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Resources and Attribution

Image credits, inspiration, pointers for further reading (SL.):

1. Xing (2014). Markov chain Monte Carlo. Lectures on Probabilistic Graphical
Models. (SL. 15)

2. Murray (2009). Markov chain Monte Carlo. Cambridge Machine Learning
Summer School. (SL. 7, 11, 12, 13, 16, 19, 20, 24, 36, 37)

3. Murray (2007). Advances in Markov chain Monte Carlo Methods. PhD Thesis.
(Detailed descriptions for material in the above reference)

4. Bishop (2006). Pattern Recognition and Machine Learning (PRML). (SL. 8, 14,
22, 31, 35)

5. Geweke (2004). Getting it right: joint distribution tests of posterior simulators,
JASA 99(467): 799-804. (SL. 34)

6. MacKay (2003). Information Theory, Inference, and Learning Algorithms. (SL.
25, 43)

7. Rasmussen (2000). The Infinite Gaussian Mixture Model. NIPS. (SL. 27)
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Monte Carlo

Monte Carlo approximates expectations with sums formed from
sampling.

E[f (x)] =
∫

f (x)p(x)dx ≈ 1
J

J∑
j=1

f (x(j)) , x(j) ∼ p(x) (1)
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Monte Carlo

Example: Integrating away the weights in e.g., Bayesian neural
network.

I Specify y(x) = f (x,w), for response y and input (predictor)
x. Place prior p(w) on the weights w.

I Infer posterior p(w|D) ∝
likelihood︷ ︸︸ ︷
p(D|w) p(w) given data D.

Derive the predictive distribution at test input x∗:

p(y∗|x∗,D) =
∫

p(y∗|w, x∗)p(w|D)dw (2)

≈ 1
J

J∑
j=1

p(y∗|w(j), x∗) , w(j) ∼ p(w|D) (3)

But how do we sample from p(w|D)?
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Monte Carlo Warning!

Marginalisation via prior sampling is dangerous!

p(D) =
∫

p(D|w)p(w)dw (4)

≈ 1
J

J∑
j=1

p(D|w(j)) , w(j) ∼ p(w) . (5)

I Question: do you see the problem?
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Monte Carlo Warning!

Marginalisation via prior sampling is dangerous!

p(D) =
∫

p(D|w)p(w)dw (6)

≈ 1
J

J∑
j=1

p(D|w(j)) , w(j) ∼ p(w) . (7)

I If you were to do multiple finite approximations using this
strategy, the variance between the approximations would be
massive. Most of the time samples from p(w) will have low
likelihood, such that only a small percentage of terms
contribute significantly to the Monte Carlo sum.
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Monte Carlo

Sampling from p(x) is equivalent to sampling uniformly in the
area under p(x).
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Monte Carlo Review

Suppose that x ∼ U(0, 1), and we have y = f (x). The
distribution of y will be

p(y) = p(x)
dx
dy

=
dx
dy

(8)

Integrating both sides, we find,

x = g(y) =
∫ y

−∞
p(y′)dy′ (9)

Therefore y = g−1(x), where g is the CDF of y. To sample from
p(y) we can sample from p(x) and then transform the samples
with the inverse CDF of y. In other words, sampling uniformly
under the curve of p(y) gives samples from y. This is the
starting point for many sampling procedures.
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Monte Carlo Review

I Monte Carlo: Approximates expectations with sums
formed from sampling.

I Variables with uniform distribution under the curve of p(x)
are valid samples.

I Cumulative CDF Sampling: If X ∼ U(0, 1), and g(·) is the
CDF of distribution G, then g−1(X) ∼ G.
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Monte Carlo Review

Rejection Sampling

1. Approximate unnormalised p̃(x) with kq(x) ≥ p̃(x).
2. Sample x0 from q(x).
3. Sample u0 from U(0, kq(x0)).
4. x0, u0 have uniform distribution under the curve kq(x0).
5. Accept if u0 ≤ p̃(x0).

Importance Sampling

∫
f (x)p(x)dx =

∫
f (x)

p(x)
q(x)

q(x)dx ≈ 1
J

J∑
j=1

p(x(j))
q(x(j))

f (x(j)) ,

x(j) ∼ q(x)
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Review: Sampling from a Bayes Net

Ancestral Sampling

I Sample top level variables from marginal distributions.
I Sample nodes conditioned on samples of parent nodes.

Example
We wish to sample from
P(A,B,C,D,E) = P(A)P(B)P(C|A,B)P(D|B,C)P(E|C,D).

I A ∼ P(A)
B ∼ P(B)
C ∼ P(C|A,B)
D ∼ P(D|B,C)
E ∼ P(E|C,D)

(Reproduced from Murray (2009), p.9).
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Sampling from High Dimensional Distributions

We often can’t decompose P(x) into low dimensional
conditional distributions.

I Undirected graphical models: P(x) = 1
Z
∏

i fi(x).
I Posterior over a directed graphical model:

P(A,B,C,D|E) = P(A,B,C,D,E)/P(E).
We often don’t know Z or P(E).
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Monte Carlo Limitations: High Dimensional Distributions

Rejection and importance sampling scale badly with dimension.
Suppose p(x) = N (0, I) and q(x) = N (0, σ2I).

I We require σ ≥ 1.
Rejection sampling has an acceptance rate∫

p(x)
kq(x)

q(x)dx =
1
k
. (10)

Here we must set k = σ−D/2.
I Variance of importance weights is ( σ2

2−1/σ2 )
D/2 − 1.

Generally, for kq(x) ≥ p(x), the ratio of the volume outside p(x)
to the volume of p(x) shrinks to zero as D increases.
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Markov chain Monte Carlo (MCMC)

I Markov chain Monte Carlo methods (MCMC) allow us to
sample from a wide array of high dimensional distributions,
even when we have very little information about these
distributions.

Undirected graphical model for a Markov chain.
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Markov chain Monte Carlo (MCMC)

I MCMC methods allow us to sample from a wide array of
high dimensional distributions.

I We sample from a transition probability

zi+1 ∼ T(zi+1|zi)

which depends on the current state zi, an adaptive proposal
density q(zi+1; zi), and acceptance rule. Samples z1, z2, . . .
therefore form a Markov chain.
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Example: Metropolis Algorithm

I Sample proposal x′ from a Gaussian distribution
N (x′; x, σ2).

I Accept with probability min(1, p(x′)/p(x)).
I If rejected, the next sample is the same as the previous,

x′ = x. This is unlike rejection or importance sampling,
where rejected samples are discarded.

I Here we have an adaptive proposal distribution.
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Markov chain Monte Carlo (MCMC)

Under what circumstances does the Markov chain converge to
the desired distribution? First, some notation and terminology:

I Transition operator: Ti(zi+1 ← zi) = P(zi+1|zi)

I A Markov chain is homogeneous if the transition
probabilities are the same for all m.

I A distribution p(z) is invariant with respect to a Markov
chain if

p∗(z) =
∑

z′
T(z← z′)p∗(z′) . (11)

I A sufficient but not necessary condition for invariant p(z) is
to satisfy detailed balance:

p∗(z′)T(z← z′) = p∗(z)T(z′ ← z) . (12)

Exercise: prove that detailed balance leads to invariance
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Detailed Balance

I A sufficient but not necessary condition for invariant p(z) is
to satisfy detailed balance:

p∗(z′)T(z← z′) = p∗(z)T(z′ ← z) . (13)

What does detailed balance mean?
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Detailed Balance

I A sufficient but not necessary condition for invariant p(z) is
to satisfy detailed balance:

p∗(z′)T(z← z′) = p∗(z)T(z′ ← z) . (14)

What does detailed balance mean?
It means that z← z′ and z′ ← z are equally probable.
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Reverse Operators

If T is stationary, we can define a reverse operator:

T̃(z← z′) ∝ T(z′ ← z)p∗(z) =
T(z′ ← z)p∗(z)∑
z T(z′ ← z)p∗(z)

=
T(z′ ← z)p∗(z)

p∗(z′)
(15)

Generalised Detailed Balance

T(z′ ← z)p∗(z) = T̃(z← z′)p∗(z′) (16)

I Generalised detailed balance is both sufficient and
necessary for invariance.

I Operators satisfying detailed balance are their own reverse
operator.
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Markov chain Monte Carlo (MCMC)

I Wish to use Markov chains to sample from a given
distribution.

I We can do this if
1. The Markov chain leaves the distribution invariant:

p∗(z) =
∑

z′ T(z← z′)p∗(z′)
2. limm→∞p(zm) = p∗(z) regardless of the initial distribution p(z0)

(ergodicity).
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Creating Transition Operators

Some possibilities:
I Construct transition probabilities from a set of base

transitions B1, . . . ,BK:

T(z← z′) =
K∑

k=1

αkBk(z′, z) (17)

I Can be combined through successive application:

T(z← z′) =
∑

z1

· · ·
∑
zn−1

B1(z′, z1) . . .BK(zK−1, z) (18)

Question: Under what conditions does invariance and detailed
balance hold in each case?
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Metropolis-Hastings (MH) Algorithm

1. Sample proposal: x ∼ q(x′; x); e.g. N (x′; x, σ2)

2. Accept with probability min(1, p(x′)q(x;x′)
p(x)q(x′;x) )

3. If rejected, next state in chain is a repeat of the current state
(contrast with rejection sampling).

Questions

1. Do we require that p(x) be normalised?
2. Does the MH algorithm satisfy detailed balance? Hint:

What is the transition operator T(x′ ← x)?
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MH step-size demo

Exploring p(x) = N (x; 0, 1) with proposal
q(x′; x) = N (x′; x, σ2) with different step sizes σ:
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What is the ideal acceptance rate for MH?

I Assume standard Metropolis, with Gaussian q(x; x′).
I Accept x′ with probability λ = min(1, p(x′)/p(x)),

independent of q.
I All of our information about p is contained from the

sequence a of accepts and rejects:
a = {1, 0, 1, 1, 1, 1, 0, 0, 1, . . . }.

I a is a sequence of Bernoulli random variables, with
parameter λ.

I The entropy (information content) of a is maximized if
λ = 0.5.
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MH Summary

Drawbacks
I Large step sizes lead to many rejections
I Small step sizes lead to poor exploration
I Struggles badly with multi-modal distributions (like most

popular MCMC strategies)

Benefits
I Simple to implement
I Reasonable for sampling from correlated high dimensional

distributions

26 / 45



Assessing convergence
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Assessing convergence

I Diagnostics: Plot autocorrelations, compute Gelman-Rubin
statistic, packages like R-CODA will tell you the effective
number of samples.

I Discussion of thinning, multiple runs, burn in, in Practical
Markov chain Monte Carlo. Charles J. Geyer, Statistical
Science. 7(4):473-483, 1992.
http://www.jstor.org/stable/2246094.

I Unit tests, including running on small-scale versions of
your problem, and reasonable inferences on synthetic data
drawn from your model, in Getting it right: joint
distribution tests of posterior simulators, John Geweke,
JASA, 99(467): 799-804, 2004.
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Auxiliary Variables

Although MCMC is used for marginalisation, sometimes it
helps to introduce more variables:∫

f (x)p(x)dx =

∫
f (x)p(x, v)dxdv ≈ 1

J

J∑
j=1

f (x(j)), x, v ∼ p(x, v)

Helps if p(x|v) and p(v|x) are simple, or p(x, v) is easier to
navigate than p(x).
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Gibbs Sampling

Suppose we wish to sample from the joint distribution
p(A,B,C). The algorithm is as follows:

1. Initialize B0,C0.
2. Sample A0 ∼ p(A|B0,C0)

3. B1 ∼ p(B|A0,C0)

4. C1 ∼ p(C|A0,B1)

5. Repeat in cycles.
This procedure generalises to arbitrarily many variables.
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Gibbs Sampling

We can directly show invariance of the joint distribution and
ergodicity under Gibbs sampling. However, Gibbs sampling is a
special case of Metropolis-Hastings with proposals p(xi|xj 6=i),
which are accepted with probability 1.
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Gibbs Sampling

Gibbs sampling is very popular.

Advantages

I Easy access to conditional distributions
I Conditionals may be conjugate (example, Dirichlet process

mixtures, next lecture!) and we can sample from them
exactly!

I Conditionals will be lower dimensional. We can then apply
rejection sampling or importance sampling.

I WinBUGS and OpenBUGS sample from graphical models
using Gibbs sampling.

I Can be viewed as a special case of MH with no rejections.

Disadvantages
What might be a drawback?
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Collapsed Gibbs Sampling

I Will be discussed in the next lecture.
I Helps overcome some limitations associated with

dependencies between variables.
I Is critical for sampling from Dirichlet Process Mixture

models (next lecture!)
I Good preparation: C.E. Rasmussen. The Infinite Gaussian

Mixture Model. NIPS 2000.
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Geweke: Getting it right

Consider two routes to sampling from the joint distribution
p(y,w) over the data y and parameters w.

1. Sample from your generative model: Sample parameters
from your prior w. Sample data given your parameters
p(y|w).

2. Sample data from p(w|y) using your transition operator.
Resample data p(y|w). This is Gibbs sampling from p(y,w).

Separately compute the statistics of p(y,w) from each
procedure. Discrepancies will be obvious and indicate bugs in
your code. Example: suppose there is a bug that increases your
posterior noise variance... this will be amplified using these
cyclical procedures to sample from p(y,w).
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Slice Sampling

Wish to sample uniformly under the curve p̃(z).
1. Initialize z0.
2. Sample u ∼ U(0, p̃(z))
3. Sample uniformly from the slice {z : p̃(z) > u}. (Step out

to find the boundaries).
This procedure samples uniformly under the area of the curve of
p̃(z). It can be viewed as an auxiliary variable MCMC method.
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Unimodal Slice Sampling

1. Bracket slice
2. Shrink bracket if uniform sample off slice
3. Keep first sample on slice
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Multimodal slice sampling

1. Step out bracket until off slice
2. Sample on slice, shrinking bracket as before.
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Slice Sampling: Pros and Cons

Advantages

I Very automatic: lack of tunable free parameters, proposal
distributions, etc.

I No rejections.
I Is a great choice when you have little knowledge of the

distribution you are sampling from.

Disadvantages

I For multidimensional distributions, one can sample each
variable in turn using 1D slice sampling, in a manner
analogous to Gibbs sampling. However, this badly suffers
from the curse of dimensionality.
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Advanced Slice Sampling

If one is sampling from a posterior p(v|D) ∝ p(D|v)p(v), it is
possible to exploit correlations in the prior p(v) for very
efficient joint updates of v in high dimensional spaces. See,
Elliptical Slice Sampling. Murray et. al, AISTATS 2009. We
will come back to this when we discuss Gaussian processes.
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Hamiltonian Monte Carlo

I Often probability distributions can be written in the form
p(x) = 1

Z exp(−E(x)), where the gradient of E(x) is
available.

I The gradient tells us which direction to go to find states of
higher probability. It seems wasteful not to use this
information!

I Hamiltonian (aka Hybrid) Monte Carlo Methods helps us
avoid the basic random walk behaviour of simple
Metropolis methods by using gradient information.
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Hamiltonian Monte Carlo

I Form H(x, v) = E(x) + K(v), with K(v) = vTv/2.
I p(x, v) = 1

ZH
exp[−H(x, v)] = 1

ZH
exp[−E(x)] exp[−K(v)].

I Since the density is separable, the marginal distribution of x
is p(x), so if we can sample from p(x, v) we can simply
discard the samples of v for samples of x.

I Simulate Hamiltonian dynamics
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Hamiltonian Monte Carlo Algorithm

Benefits
I Very efficient with good settings of τ and ε.
I State of the art for sampling from posteriors over Bayesian

neural networks.

Drawbacks
I Very difficult to tune τ and ε. A recent review and

discussion of how to tune HMC is given in R.M. Neal
(2011), MCMC Using Hamiltonian Dynamics,
http://www.cs.utoronto.ca/~radford/
ham-mcmc.abstract.html.

I HMC helps with local exploration, but not with
multimodality...

What if we wanted to exploit curvature information too?
42 / 45

http://www.cs.utoronto.ca/~radford/ham-mcmc.abstract.html
http://www.cs.utoronto.ca/~radford/ham-mcmc.abstract.html


Hamiltonian Monte Carlo
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Hamiltonian Monte Carlo

Video
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Exploring Multimodal Likelihood Surfaces

Group (blackboard) discussion
I Multiple runs
I Simulated annealing
I Parallel tempering
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