Probabilistic Graphical Models

Bayesian Nonparametrics:
Dirichlet Processes

Eric Xing
Lecture 19, March 26, 2014

Acknowledgement: slides first drafted by Sinead Williamson
How Many Clusters?
How Many Segments?
How Many Topics?

Research circles

Research topics

PNAS papers

Phy

Bio

CS

1900

2000

©Eric Xing @ CMU, 2012-2014
Parametric vs nonparametric

Parametric model:
- Assumes all data can be represented using a fixed, finite number of parameters.
 - Mixture of \(K \) Gaussians, polynomial regression.

Nonparametric model:
- Number of parameters can grow with sample size.
- Number of parameters may be random.
 - Kernel density estimation.

Bayesian nonparametrics:
- Allow an *infinite* number of parameters *a priori*.
- A finite data set will only use a finite number of parameters.
- Other parameters are integrated out.
Clustered data

- How to model this data?

- Mixture of Gaussians:

\[p(x_1, \ldots, x_N | \pi, \{\mu_k\}, \{\Sigma_k\}) \]

\[= \prod_{n=1}^{\infty} \sum_{k=1}^{K} \pi_k \mathcal{N}(x_k | \mu_k, \Sigma_k) \]

- Parametric model: Fixed finite number of parameters.
Bayesian finite mixture model

- How to choose the mixing weights and mixture parameters?
- Bayesian choice: Put a prior on them and integrate out:

\[
p(x_1, \ldots, x_N) = \int \int \int \left(\prod_{n=1}^{\infty} \sum_{k=1}^{K} \pi_k \mathcal{N}(x_n | \mu_k, \Sigma_k) \right) p(\pi) p(\mu_{1:K}) p(\Sigma_{1:K}) d\pi d\mu_{1:K} d\Sigma_{1:K}
\]

- Where possible, use conjugate priors
 - Gaussian/inverse Wishart for mixture parameters
 - What to choose for mixture weights?
The Dirichlet distribution

- The Dirichlet distribution is a distribution over the \((K-1)\)-dimensional simplex.
- It is parametrized by a \(K\)-dimensional vector \((\alpha_1, \ldots, \alpha_K)\) such that \(\alpha_k \geq 0\), \(k = 1, \ldots, K\) and \(\sum_k \alpha_k > 0\).
- Its distribution is given by

\[
\frac{\prod_{k=1}^{K} \Gamma(\alpha_k)}{\Gamma(\sum_{k=1}^{K} \alpha_k)} \prod_{k=1}^{K} \pi_k^{\alpha_k - 1}
\]
Samples from the Dirichlet distribution

- If $\pi \sim \text{Dirichlet}(\alpha_1, \ldots, \alpha_K)$ then $\pi_k \geq 0$ for all k, and $\sum_{k=1}^{K} \pi_k = 1$.

- Expectation: $\mathbb{E}
\left[
\begin{pmatrix}
\pi_1, & \ldots, & \pi_K
\end{pmatrix}
\right] = \frac{\left(\alpha_1, \ldots, \alpha_K\right)}{\sum_k \alpha_k}$

$\alpha = (0.01, 0.01, 0.01)$ $\alpha = (100, 100, 100)$ $\alpha = (5, 50, 100)$
Conjugacy to the multinomial

- If $\pi \sim \text{Dirichlet}(\alpha_1, \ldots, \alpha_K)$ and $x_n \overset{iid}{\sim} \pi$

\[
p(\pi|x_1, \ldots, x_n) \propto p(x_1, \ldots, x_n|\pi)p(\pi)
\]

\[
= \left(\frac{\prod_{k=1}^{K} \Gamma(\alpha_k)}{\Gamma(\sum_{k=1}^{K} \alpha_k)} \frac{\prod_{k=1}^{K} \pi_k^{\alpha_k-1}}{\prod_{k=1}^{K} \pi_k^{-1}}\right) \left(\frac{n!}{m_1! \ldots m_K!} \pi_1^{m_1} \ldots \pi_K^{m_K}\right)
\]

\[
\propto \frac{\prod_{k=1}^{K} \Gamma(\alpha_k + m_k)}{\Gamma(\sum_{k=1}^{K} \alpha_k + m_k)} \frac{\prod_{k=1}^{K} \pi_k^{\alpha_k+m_k-1}}{\prod_{k=1}^{K} \pi_k^{-1}}
\]

\[
= \text{Dirichlet}(\pi|\alpha_1 + m_1, \ldots, \alpha_K + m_K)
\]
Distributions over distributions

- The Dirichlet distribution is a distribution over positive vectors that sum to one.
- We can further associate each entry with a set of parameters
 - e.g. finite mixture model: each entry associated with a mean and covariance.
- In a Bayesian setting, we want these parameters to be random.
- We can combine the distribution over probability vectors with a distribution over parameters to get a **distribution over distributions over parameters**.
Example: finite mixture model

- Gaussian distribution: distribution over means.
 - Sample from a Gaussian is a real-valued number.
Example: finite mixture model

- **Gaussian distribution:** distribution over means.
 - Sample from a Gaussian is a real-valued number.

- **Dirichlet distribution:**
 - Sample from a Dirichlet distribution is a probability vector.
Example: finite mixture model

- Dirichlet Mixture Prior
 - Each element of a Dirichlet-distributed vector is associated with a parameter value drawn from some distribution.
 - Sample from a Dirichlet mixture prior is a probability distribution over parameters of a finite mixture model.
Properties of the Dirichlet distribution

- The coalesce rule:
 \[(\pi_1 + \pi_2, \pi_3, \ldots, \pi_K) \sim \text{Dirichlet}(\alpha_1 + \alpha_2, \alpha_3, \ldots, \alpha_K)\]

- Relationship to gamma distribution: If \(\eta_k \sim \text{Gamma}(\alpha_k, 1)\)
 \[\left(\frac{\eta_1, \ldots, \eta_K}{\sum_k \eta_k}\right) \sim \text{Dirichlet}(\alpha_1, \ldots, \alpha_K)\]

- If \(\eta_1 \sim \text{Gamma}(\alpha_1, 1)\) and \(\eta_2 \sim \text{Gamma}(\alpha_2, 1)\) then
 \[\eta_1 + \eta_2 \sim \text{Gamma}(\alpha_1 + \alpha_2, 1)\]

- Therefore, if \((\pi_1 \ldots, \pi_K) \sim \text{Dirichlet}(\alpha_1, \ldots, \alpha_K)\) then
 \[(\pi_1 + \pi_2, \pi_3, \ldots, \pi_K) \sim \text{Dirichlet}(\alpha_1 + \alpha_2, \alpha_3, \ldots, \alpha_K)\]
Properties of the Dirichlet distribution

- The “combination” rule:
 - The beta distribution is a Dirichlet distribution on the 1-simplex.
 - Let \((\pi_1, \ldots, \pi_K) \sim \text{Dirichlet}(\alpha_1, \ldots, \alpha_K)\) and
 \[\theta \sim \text{Beta}(\alpha_1 b, \alpha_1(1-b)), 0 < b < 1.\]
 - Then
 \[(\pi_1 \theta, \pi_1(1-\theta), \pi_2, \ldots, \pi_K) \sim \text{Dirichlet}(\alpha_1 b_1, \alpha_1(1-b_1), \alpha_2, \ldots, \alpha_K)\]
 - More generally, if \(\theta \sim \text{Dirichlet}(\alpha_1 b_1, \alpha_1 b_2, \ldots, \alpha_1 b_N), \sum_i b_i = 1.\)
 then
 \[(\pi_1 \theta_1, \ldots, \pi_1 \theta_N, \pi_2, \ldots, \pi_K) \sim \text{Dirichlet}(\alpha_1 b_1, \ldots, \alpha_1 b_N, \alpha_2, \ldots, \alpha_K)\]
Properties of the Dirichlet distribution

- The “Renormalization” rule:

\[\text{If } (\pi_1, \ldots, \pi_K) \sim \text{Dirichlet}(\alpha_1, \ldots, \alpha_K) \]
\[\text{then } \frac{(\pi_2, \ldots, \pi_K)}{\sum_{k=1}^{K} \pi_k} \sim ? \]

\[\frac{(\pi_2, \ldots, \pi_K)}{\sum_{k=1}^{K} \pi_k} \sim \text{Dirichlet}(\alpha_2, \ldots, \alpha_K) \]
Choosing the number of clusters

- Mixture of Gaussians – but how many components?
- What if we see more data – may find new components?
Bayesian nonparametric mixture models

- Make sure we always have more clusters than we need.
- Solution – infinite clusters *a priori*

\[
p(x_n | \pi, \{\mu_k\}, \{\Sigma_k\}) = \sum_{k=1}^{\infty} \pi_k \mathcal{N}(x_n | \mu_k, \Sigma_k)
\]

- A finite data set will always use a finite – but random – number of clusters.

- How to choose the prior?
- We want something *like* a Dirichlet prior – but with an infinite number of components. How such a distribution can be defined?
Constructing an appropriate prior

- Start off with \(\pi^{(2)} = (\pi_1^{(2)}, \pi_2^{(2)}) \sim \text{Dirichlet} \left(\frac{\alpha}{2}, \frac{\alpha}{2} \right) \)

- Split each component according to the splitting rule:

\[
\begin{align*}
\theta_1^{(2)} \sim \text{Beta} \left(\frac{\alpha}{2} \cdot \frac{1}{2}, \frac{\alpha}{2} \cdot \frac{1}{2} \right) \\
\theta_2^{(2)} \sim \text{Beta} \left(\frac{\alpha}{2} \cdot \frac{1}{2}, \frac{\alpha}{2} \cdot \frac{1}{2} \right) \\
\pi^{(4)} = (\theta_1^{(2)} \pi_1^{(2)}), (1 - \theta_1^{(2)}) \pi_1^{(2)}), \theta_2^{(2)} \pi_2^{(2)}), (1 - \theta_2^{(2)}) \pi_2^{(2)}) \\
\sim \text{Dirichlet} \left(\frac{\alpha}{4}, \frac{\alpha}{4}, \frac{\alpha}{4}, \frac{\alpha}{4} \right)
\end{align*}
\]

- Repeat to get \(\pi^{(K)} \sim \text{Dirichlet} \left(\frac{\alpha}{K}, \ldots, \frac{\alpha}{K} \right) \)

- As \(K \to \infty \), we get a vector with infinitely many components
The Dirichlet process

- Let H be a distribution on some space Ω – e.g. a Gaussian distribution on the real line.

- Let $\pi \sim \lim_{K \to \infty} \text{Dirichlet} \left(\frac{\alpha}{K}, \ldots, \frac{\alpha}{K} \right)$

- For $k = 1, \ldots, \infty$ let $\theta_k \sim H$.

- Then $G := \sum_{k=1}^{\infty} \pi_k \delta_{\theta_k}$ is an infinite distribution over Ω.

- We write $G \sim \text{DP}(\alpha, H)$
Samples from the Dirichlet process

- Samples from the Dirichlet process are *discrete*.
- We call the point masses in the resulting distribution, *atoms*.

- The *base measure* H determines the *locations* of the atoms.
Samples from the Dirichlet process

- The *concentration parameter* α determines the distribution over atom sizes.
- Small values of α give *sparse* distributions.

\[\alpha \]

\[\alpha \]

\[\alpha \]
Properties of the Dirichlet process

- For any partition A_1, \ldots, A_K of Ω, the total mass assigned to each partition is distributed according to $Dir(\alpha H(A_1), \ldots, \alpha H(A_K))$
Definition: Finite marginals

- A Dirichlet process is the unique distribution over probability distributions on some space Ω, such that for any finite partition A_1, \ldots, A_K of Ω,

$$(P(A_1), \ldots, P(A_K)) \sim \text{Dirichlet}(\alpha H(A_1), \ldots, \alpha H(A_K)).$$

[©Eric Xing @ CMU, 2012-2014]
Random Partition of Probability Space

centroid := \phi

\{\phi_4, \pi_4\}
\{\phi_5, \pi_5\}
\{\phi_6, \pi_6\}
\{\phi_2, \pi_2\}
\{\phi_3, \pi_3\}

Image ele: \((x, \theta) \)
A CDF, G, on possible worlds of random partitions follows a Dirichlet Process if for any measurable finite partition $(\phi_1, \phi_2, ..., \phi_m)$:

$$(G(\phi_1), G(\phi_2), ..., G(\phi_m)) \sim \text{Dirichlet}(\alpha G_0(\phi_1), ..., \alpha G_0(\phi_m))$$

where G_0 is the base measure and α is the scale parameter.

Thus a Dirichlet Process G defines a distribution of distribution.
Conjugacy of the Dirichlet process

Let A_1, \ldots, A_K be a partition of Ω, and let H be a measure on Ω. Let $P(A_k)$ be the mass assigned by $G \sim \text{DP}(\alpha, H)$ to partition A_k. Then $(P(A_1), \ldots, P(A_K)) \sim \text{Dirichlet}(\alpha H(A_1), \ldots, \alpha H(A_K))$.

If we see an observation in the J^{th} segment (or fraction), then

$$(P(A_1), \ldots, P(A_j), \ldots, P(A_K)|X_1 \in A_j)$$

$\sim \text{Dirichlet}(\alpha H(A_1), \ldots, \alpha H(A_j) + 1, \ldots, \alpha H(A_K))$.

This must be true for all possible partitions of Ω.

This is only possible if the posterior of G, given an observation x, is given by

$$G|X_1 = x \sim \text{DP}\left(\alpha + 1, \frac{\alpha H + \delta_x}{\alpha + 1}\right)$$
The Dirichlet process clusters observations.

A new data point can either join an existing cluster, or start a new cluster.

Question: What is the predictive distribution for a new data point?

Assume H is a continuous distribution on Ω. This means for every point θ in Ω, $H(\theta) = 0$.

- Therefore θ itself should not be treated as a data point, but parameter for modeling the observed data points

First data point:

- Start a new cluster.
- Sample a parameter θ_1 for that cluster.
Predictive distribution

- We have now split our parameter space in two: the singleton θ_1, and everything else.
- Let π_1 be the atom at θ_1.
- The combined mass of all the other atoms is $\pi_* = 1 - \pi_1$.
- *A priori*, $(\pi_1, \pi_*) \sim \text{Dirichlet}(0, \alpha)$
- *A posteriori*, $(\pi_1, \pi_*)|X_1 = \theta_1 \sim \text{Dirichlet}(1, \alpha)$
Predictive distribution

If we integrate out π_1 we get

$$P(X_2 = \theta_k | X_1 = \theta_1) = \int P(X_2 = \theta_k | (\pi_1, \pi_*)) P((\pi_1, \pi_* | X_1 = \theta_1) d\pi_1$$

$$= \int \pi_k \text{Dirichlet}((\pi_1, 1 - \pi_1)| 1, \alpha) d\pi_1$$

$$= \mathbb{E}_{\text{Dirichlet}(1,\alpha)}[\pi_k]$$

$$= \begin{cases} \frac{1}{1+\alpha} & \text{if } k = 1 \\ \frac{\alpha}{1+\alpha} & \text{for new } k. \end{cases}$$
Predictive distribution

- Let's say we choose to start a new cluster, and sample a new parameter $\theta_2 \sim H$. Let π_2 be the size of the atom at θ_2.
- A posteriori, $(\pi_1, \pi_2, \pi_*)|X_1 = \theta_1, X_2 = \theta_2 \sim \text{Dirichlet}(1, \alpha)$.
- If we integrate out $\pi = (\pi_1, \pi_2, \pi_*)$ we get

$$P(X_3 = \theta_k|X_1 = \theta_1, X_2 = \theta_2)$$

$$= \int P(X_3 = \theta_k|\pi)P(\pi|X_1 = \theta_1, X_2 = \theta_2)d\pi$$

$$= \mathbb{E}_{\text{Dirichlet}(1,1,\alpha)}[\pi_k]$$

$$= \begin{cases} \frac{1}{2+\alpha} & \text{if } k = 1 \\ \frac{1}{2+\alpha} & \text{if } k = 2 \\ \frac{\alpha}{2+\alpha} & \text{for new } k. \end{cases}$$
Predictive distribution

- In general, if m_k is the number of times we have seen $X_i = k$, and K is the total number of observed values,

$$P(X_{n+1} = \theta_k | X_1, \ldots, X_n) = \int P(X_{n+1} = \theta_k | \pi) P(\pi | X_1, \ldots, X_n) d\pi$$

$$= \mathbb{E}_{\text{Dirichlet}(m_1, \ldots, m_K, \alpha)}[\pi_k]$$

$$= \begin{cases} \frac{m_k}{n+\alpha} & \text{if } k \leq K \\ \frac{\alpha}{n+\alpha} & \text{for new cluster.} \end{cases}$$

- We tend to see observations that we have seen before – rich-get-richer property.
- We can always add new features – nonparametric.
A few useful metaphors for DP
DP – a Pólya urn Process

\[p = \frac{2}{5 + \alpha} \]

\[p = \frac{3}{5 + \alpha} \]

\[p = \frac{\alpha}{5 + \alpha} \]

\[G_0 := p(\circ \bullet \bullet \bullet \ldots) \]

Joint: \[G(\bullet \circ) \sim DP(\alpha G_0) \]

Marginal: \[\phi_i | \phi_{-i}, \alpha, G_0 \sim \sum_{k=1}^{K} \frac{n_k}{i - 1 + \alpha} \delta_{\phi_k} + \frac{\alpha}{i - 1 + \alpha} G_0. \]

- Self-reinforcing property
- Exchangeable partition of samples

©Eric Xing @ CMU, 2012-2014
Polya urn scheme

- The resulting distribution over data points can be thought of using the following urn scheme.
- An urn initially contains a black ball of mass α.
- For $n=1,2,…$ sample a ball from the urn with probability proportional to its mass.
- If the ball is black, choose a previously unseen color, record that color, and return the black ball plus a unit-mass ball of the new color to the urn.
- If the ball is not black, record it’s color and return it, plus another unit-mass ball of the same color, to the urn.

[Blackwell and MacQueen, 1973]
The Chinese Restaurant Process

\[P(c_i = k \mid c_{-i}) = \begin{cases}
\frac{1}{1+\alpha} & \text{if } k = 1 \\
\frac{1}{2+\alpha} & \text{if } k = 2 \\
\frac{1}{3+\alpha} & \text{if } k = \frac{m_1}{i+\alpha - 1} \\
\frac{\alpha}{1+\alpha} & \text{if } k = \frac{m_2}{i+\alpha - 1} \\
\frac{\alpha}{2+\alpha} & \text{if } k = \frac{\alpha}{3+\alpha} \\
\frac{\alpha}{i+\alpha - 1} & \text{if } k = \frac{\alpha}{i+\alpha - 1} \\
\end{cases} \]
Exchangeability

- An interesting fact: the distribution over the clustering of the first N customers does not depend on the order in which they arrived.
- Homework: Prove to yourself that this is true.
- However, the customers are not independent – they tend to sit at popular tables.
- We say that distributions like this are exchangeable.
- De Finetti’s theorem: If a sequence of observations is exchangeable, there must exist a distribution given which they are iid.
- The customers in the CRP are iid given the underlying Dirichlet process – by integrating out the DP, they become dependent.
The Stick-breaking Process

$G \sim DP(\alpha, G_0)$

$G = \sum_{k=1}^{\infty} \pi_k \delta(\theta_k)$

$\theta_k \sim G_0$

$\sum_{k=1}^{\infty} \pi_k = 1$

$\pi_k = \beta_k \prod_{j=1}^{k-1} (1 - \beta_j)$

$\beta_k \sim Beta(1, \alpha)$

<table>
<thead>
<tr>
<th>$\prod_{j=1}^{k-1} (1 - \beta_j)$</th>
<th>β_k</th>
<th>π_k</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.4</td>
<td>0.4</td>
</tr>
<tr>
<td>0.6</td>
<td>0.5</td>
<td>0.3</td>
</tr>
<tr>
<td>0.3</td>
<td>0.8</td>
<td>0.24</td>
</tr>
</tbody>
</table>

©Eric Xing @ CMU, 2012-2014
Stick breaking construction

- We can represent samples from the Dirichlet process exactly.
- Imagine a stick of length 1, representing total probability.
- For k=1,2,…
 - Sample a beta(1,α) random variable b_k.
 - Break off a fraction b_k of the stick. This is the kth atom size
 - Sample a random location for this atom.
 - Recurse on the remaining stick.

$$G := \sum_{k=1}^{\infty} \pi_k \delta_{\theta_k}$$
$$\pi_k := b_k \prod_{j=1}^{k-1} (1 - b_k)$$
$$b_k \sim \text{Beta}(1, \alpha)$$

[Sethuraman, 1994]
Graphical Model Representations of DP

The Pólya urn construction

The Stick-breaking construction
Inference in the DP mixture model

\[G := \sum_{k=1}^{\infty} \pi_k \delta_{\theta_k} \sim \text{DP}(\alpha, H) \]

\[\phi_n \sim G \]

\[x_n \sim f(\phi_n) \]
Inference: Collapsed sampler

- We can integrate out G to get the CRP.
- Reminder: Observations in the CRP are exchangeable.
- Corollary: When sampling any data point, we can always rearrange the ordering so that it is the last data point.
- Let z_n be the cluster allocation of the nth data point.
- Let K be the total number of instantiated clusters.
- Then
 \[
p(z_n = k | x_n, z_{-n}, \phi_1:K) \propto \begin{cases}
m_k f(x_n | \phi_k) & k \leq K \\
\alpha \int_\Omega f(x_n | \phi) H(d\phi) & k = K + 1
\end{cases}
\]
- If we use a conjugate prior for the likelihood, we can often integrate out the cluster parameters
Problems with the collapsed sampler

- We are only updating one data point at a time.
- Imagine two “true” clusters are merged into a single cluster – a single data point is unlikely to “break away”.
- Getting to the true distribution involves going through low probability states → mixing can be slow.
- If the likelihood is not conjugate, integrating out parameter values for new features can be difficult.
- Neal [2000] offers a variety of algorithms.
- Alternative: Instantiate the latent measure.
Inference: Blocked Gibbs sampler

- Rather than integrate out G, we can instantiate it.
- Problem: G is infinite-dimensional.
- Solution: Approximate it with a truncated stick-breaking process:

$$G^K := \sum_{k=1}^{K} \pi_k \delta_{\theta_k}$$

$$\pi_k = b_k \prod_{j=1}^{k-1} (1 - b_j)$$

$$b_k \sim \text{Beta}(1, \alpha), \quad k = 1, \ldots, K - 1$$

$$b_K = 1$$
Inference: Blocked Gibbs sampler

- Sampling the cluster indicators:

\[p(z_n = k | \text{rest}) \propto \pi_k f(x_n | \theta_k) \]

- Sampling the stick breaking variables:
 - We can think of the stick breaking process as a sequence of binary decisions.
 - Choose \(z_n = 1 \) with probability \(b_1 \).
 - If \(z_n \neq 1 \), choose \(z_n = 2 \) with probability \(b_2 \).
 - etc..

\[b_k | \text{rest} \sim \text{Beta} \left(1 + m_k, \alpha + \sum_{j=k+1}^{K} m_j \right) \]
Inference: Slice sampler

- Problem with batch sampler: Fixed truncation introduces error.

- Idea:
 - Introduce random truncation.
 - If we marginalize over the random truncation, we recover the full model.

- Introduce a uniform random variable u_n for each data point.

- Sample indicator z_n according to
 \[p(z_n = k | \text{rest}) = I(\pi_k > u_n) f(x_n | \theta_k) \]

- Only a finite number of possible values.
Inference: Slice sampler

- The conditional distribution for u_n is just:

\[u_n | \text{rest} \sim \text{Uniform}[0, \pi_{z_n}] \]

- Conditioned on the u_n and the z_n, the π_k can be sampled according to the block Gibbs sampler.

- Only need to represent a finite number K of components such that

\[1 - \sum_{k=1}^{K} \pi_k < \min(u_n) \]
Summary: Bayesian Nonparametrics

- Examples: Dirichlet processes, stick-breaking processes …
- From finite, to infinite mixture, to more complex constructions (hierarchies, spatial/temporal sequences, …)
- Focus on the laws and behaviors of both the generative formalisms and resulting distributions
- Often offer explicit expression of distributions, and expose the structure of the distributions --- motivate various approximate schemes