Probabilistic Graphical Models

Representation of undirected GM

Eric Xing
Lecture 3, February 22, 2014

Reading: KF-chap4
Two types of GMs

- **Directed edges** give causality relationships (Bayesian Network or Directed Graphical Model):

 \[
P(X_1, X_2, X_3, X_4, X_5, X_6, X_7, X_8) \\
 = P(X_1) P(X_2) P(X_3| X_1) P(X_4| X_2) P(X_5| X_2) P(X_6| X_3, X_4) P(X_7| X_6) P(X_8| X_5, X_6)
 \]

- **Undirected edges** simply give correlations between variables (Markov Random Field or Undirected Graphical model):

 \[
P(X_1, X_2, X_3, X_4, X_5, X_6, X_7, X_8) \\
 = \frac{1}{Z} \exp\{E(X_1)+E(X_2)+E(X_3, X_1)+E(X_4, X_2)+E(X_5, X_2) \\
 + E(X_6, X_3, X_4)+E(X_7, X_6)+E(X_8, X_5, X_6)\}
 \]
Review: independence properties of DAGs

- Defn: let $I_l(G)$ be the set of local independence properties encoded by DAG G, namely:

$$I(G) = \left\{ X \perp Z \mid Y : \text{dsep}_G(X; Z \mid Y) \right\}$$

- Defn: A DAG G is an **I-map** (independence-map) of P if $I_l(G) \subseteq I(P)$

- A fully connected DAG G is an I-map for any distribution, since $I_l(G) = \emptyset \subseteq I(P)$ for any P.

- Defn: A DAG G is a minimal I-map for P if it is an I-map for P, and if the removal of even a single edge from G renders it not an I-map.

- A distribution may have several minimal I-maps
 - Each corresponding to a specific node-ordering
P-maps

- Defn: A DAG G is a **perfect map** (P-map) for a distribution P if $I(P) = I(G)$.
- Thm: not every distribution has a perfect map as DAG.
 - Pf by counterexample. Suppose we have a model where $A \perp C \mid \{B,D\}$, and $B \perp D \mid \{A,C\}$.
 - This cannot be represented by any Bayes net.
 - e.g., BN1 wrongly says $B \perp D \mid A$, BN2 wrongly says $B \perp D$.

![Diagrams of BN1, BN2, and MRF](image-url)
P-maps

- Defn: A DAG G is a **perfect map** (P-map) for a distribution P if $I(P) = I(G)$.

- Thm: not every distribution has a perfect map as DAG.
 - Pf by counterexample. Suppose we have a model where $A \perp C \mid \{B,D\}$, and $B \perp D \mid \{A,C\}$.
 This cannot be represented by any Bayes net.
 - e.g., BN1 wrongly says $B \perp D \mid A$, BN2 wrongly says $B \perp D$.
 - The fact that G is a minimal I-map for P is far from a guarantee that G captures the independence structure in P.
 - The P-map of a distribution is **unique up to I-equivalence** between networks. That is, a distribution P can have many P-maps, but all of them are I-equivalent.
Undirected graphical models (UGM)

- Pairwise (non-causal) relationships
- Can write down model, and score specific configurations of the graph, but no explicit way to generate samples
- Contingency constrains on node configurations
A Canonical Examples: understanding complex scene ...

air or water?
Canonical example

- The grid model

- Naturally arises in image processing, lattice physics, etc.
- Each node may represent a single "pixel", or an atom
 - The states of adjacent or nearby nodes are "coupled" due to pattern continuity or electro-magnetic force, etc.
 - Most likely joint-configurations usually correspond to a "low-energy" state
Social networks

The New Testament Social Networks

© Eric Xing @ CMU, 2005-2014
Protein interaction networks
This is the middle position of a Go game. Overlaid is the estimate for the probability of becoming black or white for every intersection. Large squares mean the probability is higher.
Information retrieval
Defn: an undirected graphical model represents a distribution \(P(X_1, \ldots, X_n) \) defined by an undirected graph \(H \), and a set of positive potential functions \(\psi_c \) associated with the cliques of \(H \), s.t.

\[
P(x_1, \ldots, x_n) = \frac{1}{Z} \prod_{c \in C} \psi_c(x_c)
\]

where \(Z \) is known as the partition function:

\[
Z = \sum_{x_1, \ldots, x_n} \prod_{c \in C} \psi_c(x_c)
\]

Also known as Markov Random Fields, Markov networks …

The potential function can be understood as an contingency function of its arguments assigning "pre-probabilistic" score of their joint configuration.
Global Markov Independencies

- Let H be an undirected graph:

- B separates A and C if every path from a node in A to a node in C passes through a node in B: $\text{sep}_H(A; C|B)$

- A probability distribution satisfies the **global Markov property** if for any disjoint A, B, C, such that B separates A and C, A is independent of C given B: $I(H) = \left\{ A \perp C | B : \text{sep}_H(A; C|B) \right\}$
Local Markov independencies

- For each node $X_i \in V$, there is unique Markov blanket of X_i, denoted MB_{X_i}, which is the set of neighbors of X_i in the graph (those that share an edge with X_i)

- **Defn:**
 The local Markov independencies associated with H is:

 \[I_\ell(H): \{ X_i \perp V - \{X_i\} - MB_{X_i} | MB_{X_i} : \forall i \}, \]

 In other words, X_i is independent of the rest of the nodes in the graph given its immediate neighbors.
Summary: Conditional Independence Semantics in an MRF

Structure: an *undirected graph*

- Meaning: a node is *conditionally independent* of every other node in the network given its *Directed neighbors*

- Local contingency functions (*potentials*) and the *cliques* in the graph completely determine the joint dist.

- Give *correlations* between variables, but no explicit way to generate samples
I. Quantitative Specification: Cliques

- For $G=\{V,E\}$, a complete subgraph (clique) is a subgraph $G'=\{V' \subseteq V, E' \subseteq E\}$ such that nodes in V' are fully interconnected.
- A (maximal) clique is a complete subgraph s.t. any superset $V'' \supseteq V'$ is not complete.
- A sub-clique is a not-necessarily-maximal clique.

Example:
- max-cliques = \{A,B,D\}, \{B,C,D\},
- sub-cliques = \{A,B\}, \{C,D\}, … → all edges and singletons
Gibbs Distribution and Clique Potential

- Defn: an undirected graphical model represents a distribution \(P(X_1, \ldots, X_n) \) defined by an undirected graph \(H \), and a set of positive potential functions \(\psi_c \) associated with cliques of \(H \), s.t.

\[
P(x_1, \ldots, x_n) = \frac{1}{Z} \prod_{c \in C} \psi_c(x_c)
\]

(A Gibbs distribution)

where \(Z \) is known as the partition function:

\[
Z = \sum_{x_1, \ldots, x_n} \prod_{c \in C} \psi_c(x_c)
\]

- Also known as Markov Random Fields, Markov networks …

- The potential function can be understood as an contingency function of its arguments assigning "pre-probabilistic" score of their joint configuration.
Interpretation of Clique Potentials

- The model implies $X \perp Z | Y$. This independence statement implies (by definition) that the joint must factorize as:
 \[p(x, y, z) = p(y)p(x | y)p(z | y) \]

- We can write this as:
 \[p(x, y, z) = p(x, y)p(z | y) \quad \text{but} \quad p(x, y, z) = p(x | y)p(z, y) \]

 - cannot have all potentials be marginals
 - cannot have all potentials be conditionals

- The positive clique potentials can only be thought of as general "compatibility", "goodness" or "happiness" functions over their variables, but not as probability distributions.

© Eric Xing @ CMU, 2005-2014
For discrete nodes, we can represent $P(X_{1:4})$ as two 3D tables instead of one 4D table.
We can represent $P(X_{1:4})$ as 5 2D tables instead of one 4D table.

Pair MRFs, a popular and simple special case.

$I(P')$ vs. $I(P'')$? $D(P')$ vs. $D(P'')$
Example UGM – canonical representation

\begin{align*}
P(x_1, x_2, x_3, x_4) &= \frac{1}{Z} \psi_c(x_{124}) \times \psi_c(x_{234}) \
&\quad \times \psi_{12}(x_{12}) \psi_{14}(x_{14}) \psi_{23}(x_{23}) \psi_{24}(x_{24}) \psi_{34}(x_{34}) \
&\quad \times \psi_1(x_1) \psi_2(x_2) \psi_3(x_3) \psi_4(x_4)
\end{align*}

\begin{align*}
Z &= \sum_{x_1, x_2, x_3, x_4} \psi_c(x_{124}) \times \psi_c(x_{234}) \
&\quad \times \psi_{12}(x_{12}) \psi_{14}(x_{14}) \psi_{23}(x_{23}) \psi_{24}(x_{24}) \psi_{34}(x_{34}) \
&\quad \times \psi_1(x_1) \psi_2(x_2) \psi_3(x_3) \psi_4(x_4)
\end{align*}

- Most general, subsume P' and P" as special cases
- I(P) vs. I(P') vs. I(P'')
- D(P) vs. D(P') vs. D(P'')
Hammersley-Clifford Theorem

- If arbitrary potentials are utilized in the following product formula for probabilities,

\[P(x_1, \ldots, x_n) = \frac{1}{Z} \prod_{c \in C} \psi_c(x_c) \]

\[Z = \sum_{x_1, \ldots, x_n} \prod_{c \in C} \psi_c(x_c) \]

then the family of probability distributions obtained is exactly that set which respects the qualitative specification (the conditional independence relations) described earlier.

- **Thm**: Let \(P \) be a positive distribution over \(V \), and \(H \) a Markov network graph over \(V \). If \(H \) is an I-map for \(P \), then \(P \) is a Gibbs distribution over \(H \).
II: Independence properties: global independencies

- Let us return to the question of what kinds of distributions can be represented by undirected graphs (ignoring the details of the particular parameterization).
- Defn: the global Markov properties of a UG H are
 \[I(H) = \left\{ X \perp Z \mid Y \right\} : \text{sep}_H(X;Z \mid Y) \]

- Is this definition sound and complete?
Soundness and completeness of global Markov property

- Defn: An UG H is an I-map for a distribution P if $I(H) \subseteq I(P)$, i.e., P entails $I(H)$.

- Defn: P is a **Gibbs distribution** over H if it can be represented as
 \[
 P(x_1, \ldots, x_n) = \frac{1}{Z} \prod_{c \in C} \psi_c(x_c)
 \]

- Thm (soundness): If P is a Gibbs distribution over H, then H is an I-map of P.

- Thm (completeness): If $\not\rightarrow sep_H(X; Z \mid Y)$, then $X \not\perp_P Z \mid Y$ in some P that factorizes over H.

© Eric Xing @ CMU, 2005-2014
Local and global Markov properties revisit

- For directed graphs, we defined I-maps in terms of local Markov properties, and derived global independence.
- For undirected graphs, we defined I-maps in terms of global Markov properties, and will now derive local independence.
- Defn: The pairwise Markov independencies associated with UG $H = (V; E)$ are

$$I_p(H) = \{ X \perp Y \mid V \setminus \{X, Y\} : \{X, Y\} \notin E \}$$

- e.g., $X_1 \perp X_5 \mid \{X_2, X_3, X_4\}$
Local Markov properties

- A distribution has the *local Markov property* w.r.t. a graph \(H=(V,E) \) if the conditional distribution of variable given its neighbors is independent of the remaining nodes.

\[
I_l(H) = \left\{ X \perp V \setminus (X \cup N_H(X)) \mid N_H(X) : X \in V \right\}
\]

- **Theorem** (Hammersley-Clifford): If the distribution is strictly positive and satisfies the local Markov property, then it factorizes with respect to the graph.

- \(N_H(X) \) is also called the **Markov blanket** of \(X \).
Relationship between local and global Markov properties

- **Thm 5.5.5.** If $P \models I_\ell(H)$ then $P \models I_\rho(H)$.
- **Thm 5.5.6.** If $P = I(H)$ then $P \models I_\ell(H)$.
- **Thm 5.5.7.** If $P > 0$ and $P \models I_\rho(H)$, then $P \models I(H)$.

- **Corollary (5.5.8):** The following three statements are equivalent for a positive distribution P:

 $P \models I_\ell(H)$
 $P \models I_\rho(H)$
 $P \models I(H)$

 - This equivalence relies on the positivity assumption.
 - We can design a distribution locally
Perfect maps

- Defn: A Markov network H is a perfect map for P if for any $X; Y; Z$ we have that

$$\text{sep}_H(X; Z | Y) \Leftrightarrow P \models (X \perp Z | Y)$$

- Thm: not every distribution has a perfect map as UGM.
 - Pf by counterexample. No undirected network can capture all and only the independencies encoded in a v-structure $X \rightarrow Z \leftarrow Y$.
Exponential Form

- Constraining clique potentials to be positive could be inconvenient (e.g., the interactions between a pair of atoms can be either attractive or repulsive). We represent a clique potential $\psi_c(x_c)$ in an unconstrained form using a real-value "energy" function $\phi_c(x_c)$:

$$\psi_c(x_c) = \exp\{-\phi_c(x_c)\}$$

For convenience, we will call $\phi_c(x_c)$ a potential when no confusion arises from the context.

- This gives the joint a nice additive structure

$$p(x) = \frac{1}{Z} \exp\left\{- \sum_{c \in C} \phi_c(x_c) \right\} = \frac{1}{Z} \exp\{-H(x)\}$$

where the sum in the exponent is called the "free energy":

$$H(x) = \sum_{c \in C} \phi_c(x_c)$$

- In physics, this is called the "Boltzmann distribution".
- In statistics, this is called a log-linear model.
Example: Boltzmann machines

- A fully connected graph with pairwise (edge) potentials on binary-valued nodes (for \(x_i \in \{-1, +1\} \) or \(x_i \in \{0, 1\} \)) is called a Boltzmann machine

\[
P(x_1, x_2, x_3, x_4) = \frac{1}{Z} \exp \left\{ \sum_{ij} \phi_{ij}(x_i, x_j) \right\}
\]

\[
= \frac{1}{Z} \exp \left\{ \sum_{ij} \theta_{ij} x_i x_j + \sum_i \alpha_i x_i + C \right\}
\]

- Hence the overall energy function has the form:

\[
H(x) = \sum_{ij} (x_i - \mu) \Theta_{ij} (x_j - \mu) = (x - \mu)^T \Theta (x - \mu)
\]
Restricted Boltzmann Machines

$$p(x, h \mid \theta) = \exp \left\{ \sum_i \theta_i \phi_i(x_i) + \sum_j \theta_j \phi_j(h_j) + \sum_{i,j} \theta_{i,j} \phi_{i,j}(x_i, h_j) - A(\theta) \right\}$$
Restricted Boltzmann Machines

The Harmonium (Smolensky –’86)

hidden units

visible units

History:
Smolensky (’86), Proposed the architecture.
Freund & Haussler (’92), The “Combination Machine” (binary), learning with projection pursuit.
Hinton (’02), The “Restricted Boltzmann Machine” (binary), learning with contrastive divergence.
Marks & Movellan (’02), Diffusion Networks (Gaussian).
Welling, Hinton, Osindero (’02), “Product of Student-T Distributions” (super-Gaussian)
Properties of RBM

- Factors are marginally *dependent*.

- Factors are conditionally *independent* given observations on the visible nodes.
 \[P(\ell | w) = \prod_i P(\ell_i | w) \]

- Iterative Gibbs sampling.

- Learning with contrastive divergence
A Constructive Definition

\[
p_{\text{ind}}(h) \propto \prod_j \exp\{ \theta_j g_j(h_j) \}
\]

\[
p_{\text{ind}}(x) \propto \prod_i \exp\{ \theta_i f_i(x_i) \}
\]

\[
p(x, h | \theta) = \exp\{ \sum_i \tilde{\theta}_i \tilde{f}_i(x_i) + \sum_j \tilde{\lambda}_j \tilde{g}_j(h_j) + \sum_{i,j} \tilde{f}_i^T(x_i) \mathbf{w}_{i,j} \tilde{g}_j(h_j) \}
\]
A Constructive Definition

They map to the RBM random field:

\[
p(x, h \mid \theta) = \exp \left\{ \sum_i \tilde{\theta}_i \tilde{f}_i(x_i) + \sum_j \tilde{\lambda}_j \tilde{g}_j(h_j) + \sum_{i,j} f_i^T(x_i) W_{i,j} \tilde{g}_j(h_j) \right\}
\]

\[
p(x \mid h) = \prod_i p(x_i \mid h),
\]

\[
p(x_i \mid h) = \exp \left\{ \sum_a \hat{\theta}_{ia} f_{ia}(x_i) + A_i(\hat{\theta}_{ia}) \right\}
\]

\[
\hat{\theta}_{ia} = \theta_{ia} + \sum_j W_{ia}^{jb} g_{jb}(h_j) = \theta_{ia} + \sum_j \tilde{W}_{ia}^{jb} \tilde{g}_{jb}(h_j)
\]

\[
p(h \mid x) = \prod_j p(h_j \mid x)
\]

\[
p(h_j \mid x) = \exp \left\{ \sum_b \hat{\lambda}_{jb} g_{jb}(h_j) + B_j(\hat{\lambda}_{jb}) \right\}
\]

\[
\hat{\lambda}_{jb} = \lambda_{jb} + \sum_{ia} W_{ia}^{jb} f_{ia}(x_i) = \lambda_{jb} + \sum_i \tilde{W}_{ia}^{jb} \tilde{f}_i(x_i)
\]
An RBM for Text Modeling

\[h_j = 3: \text{topic } j \text{ has strength } 3 \]

\[h_j \in \mathbb{R}, \quad \langle h_j \rangle = \sum_i W_{i,j} x_i \]

\[x_i = n: \text{word } i \text{ has count } n \]

\[x_i \in \mathbb{I} \]

\[
p(h \mid x) = \prod_j \text{Normal}_{h_j} \left[\sum_i \tilde{W}_{ij} \tilde{x}_i, 1 \right]
\]

\[
p(x \mid h) = \prod_i \text{Bi}_{x_i} \left[N, \frac{\exp(\alpha_j + \sum_j W_{ij} h_j)}{1 + \exp(\alpha_j + \sum_j W_{ij} h_j)} \right]
\]

\[\Rightarrow p(x) \propto \exp \left\{ \sum_i \alpha_i x_i - \log \Gamma(x_i) - \log \Gamma(N - x_i) \right\} + \frac{1}{2} \sum_j \left(\sum_i W_{i,j} x_i \right)^2 \]
Conditional Random Fields

- Discriminative
 \[p_\theta(y \mid x) = \frac{1}{Z(\theta, x)} \exp\left\{ \sum_c \theta_c f_c(x, y_c) \right\} \]

- Doesn’t assume that features are independent

- When labeling \(X_i \) future observations are taken into account

© Eric Xing @ CMU, 2005-2014
Conditional Models

- Conditional probability $P(\text{label sequence } y \mid \text{observation sequence } x)$ rather than joint probability $P(y, x)$
 - Specify the probability of possible label sequences given an observation sequence

- Allow arbitrary, non-independent features on the observation sequence X

- The probability of a transition between labels may depend on past and future observations

- Relax strong independence assumptions in generative models

© Eric Xing @ CMU, 2005-2014
Conditional Distribution

- If the graph $G = (V, E)$ of Y is a tree, the conditional distribution over the label sequence $Y = y$, given $X = x$, by the Hammersley Clifford theorem of random fields is:

$$p_\theta(y \mid x) \propto \exp \left(\sum_{e \in E, k} \lambda_k f_k(e, y_e \mid x) + \sum_{v \in V, k} \mu_k g_k(v, y_v \mid x) \right)$$

- x is a data sequence
- y is a label sequence
- v is a vertex from vertex set $V = \text{set of label random variables}$
- e is an edge from edge set E over V
- f_k and g_k are given and fixed. g_k is a Boolean vertex feature; f_k is a Boolean edge feature
- k is the number of features
- $\theta = (\lambda_1, \lambda_2, \cdots, \lambda_n; \mu_1, \mu_2, \cdots, \mu_n); \lambda_k$ and μ_k are parameters to be estimated
- y_e is the set of components of y defined by edge e
- y_v is the set of components of y defined by vertex v
Conditional Distribution (cont’d)

- CRFs use the observation-dependent normalization $Z(x)$ for the conditional distributions:

$$p_\theta(y \mid x) = \frac{1}{Z(x)} \exp \left(\sum_{e \in E,k} \lambda_k f_k(e, y_{e|x}) + \sum_{v \in V,k} \mu_k g_k(v, y_{v|x}) \right)$$

- $Z(x)$ is a normalization over the data sequence x
Conditional Random Fields

- Allow arbitrary dependencies on input
- Clique dependencies on labels
- Use approximate inference for general graphs

\[
p_\theta(y \mid x) = \frac{1}{Z(\theta, x)} \exp\left\{ \sum_c \theta_c f_c(x, y_c) \right\}
\]

© Eric Xing @ CMU, 2005-2014
Summary

- Undirected graphical models capture “relatedness”, “coupling”, “co-occurrence”, “synergism”, etc. between entities.
- Local and global independence properties identifiable via graph separation criteria.
- Defined on clique potentials.
- Generally intractable to compute likelihood due to presence of “partition function”.
 - Therefore not only inference, but also likelihood-based learning is difficult in general.
- Can be used to define either joint or conditional distributions.
- Important special cases:
 - Ising models
 - RBM
 - CRF