Probabilistic Graphical Models

Approximate Inference: Advanced Topics in MCMC

Eric Xing
Lecture 18, March 24, 2014
Recap of MCMC

- Markov Chain Monte Carlo methods use adaptive proposals $Q(x'|x)$ to sample from the true distribution $P(x)$

- Metropolis-Hastings allows you to specify any proposal $Q(x'|x)$
 - But choosing a good $Q(x'|x)$ requires care

- Gibbs sampling sets the proposal $Q(x'|x)$ to the conditional distribution $P(x'|x)$
 - Acceptance rate always 1!
 - But remember that high acceptance usually entails slow exploration
 - In fact, there are better MCMC algorithms for certain models

- Knowing when to halt burn-in is an art
Auxiliary Variables

- Advanced MCMC algorithms rely on **auxiliary variables**
 - Auxiliary variables are extra r.v.s not from the original model
 - They are *random-valued intermediate quantities* that allow us to sample model r.v.s in creative ways

- Suppose x is an r.v. and v is an a.v.. Generally, we use a.v.s when:
 - $P(x|v)$ and $P(v|x)$ have simple forms
 - $P(x,v)$ is easy to navigate
Slice Sampling

- Slice sampling is an auxiliary variable MCMC algorithm
 - Key idea: uniformly sample the area under $P'(x) = aP(X)$, instead of $P(x)$
 - Never evaluate expensive $P(x)$, only evaluate cheap $P'(x)$
Slice Sampling

- When is Slice sampling useful?
 - Ex: Markov Random Fields where $P(x) = (1/a) \cdot \exp(bx)$
 - Normalizer $(1/a)$ usually intractable to evaluate!
 - Slice sampling only requires (easy) evaluation of $P'(x) = \exp(bx)$
Slice Sampling

- Slice sampling uses an a.v. h (in addition to the r.v. x)
 - The pair (x,h) is the position of the sampler in the area under $P'(x)$
- We only need to know $P'(x) = aP(x)$ for some unknown a
- The algorithm iterates between two steps:
 - Step 1: sample h from $Q(h \mid x) = \text{Uniform}[0, P'(x)]$
 - Step 2: sample x from $Q(x \mid h) \propto \begin{cases}
1 & \text{if } P'(x) \geq h \\
0 & \text{otherwise}
\end{cases}$ (uniform dist. on all x s.t. $P'(x) \geq h$)
Slice Sampling

- The algorithm iterates between two steps:
 - Step 1: sample \(h \) from \(Q(h \mid x) = \text{Uniform}[0, P'(x)] \)
 - Step 2: sample \(x \) from
 \[
 Q(x \mid h) \propto \begin{cases}
 1 & \text{if } P'(x) \geq h \\
 0 & \text{otherwise}
 \end{cases}
 \text{ (uniform dist. on all } x \text{ s.t. } P'(x) \geq h) \]

- Step 2 requires finding the set \(\{x \text{ s.t. } P'(x) \geq h\} \)
 - Alternative 1: rejection sampling (reject whenever we get \(x \) s.t. \(P'(x) < h \))
 - Alternative 2: “Bracketing” technique (to be presented shortly)
Why does this work?

- At convergence, the samples \((x,h)\) will be uniformly distributed under the area of \(P'(x)\).
- If we marginalize out \(h\), we get samples from \(P(x) = \frac{1}{a}P'(x)\).
 - Never needed to evaluate normalizer \((1/a)!\)
Why does this work?

- How to marginalize out h?
 - We have samples (x_1, h_1), (x_1, h_2), (x_2, h_2), (x_2, h_3), …
 - Marginalization is just dropping h from the samples
 - After dropping h, left with x_1, x_2, x_3, … which are samples from $P(x)$!
Handling difficult $Q(x|h)$

- Step 2 (sampling $Q(x|h)$) may not be easy
 - For complex distributions, cannot analytically find \{x s.t. $P'(x) \geq h$\}
 - However, we can still easily evaluate $P'(x)$ at any x...

- Solution: “bracketing” strategy
 1. Draw a random bracket width w, and place the bracket on (x_{old}, h)
 2. Expand the bracket until the endpoints a, b are “above $P'(x)$”: i.e. $P'(a) < h$ and $P'(b) < h$
 3. Uniformly sample from within the bracket (reject samples x s.t. $P'(x) < h$)

Satisfies detailed balance, but not as efficient because the brackets can miss other modes
How to Sample from Different Model Spaces?

- **Detailed Balance**

\[\pi(x')T(x' | x') = \pi(x)T(x' | x) \]

- **Why we need detailed balance?**
 - Stationary distribution \(\pi(x) \)!
 - Then how can such a \(\pi(x) \) handle the following case?

2 clusters

3 clusters
Reversible Jump MCMC

- An MCMC algorithm that allows for model selection
 - Examples: choosing # clusters K, or even switching between two completely different models $P_1(x)$ and $P_2(x)$
RJMCMC

- Definitions:
 - \(x \) – model r.v.s (the number of \(x \)'s can change depending on the model)
 - \(u \) – auxiliary variables used to perform “dimension matching”
 - \(m \) – an indicator representing which model we are currently using
 - \(P(x|m) \) – probability distribution for r.v.s \(x \) assuming model \(m \)

- RJMCMC uses two types of proposal distribution:
 - \(j(m'|m) \) – model proposal; switches from model \(m \) to \(m' \). Must be reversible!
 - \(q(x',u'|m\rightarrow m',x,u) \) – data proposal; proposes \((x',u') \) under the new model \(m' \), starting from \((x,u) \) under the previous model \(m \)

- RJMCMC also requires a mapping function:
 - \(h_{m,m'}(x,u) \) – explains how \((x,u) \) under model \(m \) maps to \((x',u') \) under \(m' \)
The mapping function $h()$

- Properties of $h_{m,m'}(x,u)$:
 - Is deterministic (non-random)
 - Takes a vector (x,u) as input, and outputs a vector (x',u')
 - Dimension of x is usually different from x' (and likewise for u,u')
 - Must be bijective (one-to-one) so that its inverse is well-defined

- Simple example: switching from 2 clusters to 3 clusters
 - Let x_1, x_2 be the first 2 cluster centers
 - Randomly draw an a.v. u to be the 3rd cluster center
 - Then
 $$h_{2,3}(x_1, x_2, u) = \begin{bmatrix} x_1' = x_1 \\ x_2' = x_2 \\ x_3' = u \end{bmatrix}$$
 - i.e. $h_{2,3}()$ maps a 2-cluster model to a 3-cluster model by setting the 3rd cluster center x_3' to u (dimension matching)
RJMCMC Algorithm

1. Initialize x,u,m

2. Repeat until convergence:
 1. Propose a new model m' using $j(m'|m)$
 2. Propose a new model state (x',u') using $q(x',u'|m\rightarrow m',x,u)$
 3. Compute the acceptance probability:

 $A(m',x',u'|m,x,u) = \min\left(1, \frac{P(x'|m')}{{P(x|m)}} \times \frac{j(m'|m)}{j(m|m)} \times \frac{q(x,u|m'\rightarrow m',x,u')}{q(x',u'|m\rightarrow m',x,u)} \times \left|\text{det} \frac{\partial h_{m,m'}(x,u)}{\partial(x,u)}\right|\right)$

 - Ratio of model probs.
 - Inv. ratio of model proposals
 - Inv. ratio of data proposals
 - Absolute value of the determinant of the Jacobian of $h()$
The abs-det-Jacobian term

- A “Jacobian” is a matrix of all 1st derivatives
 - Example: 2-clusters to 3-clusters; recall \(h_{2,3}(x_1, x_2, u) = \begin{bmatrix} x'_1 = x_1 \\ x'_2 = x_2 \\ x'_3 = u \end{bmatrix} \)

The Jacobian is

\[
\frac{\partial h_{2,3}(x_1, x_2, u)}{\partial (x_1, x_2, u)} = \begin{bmatrix}
\frac{\partial x'_1}{\partial x_1} & \frac{\partial x'_1}{\partial x_2} & \frac{\partial x'_1}{\partial u} \\
\frac{\partial x'_2}{\partial x_1} & \frac{\partial x'_2}{\partial x_2} & \frac{\partial x'_2}{\partial u} \\
\frac{\partial x'_3}{\partial x_1} & \frac{\partial x'_3}{\partial x_2} & \frac{\partial x'_3}{\partial u}
\end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}
\]

thus

\[
\left| \frac{\partial h_{2,3}(x_1, x_2, u)}{\partial (x_1, x_2, u)} \right| = 1
\]

In general, we construct \(h() \) so that the abs-det-Jacobian term is trivial (e.g. 1)
The Jacobian term

- **Why** do we need the Jacobian?
 - It arises from a change of variables during integration!
 - Consider the detailed balance equation; take integrals on both sides:
 \[
 \int P(x)g(x',u'|x,u)A(x',u'|x,u)dxdu = \int P(x')g(x,u|x',u')A(x,u|x',u')dx'du'
 \]
 - \(g()\) combines the model proposal \(j()\) and the data proposal \(q()\)
 - For simplicity, we omit the model indicator \(m\), because the dimensionality of \((x,u)\) completely identifies which model \(m\) the system is in
 - Now perform a change of variables from \((x',u')\) to \((x,u)\) on the RHS:
 \[
 \int P(x)g(x',u'|x,u)A(x',u'|x,u)dxdu = \int P(x')g(x,u|x',u')A(x,u|x',u')dx'du' \left| \frac{\partial h_{m,m}(x,u)}{\partial (x,u)} \right| dxdu
 \]
 - The equation above holds if, for all \(x,x',u,u'\),
 \[
 P(x)g(x',u'|x,u)A(x',u'|x,u) = P(x')g(x,u|x',u')A(x,u|x',u') \left| \frac{\partial h_{m,m}(x,u)}{\partial (x,u)} \right|
 \]
The Jacobian term

- **Why** do we need the Jacobian?
 - The detailed balance condition holds if, for all x,x',u,u',
 \[
 P(x)g(x',u' \mid x,u)A(x',u' \mid x,u) = P(x')g(x,u \mid x',u')A(x,u \mid x',u')\left| \det \frac{\partial h(x,u),(x',u')}{\partial (x,u)} \right|
 \]
 - We can now construct an acceptance probability that satisfies detailed balance (see previous lecture, MH algorithm):
 \[
 A(x',u' \mid x,u) = \min \left(1, \frac{P(x')}{P(x)} \frac{g(x,u \mid x',u')}{g(x',u' \mid x,u)} \left| \det \frac{\partial h(x,u),(x',u')}{\partial (x,u)} \right| \right)
 \]
 - Restoring the model indicator m, we get
 \[
 A(m',x',u' \mid m,x,u) = \min \left(1, \frac{P(x' \mid m')}{P(x \mid m)} \frac{j(m' \mid m)}{j(m \mid m')} \frac{q(x,u \mid m' \rightarrow m,x',u')}{q(x',u' \mid m' \rightarrow m',x,u)} \left| \det \frac{\partial h_{m,m'}(x,u)}{\partial (x,u)} \right| \right)
 \]
Question:

- What is our stationary distribution in our RJMCMC?
RJMCMC Example: Clustering

- Models: Let \(m = 1, 2, 3, \ldots \) denote the number of clusters
 - \(P(x, c|m) \) - probability of (observed) data \(x \) and (unknown) cluster centers \(c \), assuming \(m \) clusters
 - Can be a Gaussian mixture model or any other clustering model. For this example, we don’t need to know its exact form.

- Proposal distributions:
 - \(j(m'|m) \) – switches from \(m \) to \(m' \) clusters, where \(m' = \{m-1, m, m+1\} \)
 - \(m' = m-1 \) is used to decrease the number of clusters
 - \(m' = m+1 \) is used to increase the number of clusters
 - \(m' = m \) is used to change cluster centers \(c \)
 - \(q(x', c', u'|m \rightarrow m', x, c, u) \) – form differs depending on \(m' \) and \(m \)
 - \(h_{m,m'}(c,u) \) – again, form differs depending on \(m' \) and \(m \)
 - abs-det-Jacobian – turns out that this is always 1!
RJMCMC Example: Clustering

Starting state: m cluster centers

Remove cluster (e.g. \(c_m\))

Change cluster center (e.g. \(c_1\))

Add cluster

© Eric Xing @ CMU, 2005-2014
RJMCMC Example: Clustering

- We set \(j() \) as follows:
 \[
 j(m' | m) = \begin{cases}
 0.5 - p & \text{if } m' = m - 1 \\
 2p & \text{if } m' = m \\
 0.5 - p & \text{if } m' = m + 1
 \end{cases}
 \]

- For \(q() \), \(h() \) and the Jacobian, consider the 3 cases separately:
 - \(m' = m \) (change cluster center):
 - \(u, u' \) are used to change the value of some \(c_i \)
 - First, pick a cluster center \(i \) in \(\{1, \ldots, m\} \) to change assignment (at uniform)
 - Next, draw a new cluster center \(u \) according to some proposal \(q_{\text{center}}(u) \)
 - Finally, set \(c'_i = u \)

 Notice that reverse moves have the same probability as forward moves

"Explore cluster centers \(c \) 2p of the time, change the number of clusters 1-2p of the time"
RJMCMC Example: Clustering

- For \(q()\), \(h()\) and the Jacobian, consider the 3 cases separately:
 - \(m' = m\) (change cluster center):
 - What does the abs-det-Jacobian look like?
 - Recall that \(h_{i,m,m'=m}(c,u)\) sets \(c'_j = c_j\) for all \(j \neq i\), and \(c'_i = u\), and \(u' = c_i\)
 - Let’s say we’re changing \(c_i\), where \(i = m\)

\[
\frac{\partial h_{i=m,m'=m}(c,u)}{\partial (c,u)} = \begin{bmatrix}
\frac{\partial c'_1}{\partial c_1} & \frac{\partial c'_1}{\partial c_2} & \ldots & \frac{\partial c'_1}{\partial c_m} & \frac{\partial c'_1}{\partial u} \\
\frac{\partial c'_2}{\partial c_1} & \frac{\partial c'_2}{\partial c_2} & \ldots & \frac{\partial c'_2}{\partial c_m} & \frac{\partial c'_2}{\partial u} \\
\vdots & \ddots & \ddots & \vdots & \vdots \\
\frac{\partial c'_m}{\partial c_1} & \frac{\partial c'_m}{\partial c_2} & \ldots & \frac{\partial c'_m}{\partial c_m} & \frac{\partial c'_m}{\partial u} \\
\frac{\partial u'}{\partial c_1} & \frac{\partial u'}{\partial c_2} & \ldots & \frac{\partial u'}{\partial c_m} & \frac{\partial u'}{\partial u} \\
\end{bmatrix} = \begin{bmatrix}
1 & 0 & \ldots & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
\vdots & \ddots & \ddots & \ddots & \vdots \\
0 & 0 & \ldots & 0 & 1 \\
0 & 0 & \ldots & 1 & 0 \\
\end{bmatrix} = | \frac{\partial h_{i=m,m'=m}(c,u)}{\partial (c,u)} | = | -1 | = 1
\]

In fact, the abs-det-Jacobian is 1 for any choice of \(i\)!
RJMCMC Example: Clustering

- For $q()$, $h()$ and the Jacobian, consider the 3 cases separately:
 - $m' = m-1$ (remove a cluster):
 - u is empty, and u' matches the cluster to be removed
 - Pick a cluster center i in $\{1, \ldots, m\}$ to remove (at uniform)

\[
q(x', c', u' \mid m \rightarrow m', x, c, u) = \frac{1}{m} \quad \text{and} \quad h_{i,m,m'=m-1}(c,u) = \begin{bmatrix} c'_1 \\ c'_2 \\ \vdots \\ c'_{m-1} \\ u' \end{bmatrix} \text{ where } c'_j = c_j \text{ if } j < i, \text{ and } c'_j = c_{j+1} \text{ if } j > i, \text{ and } u' = c_i
\]
RJMCMC Example: Clustering

- For q(), h() and the Jacobian, consider the 3 cases separately:
 - \(m' = m-1 \) (remove a cluster):
 - For the Jacobian, let's assume we're removing cluster \(c_i \) where \(i = m \)
 - Thus we set \(c'_j = c_j \) for all \(j < m \), and \(u' = c_m \)

\[
\frac{\partial h_{i=m,m'=m-1}(c,u)}{\partial(c,u)} = \begin{bmatrix}
\frac{\partial c'_1}{\partial c_1} & \frac{\partial c'_1}{\partial c_2} & \cdots & \frac{\partial c'_1}{\partial c_{m-1}} & \frac{\partial c'_1}{\partial c_m} \\
\frac{\partial c'_2}{\partial c_1} & \frac{\partial c'_2}{\partial c_2} & \cdots & \frac{\partial c'_2}{\partial c_{m-1}} & \frac{\partial c'_2}{\partial c_m} \\
\vdots & \ddots & \ddots & \vdots & \vdots \\
\frac{\partial c'_{m-1}}{\partial c_1} & \frac{\partial c'_{m-1}}{\partial c_2} & \cdots & \frac{\partial c'_{m-1}}{\partial c_{m-1}} & \frac{\partial c'_{m-1}}{\partial c_m} \\
\frac{\partial u'}{\partial c_1} & \frac{\partial u'}{\partial c_2} & \cdots & \frac{\partial u'}{\partial c_{m-1}} & \frac{\partial u'}{\partial c_m}
\end{bmatrix} = \begin{bmatrix}
1 & 0 & \cdots & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & \cdots & 0 & 1
\end{bmatrix}
\]

Therefore \[\left| \det \frac{\partial h_{i=m,m'=m-1}(c,u)}{\partial(c,u)} \right| = 1 \]

Again, the abs-det-Jacobian is 1 for any choice of i!
RJMCMC Example: Clustering

- For $q()$, $h()$ and the Jacobian, consider the 3 cases separately:
 - $m' = m+1$ (add a cluster):
 - u is the center of the cluster to be added, and u' is empty
 - We draw a cluster center u according to some proposal $q_{\text{center}}(u)$

$$q(x', c', u' \mid m \rightarrow m', x, c, u) = q_{\text{center}}(u)$$

and

$$h_{i, m, m'}(c, u) = \begin{bmatrix} c'_{1} \\ c'_{2} \\ \vdots \\ c'_{m} \\ c'_{m+1} \end{bmatrix}$$

where $c'_{j} = c_{j}$ for all $j \leq m$, and $c'_{m+1} = u$
RJMCMC Example: Clustering

- For $q()$, $h()$ and the Jacobian, consider the 3 cases separately:
 - $m' = m+1$ (add a cluster):
 - For the Jacobian, recall we set $c'_j = c_j$ for all $j \leq m$, and $c'_{m+1} = u$

$$\frac{\partial h_{m,m'=m+1}(c,u)}{\partial (c,u)} = \begin{bmatrix}
\frac{\partial c'_1}{\partial c_1} & \frac{\partial c'_1}{\partial c_2} & \cdots & \frac{\partial c'_1}{\partial c_m} & \frac{\partial c'_1}{\partial u} \\
\frac{\partial c'_2}{\partial c_1} & \frac{\partial c'_2}{\partial c_2} & \cdots & \frac{\partial c'_2}{\partial c_m} & \frac{\partial c'_2}{\partial u} \\
\vdots & \ddots & \ddots & \ddots & \vdots \\
\frac{\partial c'_m}{\partial c_1} & \frac{\partial c'_m}{\partial c_2} & \cdots & \frac{\partial c'_m}{\partial c_m} & \frac{\partial c'_m}{\partial u} \\
\frac{\partial c'_{m+1}}{\partial c_1} & \frac{\partial c'_{m+1}}{\partial c_2} & \cdots & \frac{\partial c'_{m+1}}{\partial c_m} & \frac{\partial c'_{m+1}}{\partial u}
\end{bmatrix} = \begin{bmatrix}
1 & 0 & \cdots & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
\vdots & \ddots & \ddots & \ddots & \vdots \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & \cdots & 0 & 1
\end{bmatrix}$$

Therefore

$$\left| \det \frac{\partial h_{m,m'=m+1}(c,u)}{\partial (c,u)} \right| = |1| = 1$$
RJMCMC Example: Clustering

- Notice the following important properties:
 - All model changes $j(m'|m)$ are all reversible
 - We can get to any number of clusters m
 - We can change the location of any cluster i
 - This ensures we converge to the stationary distribution
 - abs-det-Jacobian is always 1
 - We designed our r.v. mappings $h()$ to make this true!

- Take note:
 - For most mixture models, we can’t simply use $P(x,c|m)$. We need to introduce hidden cluster assignment variables z for each data point x, and incorporate them into the proposals.
 - The basic principle of RJMCMC remains the same, though
Large-scale MCMC

- Modern datasets can be very large
 - Millions of data points
 - Require Gigabytes of memory
 - E.x. Yahoo web graph has ~1.4 billion nodes and 6.6 billion edges

- So far, we have not explained how to take advantage of parallelism in MCMC
 - Without parallelism, we cannot use large datasets!

- In the rest of this lecture, we will cover techniques that permit multiple CPUs/cores to be used with MCMC
Taking Multiple Chains

- Proper use of MCMC actually requires parallelism
 - To determine convergence, you need to take multiple MCMC chains
 - Chains are independent, so you can run one chain per CPU
 - Once converged, you can combine samples from all chains
Taking Multiple Chains

- Taking multiple chains doesn’t solve all issues, though
 - If burn-in is long, then all chains will take a long time to converge!
 - We need a way to take each sample faster…
Parallel Gibbs Sampling

- Recall that in MRFs, we Gibbs sample by sampling from $P(x|MB(x))$, the conditional distribution of x given its Markov Blanket $MB(x)$
 - For MRFs, the Markov Blanket of x is just its neighbors
 - In the MRF below, the red node's Markov Blanket consists of the blue nodes
Parallel Gibbs Sampling

- Observe that we can Gibbs sample the two green nodes simultaneously
 - Neither node is part of the other’s Markov Blanket, so their conditional distributions do not depend on each other
 - Sampling one of the green nodes doesn’t change the conditional distribution of the other node!
Parallel Gibbs Sampling

- How do we generalize this idea to the whole graph?
 - Find subsets of nodes, such that all nodes in a given subset are not in each other’s Markov Blankets, and the subsets cover the whole graph
 - The subsets should be as large as possible
 - Because we can Gibbs sample all nodes in a subset at the same time
 - At the same time, we want as few subsets as possible
 - The Markov Blankets of different subsets overlap, so they cannot be sampled at the same time. We must process the subsets sequentially.
Parallel Gibbs Sampling

- We can find these covering subsets with k-coloring algorithms (Gonzales et al., 2011)
 - A k-coloring algorithm colors a graph using k colors, such that:
 - Every node gets one color
 - No edge has two nodes of the same color
- Trees always admit a 2-coloring (e.g. below)
 - Assign one color to some node, and alternate colors as you move away

© Eric Xing @ CMU, 2005-2014
Parallel Gibbs Sampling

- Bipartite graphs are always 2-colorable
 - Color each side of the bipartite graph with opposite colors
 - e.x. Latent Dirichlet Allocation model is bipartite

- However, not all graphs have k-colorings for all $k \geq 2$
 - In the worst case, a graph with n nodes can require n colors
 - The full clique is one such graph
 - Determining if a graph is k-colorable for $k > 2$ is NP-complete
 - In practice, we employ heuristics to find k-colorings

- Instead of using k-colorings, why not just Gibbs sample all variables at the same time?
 - The Markov Chain may become non-ergodic, and is no longer guaranteed to converge to the stationary distribution!
Online MCMC

- In “online” algorithms, we need to process new data points one-at-a-time
 - Moreover, we have to “forget” older data points because memory is finite

- For such applications to be viable, we can only afford constant time work per new data point
 - Otherwise we will reach a point where new data can no longer be processed in a reasonable amount of time

- What MCMC techniques can we use to make an online algorithm?
Sequential Monte Carlo

- SMC is a generalization of Particle Filters
 - Recall that PFs incrementally sample $P(X_t|Y_{1:t})$, where the Xs are latent r.v.s and the Ys are observations under a state-space model
 - SMC does not assume the GM is a state-space model, or has any particular structure at all

- Suppose we have n r.v.s x_1,\ldots,x_n
 - SMC first draws samples from the marginal distribution $P(x_1)$, then $P(x_{1:2})$, and so on until $P(x_{1:n})$
 - Key idea: Construct proposals such that we sample from $P(x_{1:k+1})$ in constant time, given samples from $P(x_{1:k})$
 - Like other MCMC algorithms, we only require that we can evaluate $P'(x_{1:n}) = aP(x_{1:n})$ for some unknown a
Sequential Importance Sampling

- SIS is the foundation of Sequential Monte Carlo
 - It allows new variables to be sampled in constant time, without resampling older variables

- SIS uses proposal distributions with the following structure:

\[
q_n(x_{1:n}) = q_{n-1}(x_{1:n-1})q_n(x_n | x_{1:n-1}) \\
= q_1(x_1) \prod_{k=2}^{n} q_k(x_k | x_{1:k-1})
\]

- Notice we can propose \(x_{k+1}\) if we’ve already drawn \(x_{1:k}\), without having to redraw \(x_{1:k}\)
Sequential Importance Sampling

- In normalized importance sampling, recall how the sample weights w^i are defined:
 \[\langle f(X) \rangle_p = \sum_i f(x^i)w^i \]

 where
 \[w^i = \sum_j r_j^i \quad \text{and} \quad r^i = \frac{P'(x^i)}{Q(x^i)} \]

- In SIS, the unnormalized weights r can be rewritten as a telescoping product:
 \[
 r(x_{1:n}) = \frac{P_n'(x_{1:n})}{q_n(x_{1:n})} \\
 = \frac{P_{n-1}'(x_{1:n-1})}{q_{n-1}(x_{1:n-1})} \frac{P_n'(x_{1:n})}{P_{n-1}'(x_{1:n-1})q_n(x_n \mid x_{1:n-1})} \\
 = r_{n-1}(x_{1:n-1})\alpha_n(x_{1:n}) \\
 = r_1(x_1)\prod_{k=2}^n \alpha_k(x_{1:k})
 \]

 where
 \[\alpha_n(x_{1:n}) = \frac{P_n'(x_{1:n})}{P_{n-1}'(x_{1:n-1})q_n(x_n \mid x_{1:n-1})} \]
Sequential Importance Sampling

\[
r(x_{1:n}) = r_1(x_1) \prod_{k=2}^{n} \alpha_k(x_{1:k}) \quad \text{where} \quad \alpha_n(x_{1:n}) = \frac{P_n'(x_{1:n})}{P'_{n-1}(x_{1:n-1}) q_n(x_n | x_{1:n-1})}
\]

- This means the unnormalized weights \(r \) can be computed incrementally
 - Compute \(\alpha_n \) and use it to update \(r(x_{1:n-1}) \) to \(r(x_{1:n}) \)
 - NB: For this update to be constant time, we also require \(P'_n(x_{1:n}) \) to be computable from \(P'_{n-1}(x_{1:n-1}) \) in constant time
 - We remember the unnormalized weights \(r \) at each iteration, and compute the normalized weights \(w \) as needed from \(r \)

- Thus, we can sample \(x \) AND compute the normalized weights \(w \) using constant time per new variable \(x_n \)
 - So SIS meets the requirements for an online inference algorithm!

- Even better, the samples don’t depend on each other
 - Assign one CPU core per sample to make the SIS algorithm parallel!
Sequential Importance Sampling

- **SIS algorithm:**
 - At time $n = 1$
 - Draw samples $x_1^i \sim q_1(x_1)$
 - Compute unnormalized weights $r_1^i = p'(x_1^i) / q_1(x_1^i)$
 - Compute normalized weights w_1^i by normalizing r_1^i
 - At time $n \geq 2$
 - Draw samples $x_n^i \sim q_n(x_n|x_{1:n-1}^i)$
 - Compute unnormalized weights $r_n^i = r_{n-1}^i \alpha_n(x_{1:n}^i) = r_{n-1}^i \frac{p_n'(x_{1:n}^i)}{p_{n-1}'(x_{1:n-1}^i)q_n(x_n^i|x_{1:n-1}^i)}$
 - Compute normalized weights w_n^i by normalizing r_n^i
Sequential Importance Sampling

- But we are not done yet!

- Unfortunately, SIS suffers from a severe drawback: the variance of the samples increases exponentially with n!
 - See eq (31) of Doucet’s SMC tutorial for an example

- Resampling at each iteration will decrease the sample variance!
 - Similar to weighted resampling from the first MC lecture!
Multinomial Resampling

- Suppose we have m samples x^1,\ldots,x^m with corresponding importance weights w^1,\ldots,w^m

- Construct a categorical distribution from these samples:
 - This distribution has m categories (choices)
 - The probability of drawing category k is w^k
 - Drawing category k gets us x^k

- To resample, just draw N times from this distribution
 - Note that N can be greater/less than m!

- For more advanced strategies such as systematic and residual resampling, refer to page 13 of Doucet’s SMC tutorial
Why Resample?

- Apart from decreasing variance, there are other reasons...

- Resampling removes samples x_k with low weights w_k
 - Low-weight samples come from low-probability regions of $P(x)$
 - We want to focus computation on high-probability regions of $P(x)$
 - Notice that each sample gets an equal amount of computation, regardless of its weight w_k
 - Resampling ensures that more computation is spent on samples x_k that come from high-probability regions of $P(x)$

- Resampling prevents a small number of samples x_k from dominating the empirical distribution
 - Resampling resets all weights w_k to $1/N$
 - This prevents sample weights w_k from growing until they reach 1
Sequential Monte Carlo

- The SMC algorithm is just SIS with resampling:
 - At time $n = 1$
 - Draw samples $x_1^i \sim q_1(x_1)$
 - Compute unnormalized weights $r_1^i = \frac{P_1'(x_1^i)}{q_1(x_1^i)}$
 - Compute normalized weights w_1^i by normalizing r_1^i
 - Resample w_1^i, x_1^i into N equally-weighted particles x_1^i
 - At time $n \geq 2$
 - Draw samples $x_n^i \sim q_n(x_n|x_{1:n-1}^i)$
 - Compute unnormalized weights $r_n^i = r_{n-1}^i \alpha_n(x_{1:n}^i) = r_{n-1}^i \frac{P_n'(x_{1:n}^i)}{P_{n-1}'(x_{1:n-1}^i)q_n(x_n^i|x_{1:n-1}^i)}$
 - Compute normalized weights w_n^i by normalizing r_n^i
 - Resample $w_n^i, x_{1:n}^i$ into N equally-weighted particles $x_{1:n}^i$
Summary

- Slice sampling
 - Samples from area under $P(x)$

- Reverse Jump MCMC
 - Allows us to switch between different models $P(x)$

- Parallel Gibbs sampling
 - Exploit graph colorings to sample same-colored nodes in parallel

- Sequential Monte Carlo
 - Uses incremental proposal distributions
 - Provides a framework for designing online, parallel MCMC algorithms