}}$

- The noise covariance (Q and R) is not changed, i.e., the additional error due to linearization is not modeled.
Online vs offline inference

- **Filtering**: $P(X(t)|y(1:t))$
- **Viterbi**: $\arg\max_x P(x(1:t)|y(1:t))$
- **Prediction**: $P(X(t+\text{delta})|y(1:t))$
- **Fixed-lag smoothing**: $P(X(t-\tau)|y(1:t))$
- **Fixed interval smoothing (offline)**: $P(X(t)|y(1:T))$
The KF update of the mean is
\[\hat{x}_{t+1|t+1} = A\hat{x}_{t|t} + K_{t+1}(y_{t+1} - C\hat{x}_{t+1|t}) \]

Consider the special case where the hidden state is a constant, \(x_t = \theta \), but the “observation matrix” \(C \) is a time-varying vector, \(C = x_t^T \).
- Hence the observation model at each time slide, \(y_t = x_t^T \theta + v_t \), is a linear regression.

We can estimate recursively using the Kalman filter:
\[\hat{\theta}_{t+1} = \hat{\theta}_t + P_{t+1}R^{-1}(y_{t+1} - x_t^T \hat{\theta}_t)x_t \]
This is called the recursive least squares (RLS) algorithm.

We can approximate \(P_{t+1}R^{-1} \approx \eta_{t+1} \) by a scalar constant. This is called the least mean squares (LMS) algorithm.

We can adapt \(\eta_t \) online using stochastic approximation theory.