Probabilistic Graphical Models

Factor Analysis and State Space Models

Eric Xing
Lecture 11, February 18, 2015

Reading: See class website
A road map to more complex dynamic models

- **Mixture model**
 - e.g., mixture of multinomials
 - e.g., mixture of Gaussians

- **HMM**
 - (for discrete sequential data, e.g., text)
 - (for continuous sequential data, e.g., speech signal)

- **Factorial HMM**
 - Switching SSM

- **State space model**

© Eric Xing @ CMU, 2005-2015
Recall multivariate Gaussian

- Multivariate Gaussian density:
 \[p(x | \mu, \Sigma) = \frac{1}{(2\pi)^{n/2}|\Sigma|^{1/2}} \exp\left\{ -\frac{1}{2} (x - \mu)^T \Sigma^{-1} (x - \mu) \right\} \]

- A joint Gaussian:
 \[p\left(\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \mid \mu, \Sigma \right) = \mathcal{N}\left(\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \mid \begin{bmatrix} \mu_1 \\ \mu_2 \end{bmatrix}, \begin{bmatrix} \Sigma_{11} & \Sigma_{12} \\ \Sigma_{21} & \Sigma_{22} \end{bmatrix} \right) \]

- How to write down \(p(x_1) \), \(p(x_1|x_2) \) or \(p(x_2|x_1) \) using the block elements in \(\mu \) and \(\Sigma \)?
 - Formulas to remember:
 \[p(x_2) = \mathcal{N}(x_2 \mid m_2^m, V_2^m) \quad p(x_1|x_2) = \mathcal{N}(x_1 \mid m_{1|2}, V_{1|2}) \]
 \[m_2^m = \mu_2 \quad m_{1|2} = \mu_1 + \Sigma_{12} \Sigma_{22}^{-1} (x_2 - \mu_2) \]
 \[V_2^m = \Sigma_{22} \quad V_{1|2} = \Sigma_{11} - \Sigma_{12} \Sigma_{22}^{-1} \Sigma_{21} \]
Review:
The matrix inverse lemma

- Consider a block-partitioned matrix: $M = \begin{bmatrix} E & F \\ G & H \end{bmatrix}$

- First we diagonalize M

\[
\begin{bmatrix} I & -FH^{-1} \\ 0 & I \end{bmatrix} \begin{bmatrix} E & F \\ G & H \end{bmatrix} \begin{bmatrix} I & 0 \\ -H^{-1}G & I \end{bmatrix} = \begin{bmatrix} E-FH^{-1}G & 0 \\ 0 & H \end{bmatrix}
\]

- Schur complement: $M/H = E-FH^{-1}G$

- Then we inverse, using this formula: $XYZ = W \Rightarrow Y^{-1} = ZW^{-1}X$

\[
M^{-1} = \begin{bmatrix} E & F \\ G & H \end{bmatrix}^{-1} = \begin{bmatrix} I & 0 \\ -H^{-1}G & I \end{bmatrix} \begin{bmatrix} (M/H)^{-1} & 0 \\ 0 & H^{-1} \end{bmatrix} \begin{bmatrix} I & -FH^{-1} \\ 0 & I \end{bmatrix}
\]

\[
= \begin{bmatrix} (M/H)^{-1} & -(M/H)^{-1}FH^{-1} \\ -H^{-1}G(M/H)^{-1} & H^{-1} + H^{-1}G(M/H)^{-1}FH^{-1} \end{bmatrix} = \begin{bmatrix} E^{-1} + E^{-1}F(M/E)^{-1}GE^{-1} & -E^{-1}F(M/E)^{-1} \\ -(M/E)^{-1}GE^{-1} & (M/E)^{-1} \end{bmatrix}
\]

- Matrix inverse lemma

\[
(E-FH^{-1}G)^{-1} = E^{-1} + E^{-1}F(H-GE^{-1}F)^{-1}GE^{-1}
\]
Review:
Some matrix algebra

- Trace and derivatives
 - Cyclical permutations
 \[\text{tr}[A] \overset{\text{def}}{=} \sum_i a_{ii} \]

- Derivatives
 \[\frac{\partial}{\partial A} \text{tr}[BA] = B^T \]
 \[\frac{\partial}{\partial A} \text{tr}[x^T Ax] = \frac{\partial}{\partial A} \text{tr}[xx^T A] = xx^T \]

- Determinants and derivatives
 \[\frac{\partial}{\partial A} \log|A| = A^{-1} \]
Factor analysis

• An unsupervised linear regression model

\[y \sim \mathcal{N}(\Lambda x + \mu, \Psi) \]

where \(\Lambda \) is called a factor loading matrix, and \(\Psi \) is diagonal.

• Geometric interpretation

To generate data, first generate a point within the manifold then add noise. Coordinates of point are components of latent variable.
Marginal data distribution

- A marginal Gaussian (e.g., $p(x)$) times a conditional Gaussian (e.g., $p(y|x)$) is a joint Gaussian.
- Any marginal (e.g., $p(y)$) of a joint Gaussian (e.g., $p(x,y)$) is also a Gaussian.

Since the marginal is Gaussian, we can determine it by just computing its mean and variance. (Assume noise uncorrelated with data.)

\[
\begin{align*}
E[Y] &= E[\mu + \Lambda X + W] \\
&= \mu + \Lambda E[X] + E[W] \\
&= \mu + 0 + 0 = \mu \\
Var[Y] &= E[(Y - \mu)(Y - \mu)^T] \\
&= E[(\mu + \Lambda X + W - \mu)(\mu + \Lambda X + W - \mu)^T] \\
&= E[(\Lambda X + W)(\Lambda X + W)^T] \\
&= \Lambda E[XX^T]\Lambda^T + E[WW^T] \\
&= \Lambda\Lambda^T + \Psi
\end{align*}
\]
FA = Constrained-Covariance Gaussian

- Marginal density for factor analysis (\(y \) is \(p \)-dim, \(x \) is \(k \)-dim):

\[
p(y \mid \theta) = \mathcal{N}(y; \mu, \Lambda \Lambda^T + \Psi)
\]

- So the effective covariance is the low-rank outer product of two long skinny matrices plus a diagonal matrix:

\[
\text{Cov}[y] = \Lambda \Lambda^T + \Psi
\]

- In other words, factor analysis is just a constrained Gaussian model. (If \(\Psi \) were not diagonal then we could model any Gaussian and it would be pointless.)
FA joint distribution

- Model

\[p(x) = \mathcal{N}(x; 0, I) \]

\[p(y|x) = \mathcal{N}(y; \mu + \Lambda x, \Psi) \]

- Covariance between \(x \) and \(y \)

\[
\text{Cov}[X, Y] = E[(X - 0)(Y - \mu)^T] = E[X(\mu + \Lambda X + W - \mu)^T] \\
= E[XX^T \Lambda^T + XW^T] \\
= \Lambda^T
\]

- Hence the joint distribution of \(x \) and \(y \):

\[
p(\begin{bmatrix} x \\ y \end{bmatrix}) = \mathcal{N}(\begin{bmatrix} x \\ y \end{bmatrix} | \begin{bmatrix} 0 \\ \mu \end{bmatrix}, \begin{bmatrix} I & \Lambda^T \\ \Lambda & \Lambda \Lambda^T + \Psi \end{bmatrix})
\]

- Assume noise is uncorrelated with data or latent variables.
Inference in Factor Analysis

- Apply the Gaussian conditioning formulas to the joint distribution we derived above, where

\[\Sigma_{11} = I \]
\[\Sigma_{12} = \Sigma_{12}^T = \Lambda^T \]
\[\Sigma_{22} = (\Lambda\Lambda^T + \Psi) \]

we can now derive the posterior of the latent variable \(x \) given observation \(y \), \(p(x|y) = \mathcal{N}(x|\mu_{1|2}, V_{1|2}) \), where

\[m_{1|2} = \mu_1 + \Sigma_{12}\Sigma_{22}^{-1}(y - \mu_2) \]
\[= \Lambda^T(\Lambda\Lambda^T + \Psi)^{-1}(y - \mu) \]

Applying the matrix inversion lemma

\[V_{1|2} = \Sigma_{11} - \Sigma_{12}\Sigma_{22}^{-1}\Sigma_{21} \]
\[= I - \Lambda^T(\Lambda\Lambda^T + \Psi)^{-1}\Lambda^T \]

\[m_{1|2} = V_{1|2}\Lambda^T\Psi^{-1}(y - \mu) \]

\[\Xi^{-1} = I \]
\[F = \Lambda^T \]
\[H = -y \]
\[G = \Lambda \]
\[x \sim \mathcal{N}(\mu_1, \Sigma_{11}) \]
\[b \sim \mathcal{N}(\mu_2, \Sigma_{12}) \]

Here we only need to invert a matrix of size \(|x| \times |x|\), instead of \(|y| \times |y|\).
Geometric interpretation: inference is linear projection

- The posterior is:
 \[p(x|y) = \mathcal{N}(x; m_{1|2}, V_{1|2}) \]
 \[V_{1|2} = (I + \Lambda^T \Psi^{-1} \Lambda)^{-1} \]
 \[m_{1|2} = V_{1|2} \Lambda^T \Psi^{-1} (y - \mu) \]

- Posterior covariance does not depend on observed data \(y \)!
- Computing the posterior mean is just a linear operation:
Learning FA

- Now, assume that we are given \{y_n\} (the observation on high-dimensional data) only

- We have derived how to estimate \(x_n\) from \(P(X|Y)\)

- How can we learning the model?
 - Loading matrix \(\Lambda\)
 - Manifold center \(\mu\)
 - Variance \(\Psi\)
EM for Factor Analysis

- **Incomplete data log likelihood function (marginal density of y)**

 \[
 \ell(\theta, D) = -\frac{N}{2} \log |\Lambda \Lambda^T + \Psi| - \frac{1}{2} \sum_n (y_n - \mu)^T (\Lambda \Lambda^T + \Psi)^{-1} (y_n - \mu) \\
 = -\frac{N}{2} \log |\Lambda \Lambda^T + \Psi| - \frac{1}{2} \text{tr}[(\Lambda \Lambda^T + \Psi)^{-1} S], \quad \text{where } S = \sum_n (y_n - \mu)(y_n - \mu)^T
 \]

 - Estimating \(\mu \) is trivial: \(\hat{\mu}^{\text{ML}} = \frac{1}{N} \sum_n y_n \)
 - Parameters \(\Lambda \) and \(\Psi \) are coupled nonlinearly in log-likelihood

- **Complete log likelihood**

 \[
 \ell_c(\theta, D) = \sum_n \log p(x_n, y_n) = \sum_n \log p(x_n) + \log p(y_n | x_n)
 \]

 \[
 = -\frac{N}{2} \log |\Lambda| - \frac{1}{2} \sum_n x_n^T \Lambda^T x_n - \frac{N}{2} \log |\Psi| - \frac{1}{2} \sum_n (y_n - \Lambda x_n)^T \Psi^{-1} (y_n - \Lambda x_n)
 \]

 \[
 = -\frac{N}{2} \log |\Psi| - \frac{1}{2} \sum_n \text{tr}[x_n x_n^T] - \frac{N}{2} \text{tr}[S^{-1}], \quad \text{where } S = \frac{1}{N} \sum_n (y_n - \Lambda x_n)(y_n - \Lambda x_n)^T
 \]
E-step for Factor Analysis

- Compute $\langle \mathcal{L}_c(\theta, \mathcal{D}) \rangle_{p(x|y)}$

$$\langle \mathcal{L}_c(\theta, \mathcal{D}) \rangle = -\frac{N}{2} \log |\Psi| - \frac{1}{2} \sum_n \text{tr} [\langle X_n X_n^T \rangle] - \frac{N}{2} \text{tr} [\langle S \rangle \Psi^{-1}]$$

$$\langle S \rangle = \frac{1}{N} \sum_n (y_n y_n^T - y_n \langle X_n^T \rangle \Lambda^T - \Lambda \langle X_n^T \rangle y_n^T + \Lambda \langle X_n X_n^T \rangle \Lambda^T)$$

$$\langle X_n \rangle = E[X_n | y_n]$$

$$\langle X_n X_n^T \rangle = \text{Var}[X_n | y_n] + E[X_n | y_n]E[X_n | y_n]^T$$

- Recall that we have derived:

$$V_{1|2} = \left(I + \Lambda^T \Psi^{-1} \Lambda \right)^{-1}$$

$$m_{1|2} = V_{1|2} \Lambda^T \Psi^{-1} (y - \mu)$$

$$\Rightarrow \langle X_n \rangle = m_{X_n | y_n} = V_{1|2} \Lambda^T \Psi^{-1} (y_n - \mu) \quad \text{and} \quad \langle X_n X_n^T \rangle = V_{1|2} + m_{X_n | y_n} m_{X_n | y_n}^T$$
M-step for Factor Analysis

- Take the derivatives of the expected complete log likelihood with respect to parameters.
 - Using the trace and determinant derivative rules:

\[
\frac{\partial}{\partial \Psi^{-1}} \langle \ell_c \rangle = \frac{\partial}{\partial \Psi^{-1}} \left(-\frac{N}{2} \log|\Psi| - \frac{1}{2} \sum_n \text{tr}[\langle X_n X_n^T \rangle] - \frac{N}{2} \text{tr}[\langle S \rangle \Psi^{-1}] \right) = \frac{N}{2} \Psi - \frac{N}{2} \langle S \rangle \quad \Rightarrow \quad \Psi^{t+1} = \langle S \rangle
\]

\[
\frac{\partial}{\partial \Lambda} \langle \ell_c \rangle = \frac{\partial}{\partial \Lambda} \left(-\frac{N}{2} \log|\Psi| - \frac{1}{2} \sum_n \text{tr}[\langle X_n X_n^T \rangle] - \frac{N}{2} \text{tr}[\langle S \rangle \Psi^{-1}] \right) = -\frac{N}{2} \Psi^{-1} \frac{\partial}{\partial \Lambda} \langle S \rangle = -\frac{N}{2} \Psi^{-1} \frac{\partial}{\partial \Lambda} \left(\frac{1}{N} \sum_n (y_n y_n^T - y_n \langle X_n X_n^T \rangle \Lambda^T - \Lambda \langle X_n X_n^T \rangle y_n^T + \Lambda \langle X_n X_n^T \rangle \Lambda^T) \right)
\]

\[
= \Psi^{-1} \sum_n y_n \langle X_n X_n^T \rangle - \Psi^{-1} \Lambda \sum_n \langle X_n X_n^T \rangle \quad \Rightarrow \quad \Lambda^{t+1} = \left(\sum_n y_n \langle X_n \rangle \right) \left(\sum_n \langle X_n X_n^T \rangle \right)^{-1}
\]
Model Invariance and Identifiability

- There is *degeneracy* in the FA model.
- Since Λ only appears as outer product $\Lambda\Lambda^T$, the model is invariant to rotation and axis flips of the latent space.
- We can replace Λ with ΛQ for any orthonormal matrix Q and the model remains the same: $(\Lambda Q)(\Lambda Q)^T = \Lambda (QQ^T)\Lambda^T = \Lambda\Lambda^T$.
- This means that there is no “one best” setting of the parameters. An infinite number of parameters all give the ML score!
- Such models are called *un-identifiable* since two people both fitting ML parameters to the identical data will not be guaranteed to identify the same parameters.
A road map to more complex dynamic models

- **Discrete**
 - Mixture model (e.g., mixture of multinomials)
 - HMM (for discrete sequential data, e.g., text)
- **Continuous**
 - Mixture model (e.g., mixture of Gaussians)
 - HMM (for continuous sequential data, e.g., speech signal)
 - Factor analysis
 - State space model
 - Factorial HMM
 - Switching SSM
State space models (SSM)

- A sequential FA or a continuous state HMM

\[
\begin{align*}
X_t &= Ax_{t-1} + Gw_t \\
y_t &= Cx_{t-1} + v_t \\
w_t &\sim \mathcal{N}(0; Q), \quad v_t &\sim \mathcal{N}(0; R) \\
x_0 &\sim \mathcal{N}(0; \Sigma) ,
\end{align*}
\]

This is a linear dynamic system.

- In general,

\[
\begin{align*}
x_t &= f(x_{t-1}) + Gw_t \\
y_t &= g(x_{t-1}) + v_t
\end{align*}
\]

where \(f\) is an (arbitrary) dynamic model, and \(g\) is an (arbitrary) observation model.
LDS for 2D tracking

- Dynamics: new position = old position + \(\Delta \times \text{velocity} + \text{noise} \)

 (constant velocity model, Gaussian noise)

\[
\begin{pmatrix}
 x^1_t \\
 x^2_t \\
 \dot{x}^1_t \\
 \dot{x}^2_t
\end{pmatrix}
=
\begin{pmatrix}
 1 & 0 & \Delta & 0 \\
 0 & 1 & 0 & \Delta \\
 0 & 0 & 1 & 0 \\
 0 & 0 & 0 & 1
\end{pmatrix}
\begin{pmatrix}
 x^1_{t-1} \\
 x^2_{t-1} \\
 \dot{x}^1_{t-1} \\
 \dot{x}^2_{t-1}
\end{pmatrix}
+ \text{noise}
\]

- Observation: project out first two components (we observe Cartesian position of object - linear!)

\[
\begin{pmatrix}
 y^1_t \\
 y^2_t
\end{pmatrix}
=
\begin{pmatrix}
 1 & 0 & 0 & 0 \\
 0 & 1 & 0 & 0
\end{pmatrix}
\begin{pmatrix}
 x^1_t \\
 x^2_t \\
 \dot{x}^1_t \\
 \dot{x}^2_t
\end{pmatrix}
+ \text{noise}
\]
The inference problem 1

- Filtering \rightarrow given y_1, \ldots, y_t, estimate x_t: $P(x_t \mid y_{1:t})$
 - The Kalman filter is a way to perform exact online inference (sequential Bayesian updating) in an LDS.
 - It is the Gaussian analog of the forward algorithm for HMMs:

 $$p(X_t = i \mid y_{1:t}) = \alpha_t^i \propto p(y_t \mid X_t = i) \sum_j p(X_t = i \mid X_{t-1} = j) \alpha_{t-1}^j$$

Diagram of the filtering process:

- Graph from x_0 to x_t with transitions $X_1 \rightarrow X_2 \rightarrow X_3 \rightarrow \ldots \rightarrow X_t$.
- Graph from y_1 to y_t with transitions $Y_1 \rightarrow Y_2 \rightarrow Y_3 \rightarrow \ldots \rightarrow Y_t$.
The inference problem 2

- Smoothing \Rightarrow given y_1, \ldots, y_T, estimate $x_t (t<T)$
 - The Rauch-Tung-Strievel smoother is a way to perform exact off-line inference in an LDS. It is the Gaussian analog of the forwards-backwards (alpha-gamma) algorithm:

$$
p(X_t = i \mid y_{1:T}) = \gamma_t^i \propto \sum_j \alpha_t^i P(X_{t+1}^j \mid X_t^i) \gamma_{t+1}^j
$$
2D tracking

2D filtering

2D smoothing

© Eric Xing @ CMU, 2005-2015
Kalman filtering in the brain?
Kalman filtering derivation

- Since all CPDs are linear Gaussian, the system defines a large multivariate Gaussian.
 - Hence all marginals are Gaussian.
 - Hence we can represent the belief state $p(X_t|y_{1:t})$ as a Gaussian with mean $\mathbb{E}(X_t|y_{1:t}) = M_{t|t}$ and covariance $\mathbb{E}(X_t-M_{t|t})(X_t-M_{t|t})^T = P_{t|t}$.
 - It is common to work with the inverse covariance (precision) matrix P^{-1}; this is called information form.

- Kalman filtering is a recursive procedure to update the belief state:
 - Predict step: compute $p(X_{t+1}|y_{1:t})$ from prior belief $p(X_t|y_{1:t})$ and dynamical model $p(X_{t+1}|X_t)$ --- time update
 - Update step: compute new belief $p(X_{t+1}|y_{1:t+1})$ from prediction $p(X_{t+1}|y_{1:t})$, observation y_{t+1} and observation model $p(y_{t+1}|X_{t+1})$ --- measurement update.
Kalman filtering derivation

- Kalman filtering is a recursive procedure to update the belief state:
 - Predict step: compute $p(X_{t+1}|y_{1:t})$ from prior belief $p(X_t|y_{1:t})$ and dynamical model $p(X_{t+1}|X_t)$ --- time update
 - Update step: compute new belief $p(X_{t+1}|y_{1:t+1})$ from prediction $p(X_{t+1}|y_{1:t})$, observation y_{t+1} and observation model $p(y_{t+1}|X_{t+1})$ --- measurement update

$$
\begin{bmatrix}
Z_{t+1} \\
Z_t
\end{bmatrix} \sim \begin{bmatrix}
\mu_t \\
\eta_t
\end{bmatrix} \begin{bmatrix}
\Sigma_t \\
\Sigma_n
\end{bmatrix} \quad Z_{t+1} \sim Z_t \mathcal{N} - Z_t \mathcal{N}
$$

$Z_t \sim X_t$

$P(X_{t+1}|y_{1:t}) \Rightarrow P(X_{t+1}|y_{1:t}) \Rightarrow P(X_{t+1}, y_{t+1}|y_{1:t}) \Rightarrow$

$X_{t+1} = \{X_t\} = A X_t + \nu$

$Y_{t+1} = C X_{t+1} + V$

© Eric Xing @ CMU, 2005-2015
Predict step

- **Dynamical Model:**
 \[x_{t+1} = Ax_t + Gw_t, \quad w_t \sim \mathcal{N}(0; Q) \]
 - One step ahead prediction of state:
 \[
 \mathbb{E}(X_{t+1} | y_{1:t}) = \mathbb{E}(A x_t + Gw_t | y_{1:t}) = A \hat{x}_{t:t} + D = \hat{x}_{t+1:t} = \hat{x}_{t+1}
 \]
 \[
 \mathbb{E}[(x_{t+1} - \hat{x}_{t+1:t})(x_{t+1} + \hat{x}_{t+1:t})]\]
 \[
 = \mathbb{E}[(Ax_t + Gw_t - \hat{x}_{t+1:t})(Ax_t + Gw_t - \hat{x}_{t+1:t})]^T
 = \mathbb{E} A \tilde{(x + \hat{x}_{t+1:t})} A^T - G \tilde{G}^T \]
 \[
 = A \tilde{A} + \tilde{C} \tilde{C}^T
 \]

- **Observation model:**
 \[y_t = Cx_t + v_t, \quad v_t \sim \mathcal{N}(0; R) \]
 - One step ahead prediction of observation:
 \[
 \mathbb{E}(y_{t+1} | y_{1:t}) = \mathbb{E}(C x_{t+1} + v_{t+1} | y_{1:t})
 \]
 \[
 \sum y v
 \]
Predict step

- **Dynamical Model:** \(\mathbf{x}_{t+1} = A \mathbf{x}_t + Gw_t, \quad w_t \sim \mathcal{N}(0; Q) \)
 - One step ahead prediction of state:
 \[
 \hat{x}_{t+1|t} = E(\mathbf{x}_{t+1} | \mathbf{y}_1, \ldots, \mathbf{y}_t) = A \hat{x}_{t|t}
 \]
 \[
 P_{t+1|t} = E(\mathbf{x}_{t+1} - \hat{x}_{t+1|t})(\mathbf{x}_{t+1} - \hat{x}_{t+1|t})^T | \mathbf{y}_1, \ldots, \mathbf{y}_t)
 \]
 \[
 = E(AX_t + Gw_t - \hat{x}_{t+1|t})(AX_t + Gw_t - \hat{x}_{t+1|t})^T | \mathbf{y}_1, \ldots, \mathbf{y}_t)
 \]
 \[
 = AP_{t|t}A + GQG^T
 \]

- **Observation model:** \(\mathbf{y}_t = C\mathbf{x}_t + \nu_t, \quad \nu_t \sim \mathcal{N}(0; R) \)
 - One step ahead prediction of observation:
 \[
 E(\mathbf{y}_{t+1} | \mathbf{y}_1, \ldots, \mathbf{y}_t) = E(CX_{t+1} + \nu_{t+1} | \mathbf{y}_1, \ldots, \mathbf{y}_t) = C \hat{x}_{t+1|t}
 \]
 \[
 E(\mathbf{y}_{t+1} - \hat{\mathbf{y}}_{t+1|t})(\mathbf{y}_{t+1} - \hat{\mathbf{y}}_{t+1|t})^T | \mathbf{y}_1, \ldots, \mathbf{y}_t) = CP_{t+1|t}C^T + R
 \]
 \[
 E(\mathbf{y}_{t+1} - \hat{\mathbf{y}}_{t+1|t})(\mathbf{x}_{t+1} - \hat{x}_{t+1|t})^T | \mathbf{y}_1, \ldots, \mathbf{y}_t) = CP_{t+1|t}
 \]
Update step

- Summarizing results from previous slide, we have
 \(p(X_{t+1}, Y_{t+1} | y_{1:t}) \sim \mathcal{N}(m_{t+1}, V_{t+1}) \), where
 \[
 m_{t+1} = \begin{pmatrix} \hat{x}_{t+1|t} \\ Cx_{t+1|t} \end{pmatrix}, \quad V_{t+1} = \begin{pmatrix} P_{t+1|t} & P_{t+1|t} C^T \\ CP_{t+1|t} & CP_{t+1|t} C^T + R \end{pmatrix},
 \]

- Remember the formulas for conditional Gaussian distributions:
 \[
p(x_1 | \mu, \Sigma) = \mathcal{N}(\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} | \begin{bmatrix} \mu_1 \\ \mu_2 \end{bmatrix}, \begin{bmatrix} \Sigma_{11} & \Sigma_{12} \\ \Sigma_{21} & \Sigma_{22} \end{bmatrix})
 \]
 \[
p(x_2) = \mathcal{N}(x_2 | m_2^m, V_2^m)
 \]
 \[
p(x_1 | x_2) = \mathcal{N}(x_1 | m_{1|2}, V_{1|2})
 \]
 \[
m_2^m = \mu_2
 \]
 \[
 V_2^m = \Sigma_{22}
 \]
 \[
m_{1|2} = \mu_1 + \Sigma_{12} \Sigma_{22}^{-1} (x_2 - \mu_2)
 \]
 \[
 V_{1|2} = \Sigma_{11} - \Sigma_{12} \Sigma_{22}^{-1} \Sigma_{21}
 \]
Kalman Filter

- Measurement updates:

\[
\hat{x}_{t+1|t+1} = \hat{x}_{t+1|t} + K_{t+1}(y_{t+1} - C\hat{x}_{t+1|t})
\]

\[
P_{t+1|t+1} = P_{t+1|t} - KCP_{t+1|t}
\]

- where \(K_{t+1}\) is the *Kalman gain matrix*

\[
K_{t+1} = P_{t+1|t}C^T\left(CP_{t+1|t}C^T + R\right)^{-1}
\]

- Time updates:

\[
\hat{x}_{t+1|t} = A\hat{x}_{t|t}
\]

\[
P_{t+1|t} = AP_{t|t}A + GQG^T
\]

- \(K_t\) can be pre-computed (since it is independent of the data).
Example of KF in 1D

- Consider noisy observations of a 1D particle doing a random walk:
 \[
 x_{t|t-1} = x_{t-1} + w, \quad w \sim \mathcal{N}(0, \sigma_w) \quad z_t = x_t + v, \quad v \sim \mathcal{N}(0, \sigma_z)
 \]

- KF equations:
 \[
 P_{t+1|t} = AP_{t|t}A + GQG^T = \sigma_t + \sigma_x, \quad \hat{x}_{t+1|t} = A\hat{x}_{t|t} = \hat{x}_{t|t}
 \]
 \[
 K_{t+1} = P_{t+1|t}C^T(CP_{t+1|t}C^T + R)^{-1} = (\sigma_t + \sigma_x)(\sigma_t + \sigma_x + \sigma_z)
 \]
 \[
 \hat{x}_{t+1|t+1} = \hat{x}_{t+1|t} + K_{t+1}(z_{t+1} - C\hat{x}_{t+1|t}) = \frac{(\sigma_t + \sigma_x)z_t + \sigma_z\hat{x}_{t|t}}{\sigma_t + \sigma_x + \sigma_z}
 \]
 \[
 P_{t+1|t+1} = P_{t+1|t} - KCP_{t+1|t} = \frac{(\sigma_t + \sigma_x)\sigma_z}{\sigma_t + \sigma_x + \sigma_z}
 \]
The KF update of the mean is

\[\hat{x}_{t+1|t+1} = \hat{x}_{t+1|t} + K_{t+1} (z_{t+1} - C \hat{x}_{t+1|t}) = \frac{(\sigma_t + \sigma_x) z_t + \sigma_z \hat{x}_{t|t}}{\sigma_t + \sigma_x + \sigma_z} \]

- The term \((z_{t+1} - C \hat{x}_{t+1|t})\) is called the *innovation*.

New belief is convex combination of updates from prior and observation, weighted by Kalman Gain matrix:

\[K_{t+1} = P_{t+1|t} C^T (CP_{t+1|t} C^T + R)^{-1} \]

- If the observation is unreliable, \(\sigma_z\) (i.e., \(R\)) is large so \(K_{t+1}\) is small, so we pay more attention to the prediction.

- If the old prior is unreliable (large \(\sigma_t\)) or the process is very unpredictable (large \(\sigma_x\)), we pay more attention to the observation.
Complexity of one KF step

- Let $X_t \in \mathbb{R}^{N_x}$ and $Y_t \in \mathbb{R}^{N_y}$,

- Computing $P_{t+1|t} = A P_{t|t} A + GQG^T$ takes $O(N_x^2)$ time, assuming dense P and dense A.

- Computing $K_{t+1} = P_{t+1|t} C^T (CP_{t+1|t} C^T + R)^{-1}$ takes $O(N_y^3)$ time.

- So overall time is, in general, $\max \{N_x^2, N_y^3\}$
The inference problem 2

- Smoothing \Rightarrow given y_1, \ldots, y_T, estimate $x_t (t<T)$
 - The Rauch-Tung-Strievel smoother is a way to perform exact off-line inference in an LDS. It is the Gaussian analog of the forwards-backwards (alpha-gamma) algorithm:

$$p(X_t = i \mid y_{1:T}) = \gamma^i_t \propto \sum_j \alpha^i_t P(X_{t+1}^j \mid X_t^i) \gamma^j_{t+1}$$
Rauch-Tung-Strievel smoother

General structure: KF results + the difference of the "smoothed" and predicted results of the next step

Backward computation: Pretend to know things at t+1 — such conditioning makes things simple and we can remove this condition finally

The difficulty:

The trick:

\[
\hat{x}_{t|t} = \hat{x}_{t|t} + L_t \left(\hat{x}_{t+1|t} - \hat{x}_{t+1|t} \right)
\]

\[
P_{t|t} = P_{t|t} + L_t \left(P_{t+1|t} - P_{t+1|t} \right) L_t^T
\]

\[
L_t = P_{t|t} A^T_{t} P^{-1}_{t+1|t}
\]

\[
E[X | Y_1, \ldots, Y_T] = E[E[X | Y, Z] | Z]
\]

\[
\]

\[
\hat{x}_{t|T} = E[X_t | y_1, \ldots, y_T] = E[E[X_t | X_{t+1}, y_1, \ldots, y_T] | y_1, \ldots, y_T]
\]

\[
= E[E[X_t | X_{t+1}, y_1, \ldots, y_T] | y_1, \ldots, y_T]
\]

\[
= E[X_t | X_{t+1}, y_1, \ldots, y_T]
\]

Same for \(P_{t|T} \)
RTS derivation

- Following the results from previous slide, we need to derive
 \(p(\mathbf{X}_{t+1}, \mathbf{X}_t | \mathbf{y}_{1:t}) \sim \mathcal{N}(m, V) \), where
 \[
 m = \begin{pmatrix} \hat{\mathbf{x}}_{t|t} \\ \hat{\mathbf{x}}_{t+1|t} \end{pmatrix}, \quad V = \begin{pmatrix} \mathbf{P}_{t|t} & \mathbf{P}_{t|t} \mathbf{A}^T \\ \mathbf{A} \mathbf{P}_{t|t} & \mathbf{P}_{t+1|t} \end{pmatrix},
 \]
 - all the quantities here are available after a forward KF pass

- Remember the formulas for conditional Gaussian distributions:
 \[
 p(\mathbf{x}_1 | \mathbf{x}_2, \Sigma) = \mathcal{N}(\begin{pmatrix} \mathbf{x}_1 \\ \mathbf{x}_2 \end{pmatrix} | \begin{pmatrix} \mu_1 \\ \mu_2 \end{pmatrix}, \begin{pmatrix} \Sigma_{11} & \Sigma_{12} \\ \Sigma_{21} & \Sigma_{22} \end{pmatrix}),
 \]

- The RTS smoother
 \[
 \hat{\mathbf{x}}_{t|\mathbf{y}} = E[\mathbf{X}_t | \mathbf{X}_{t+1}, \mathbf{y}_1, \ldots, \mathbf{y}_t] = \hat{\mathbf{x}}_{t|t} + L_t (\hat{\mathbf{x}}_{t+1|\mathbf{y}} - \hat{\mathbf{x}}_{t+1|t})
 \]
 \[
 P_{t|\mathbf{y}} \overset{\text{def}}{=} \text{Var} [\hat{\mathbf{x}}_{t|\mathbf{y}} | \mathbf{y}_{1:T}] + E[\text{Var}[\mathbf{X}_t | \mathbf{X}_{t+1}, \mathbf{y}_{1t}] | \mathbf{y}_{1T}] \]
 \[
 = P_{t|t} + L_t \left(P_{t+1|\mathbf{y}} - P_{t+1|t} \right) L_t^T
 \]
Learning SSMs

- Complete log likelihood

\[
\ell_c(\theta, \mathcal{D}) = \sum p(x_n, y_n) = \sum \log p(x_1) + \sum \sum \log p(x_{n,t} | x_{n,t-1}) + \sum \sum \log p(y_{n,t} | x_{n,t}) \\
= f_1(X_1; \Sigma_0) + f_2(\{X_tX_{t-1}^T, X_tX_t^T, X_t : \forall t \}; A, Q, G) + f_3(\{X_tX_t^T, X_t : \forall t \}; C, R)
\]

- EM
 - E-step: compute \(\langle X_tX_{t-1}^T \rangle, \langle X_tX_t^T \rangle, \langle X_t \rangle | y_1, \ldots, y_T \)

 these quantities can be inferred via KF and RTS filters, etc., e.g., \(\langle X_tX_t^T \rangle \equiv \text{var}(X_tX_t^T) + E(X_t)^2 = P_{t|T} + \hat{X}_{t|T}^2 \)

 - M-step: MLE using

\[
\langle \ell_c(\theta, \mathcal{D}) \rangle = f_1(\langle X_1 \rangle; \Sigma_0) + f_2(\langle X_tX_{t-1}^T \rangle, \langle X_tX_t^T \rangle, \langle X_t \rangle : \forall t \}; A, Q, G) + f_3(\langle X_tX_t^T \rangle, \langle X_t \rangle : \forall t \}; C, R)
\]

c.f., M-step in factor analysis

© Eric Xing @ CMU, 2005-2015
Nonlinear systems

- In robotics and other problems, the motion model and the observation model are often nonlinear:

 \[x_t = f(x_{t-1}) + w_t, \quad y_t = g(x_t) + v_t \]

- An optimal closed form solution to the filtering problem is no longer possible.

- The nonlinear functions \(f \) and \(g \) are sometimes represented by neural networks (multi-layer perceptrons or radial basis function networks).

- The parameters of \(f \) and \(g \) may be learned offline using EM, where we do gradient descent (back propagation) in the M step, c.f. learning a MRF/CRF with hidden nodes.

- Or we may learn the parameters online by adding them to the state space: \(x_t' = (x_t, \theta) \). This makes the problem even more nonlinear.
Extended Kalman Filter (EKF)

- The basic idea of the EKF is to linearize f and g using a second order Taylor expansion, and then apply the standard KF.
 - i.e., we approximate a stationary nonlinear system with a non-stationary linear system.

$$
x_t = f(\hat{x}_{t-1|t-1}) + A_{\hat{x}_{t-1|t-1}}(x_{t-1} - \hat{x}_{t-1|t-1}) + w_t
$$

$$
y_t = g(\hat{x}_{t|t-1}) + C_{\hat{x}_{t|t-1}}(x_t - \hat{x}_{t|t-1}) + v_t
$$

where $\hat{x}_{t|t-1} = f(\hat{x}_{t-1|t-1})$ and $A_{\hat{x}} = \frac{\partial f}{\partial x} \bigg|_{\hat{x}}$ and $C_{\hat{x}} = \frac{\partial g}{\partial x} \bigg|_{\hat{x}}$

- The noise covariance (Q and R) is not changed, i.e., the additional error due to linearization is not modeled.
Online vs offline inference

- **Filtering**
 \[P(X(t) | y(1:t)) \]

- **Viterbi**
 \[\arg\max_{x(1:t)} P(x(1:t) | y(1:t)) \]

- **Prediction**
 \[P(X(t+\delta) | y(1:t)) \]

- **Fixed-lag smoothing**
 \[P(X(t-\tau) | y(1:t)) \]

- **Fixed interval smoothing (offline)**
 \[P(X(t) | y(1:T)) \]
The KF update of the mean is
\[\hat{x}_{t+1|t+1} = A\hat{x}_{t|t} + K_{t+1}(y_{t+1} - C\hat{x}_{t+1|t}) \]

Consider the special case where the hidden state is a constant, \(x_t = \theta \), but the “observation matrix” \(C \) is a time-varying vector, \(C = x_t^T \).

- Hence the observation model at each time slide, \(y_t = x_t^T \theta + v_t \), is a linear regression

- We can estimate recursively using the Kalman filter:
\[\hat{\theta}_{t+1} = \hat{\theta}_t + P_{t+1}^{-1}(y_{t+1} - x_t^T \hat{\theta}_t)x_t \]
This is called the recursive least squares (RLS) algorithm.

- We can approximate \(P_{t+1}^{-1} \approx \eta_{t+1} \) by a scalar constant. This is called the least mean squares (LMS) algorithm.

- We can adapt \(\eta_t \) online using stochastic approximation theory.