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Abstract

Existing Bayesian models, especially nonparametric Bayesian methods, rely on spe-
cially conceived priors to incorporate domain knowledge for discovering improved latent
representations. While priors can affect posterior distributions through Bayes’ theorem,
imposing posterior regularization is arguably more direct and in some cases can be more
natural and easier. In this paper, we present regularized Bayesian inference (RegBayes), a
computational framework to perform posterior inference with a convex regularization on the
desired post-data posterior distributions. RegBayes covers both directed Bayesian networks
and undirected Markov networks whose Bayesian formulation results in hybrid chain graph
models. When the convex regularization is induced from a linear operator on the posterior
distributions, RegBayes can be solved with convex analysis theory. Furthermore, we present
two concrete examples of RegBayes, infinite latent support vector machines (iLSVM) and
multi-task infinite latent support vector machines (MT-iLSVM), which explore the large-
margin idea in combination with a nonparametric Bayesian model for discovering predictive
latent features for classification and multi-task learning, respectively. We present efficient
inference methods and report empirical studies on several benchmark datasets, which
appear to demonstrate the merits inherited from both large-margin learning and Bayesian
nonparametrics. Such results were not available until now, and contribute to push forward
the interface between these two important subfields, which have been largely treated as
isolated in the community.

Keywords: Bayesian inference, posterior regularization, Bayesian nonparametrics,
large-margin learning, classification, multi-task learning

1. Introduction

Over the past decade, nonparametric Bayesian models, such as Gaussian Process (GP) (Ras-
mussen and Ghahramani, 2002), Dirichlet Process (DP) (Ferguson, 1973; Antoniak, 1974)
(often described with a Chinese Restaurant Process metaphor), and Beta Process (Thibaux
and Jordan, 2007) (often described with an Indian Buffet Process metaphor (Griffiths
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and Ghahramani, 2005)), have gained remarkable popularity in machine learning and
other fields, partly owing to their desirable utility as a “nonparametric” prior distribution
for a wide variety of probabilistic models, thereby turning the largely heuristic model
selection practice, such as figuring out the unknown number of components in a mixture
model (Antoniak, 1974), or determining the unknown dimensionality of latent features in
a factor analysis model (Griffiths and Ghahramani, 2005), as a Bayesian inference problem
in an unbounded model space. Such nonparametric Bayesian approaches allow the model
complexity to grow as more data are observed, which is a key factor differing them from
other traditional “parametric” Bayesian models.

One recent development in practicing Bayesian nonparametrics is to relax some
unrealistic assumptions on data, such as homogeneity and exchangeability. For example,
to handle heterogenous observations, predictor-dependent processes (MacEachern, 1999;
Williamson et al., 2010) have been proposed; and to relax the exchangeability assumption,
stochastic processes with various correlation structures, such as hierarchical structures (Teh
et al., 2006), temporal or spatial dependencies (Beal et al., 2002; Blei and Frazier, 2010),
and stochastic ordering dependencies (Hoff, 2003; Dunson and Peddada, 2007), have been
successfully introduced. A common principle shared by all these approaches is that they
rely on defining, or in some cases learning (Welling et al., 2012) a nonparametric Bayesian
prior encoding some special structures1, which indirectly influences the posterior distribution
of interest through an interplay with a likelihood model according to the Bayes’ rule (also
known as Bayes’ theorem). In this paper, we explore a different principle known as posterior
regularization, which offers an additional and arguably richer and more flexible set of means
to augment a posterior distribution under rich side information, such as predictive margin,
structural bias, etc., which can be harder, if possible, to be captured by a Bayesian prior.

Let Θ denote model parameters and H denote hidden variables. Then given a set of
observed data D, posterior regularization (Ganchev et al., 2010) is generally defined as
solving a regularized maximum likelihood estimation (MLE) problem:

Posterior Regularization : max
Θ

L(Θ;D) + Ω(p(H|D,Θ)), (1)

where L(Θ;D) is the marginal likelihood of D, and Ω(·) is a regularization function of the
model posterior over latent variables (note that here we view posterior as a generic post-data
distribution on hidden variables in the sense of (Ghosh and Ramamoorthi, 2003, pp.15)),
not necessarily corresponding to a Bayesian posterior that must be induced by the Bayes’
rule). The regularizer can be defined as a KL-divergence between a desired distribution
with certain properties over latent variables and the model posterior in question, or other
constraints on the model posterior, such as those used in generalized expectation (Mann and
McCallum, 2010) or constraint-driven semi-supervised learning (Chang et al., 2007). An
EM-type procedure can be applied to solve Eq. (1) approximately, and obtain an augmented
MLE of the hidden variable model: p(H|D,ΘMLE). When a distribution over the model
parameter is of interest, going beyond the classical Bayesian theory, recent attempts toward
learning a regularized posterior distribution of model parameters (and latent variables as

1. Although likelihood function is another dimension that can be changed to incorporate domain knowledge,
existing work on Bayesian nonparametric methods has been mainly focusing on the prior distributions.
Following this convention, this paper assumes that a common likelihood model (e.g., Gaussian likelihood
for continuous data) is given.
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well if present) include the “learning from measurements” (Liang et al., 2009), maximum
entropy discrimination (MED) (Jaakkola et al., 1999; Zhu and Xing, 2009) and maximum
entropy discrimination latent Dirichlet allocation (MedLDA) (Zhu et al., 2009). All these
methods are parametric in that they give rise to distributions over a fixed and finite-
dimensional parameter space. To the best of our knowledge, very few attempts have
been made to impose posterior regularization in a nonparametric setting where model
complexity depends on data, such as the case for nonparametric Bayesian latent variable
models. A general formalism for (parametric and nonparametric) Bayesian inference with
posterior regularization seems to be not yet available or apparent. In this paper, we present
such a formalism, which we call Regularized Bayesian Inference, or RegBayes, built on
convex duality theory over distribution function space; and we apply this formalism to
learn regularized posteriors under the Indian Buffet Process (IBP), conjoining two powerful
machine learning paradigms, nonparametric Bayesian inference and SVM-style max-margin
constrained optimization.

Unlike the regularized MLE formulation in Eq. (1), under traditional formulation of
Bayesian inference one is not directly optimizing an objective with respect to the posterior.
To enable a regularized optimization formulation of RegBayes, we begin with a variational
reformulation of the Bayes’ theorem, and define L(q(M|D)) as the KL-divergence between
a desired post-data posterior q(M|D) over model M, and the standard Bayesian posterior
p(M|D) (see Section 3.1 for a recapitulation of the connection between KL-minimization
and Bayes’ theorem). RegBayes solves the following optimization problem:

RegBayes : inf
q(M|D)∈Pprob

L(q(M|D)) + Ω(q(M|D)), (2)

where the regularization Ω(·) is a function of the post-data posterior q(M|D), and Pprob

is the feasible space of normalized distributions. By appropriately defining the model
and its prior distribution, RegBayes can be instantiated to perform either parametric and
nonparametric regularized Bayesian inference.

One particularly interesting way to derive the posterior regularization is to impose
posterior constraints. Let ξ denote slack variables and Ppost(ξ) denote the general soft
posterior constraints (see Section 3.2 for a formal description), then, we can express the
regularization term variationally:

Ω(q(M|D)) = inf
ξ

U(ξ), s.t.: q(M|D) ∈ Ppost(ξ). (3)

The RegBayes formalism defined in Eq. (2) applies to a wide spectrum of models, including
directed graphical models (i.e., Bayesian networks) and undirected Markov networks. For
undirected models, when performing Bayesian inference the resulting posterior takes the
form of a hybrid chain graphical model (Frydenberg, 1990) (Murray and Ghahramani,
2004; Qi et al., 2005; Welling and Parise, 2006), which is usually much more challenging to
regularize than for Bayesian inference with directed GMs. When the regularization term is
convex and induced from a linear operator (e.g., expectation) of the posterior distributions,
RegBayes can be solved with convex analysis theory.

By allowing direct regularization over posterior distributions, RegBayes provides a
significant source of extra flexibility for post-data posterior inference, which applies to both
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parametric and nonparametric Bayesian learning. In this paper, we focus on applying this
technique to the later case, and illustrate how to use RegBayes to facilitate integration of
Bayesian nonparametrics and large-margin learning, which have complementary advantages
but have been largely treated as two disjoint subfields. Previously, it has been shown
that, the core ideas of support vector machines (Vapnik, 1995) and maximum entropy
discrimination (Jaakkola et al., 1999), as well as their structured extensions to the max-
margin Markov networks (Taskar et al., 2003) and maximum entropy discrimination Markov
networks (Zhu and Xing, 2009), have led to successful outcomes in many scenarios.
But a large-margin model rarely has the flexibility of nonparametric Bayesian models to
automatically handle model complexity from data, especially when latent variables are
present (Jebara, 2001; Zhu et al., 2009). In this paper, we intend to bridge this gap using
the RegBayes principle.

Specifically, we develop the infinite latent support vector machines (iLSVM) and multi-
task infinite latent support vector machines (MT-iLSVM), which explore the discriminative
large-margin idea to learn infinite latent feature models for classification and multi-task
learning (Argyriou et al., 2007; Bakker and Heskes, 2003), respectively. We show that
both models can be readily instantiated from the RegBayes master equation (2) by defining
appropriate posterior regularization using the large-margin principle, and by employing
an appropriate prior. For iLSVM, we use the IBP prior to allow the model to have an
unbounded number of latent features a priori. For MT-iLSVM, we use a similar IBP prior to
infer a latent projection matrix to capture the correlations among multiple predictive tasks
while avoiding pre-specifying the dimensionality of the projection matrix. The regularized
inference problems can be efficiently solved with an iterative procedure, which leverages
existing high-performance convex optimization techniques.

The rest of the paper is organized as follows. Section 2 discusses related work. Section
3 presents regularized Bayesian inference (RegBayes), together with the convex duality
results that will be needed in latter sections. Section 4 concretizes the ideas of RegBayes
and presents two infinite latent feature models with large-margin constraints for both
classification and multi-task learning. Section 5 presents some preliminary experimental
results. Finally, Section 6 concludes and discusses future research directions.

2. Related Work

Expectation regularization or expectation constraints have been considered to regularize
model parameter estimation in the context of semi-supervised learning or learning with
weakly labeled data. Mann and McCallum (Mann and McCallum, 2010) summarized
the recent developments of the generalized expectation (GE) criteria for training a
discriminative probabilistic model (e.g., maximum entropy models or conditional random
fields (Lafferty et al., 2001)) with unlabeled data. By providing appropriate side
information, such as labeled features or estimates of label distributions, a GE-based penalty
function is defined to regularize the model distribution, e.g., the distribution of class labels.
One commonly used GE function is the KL-divergence between empirical expectation and
model expectation of some feature functions if the expectations are normalized or the general
Bregman divergence for unnormalized expectations. Although the GE criteria can be used
alone as a scoring function to estimate the unknown parameters of a discriminative model,
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it is more usually used as a regularization term to an estimation method, such as maximum
(conditional) likelihood estimation. Bellare et al. (Bellare et al., 2009) presented a different
formulation of using expectation constraints in semi-supervised learning by introducing an
auxiliary distribution to GE, together with an alternating projection algorithm, which can
be more efficient. Liang et al. (Liang et al., 2009) proposed to use the general notion of
“measurements” to encapsulate the variety of weakly labeled data for learning exponential
family models. The measurements can be labels, partial labels or other constraints on model
predictions. Under the EM framework, posterior constraints were used in (Graca et al.,
2007) to modify the E-step of an EM algorithm to project model posterior distributions
onto the subspace of distributions that satisfy a set of auxiliary constraints.

Dudik et al. (Dud́ık et al., 2007) studied the generalized maximum entropy principle
with a rich form of expectation constraints using convex duality theory, where the standard
moment matching constraints of maximum entropy are relaxed to inequality constraints.
But their analysis was restricted to KL-divergence minimization (maximum entropy is
a special case) and the finite dimensional space of observations. Later on, Altun and
Smola (Altun and Smola, 2006) presented a more general duality theory for a family of
divergence functions on Banach spaces. We have drawn a lot of inspiration from both papers
to develop the regularized Bayesian inference framework using convex duality theory.

When using large-margin ideas to define posterior regularization, regularized Bayesian
inference generalizes the previous work on maximum entropy discrimination method-
s (Jaakkola et al., 1999; Zhu and Xing, 2009). The present paper provides a full extension of
our preliminary work on max-margin nonparametric Bayesian models (Zhu et al., 2011b,a).
For example, the infinite SVM (iSVM) (Zhu et al., 2011b) is a latent class model, where
each data example is assigned to a single mixture component (i.e., an 1-dimensional space),
and both iLSVM and MT-iLSVM extend the ideas to infinite latent feature models. For
multi-task learning, nonparametric Bayesian models have been developed in (Xue et al.,
2007; Rai and Daume III, 2010) for learning features shared by multiple tasks. However,
these methods are based on standard Bayesian inference without a posterior regularization
using, for example, the large-margin constraints. Finally, MT-iLSVM can be also regarded
as a nonparametric Bayesian formulation of the popular multi-task learning methods (Ando
and Zhang, 2005; Jebara, 2011).

3. Regularized Bayesian Inference

We begin by laying out a general formulation of Regularized Bayesian Inference, using an
optimization framework built on convex duality theory.

3.1 Variational formulation of Bayes’ theorem

We first derive an optimization-theoretic reformulation of the Bayes’ theorem. Let M
denote the space of feasible models, and M ∈ M represents an atom in this space. Given
a collection of observed data D = {xn}Nn=1, which we assume to be i.i.d. given the model,
the Bayes’ theorem establishes the following relationship among the prior π(M), the data
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Figure 1: Illustration for the (a) hard and (b) soft constraints in the simple setting which
has only three possible models. For hard constraints, we have only one feasible
subspace. In contrast, we have many (normally infinite for continuous ξ) feasible
subspaces for soft constraints and each of them is associated with a different
complexity or penalty, measured by the U function.

likelihood p(x|M), and the posterior distribution p(M|D):

p(M|D) =
π(M)p(D|M)

p(D)
=
π(M)

∏N
n=1 p(xn|M)

p(x1, · · · ,xN )
, (4)

where p(D) is the marginal likelihood of all observed data.

For reasons to be clear shortly, we now introduce a variational formulation of the Bayes’
theorem. Let q(M) be an arbitrary distribution over M ∈ M. It can be shown that the
posterior distribution of M due to the Bayes’ theorem is equivalent to the optimum solution
of the following convex optimization problem:

inf
q(M)

KL(q(M)∥π(M))−
∫
M

log p(D|M)q(M)dM (5)

s.t. : q(M) ∈ Pprob,

where KL(q(M)∥π(M)) is the Kullback-Leibler (KL) divergence from q(·) to π(·), and
Pprob represents the feasible space of all distributions over M. The constraint is due to the
law of conservation of belief. The proof is straightforward by noticing that the objective
will become KL(q(M)∥p(M|D)) by adding the constant log p(D). It is noteworthy that
q(M) here represents a general post-data posterior distribution in the sense of (Ghosh and
Ramamoorthi, 2003, pp.15)), not necessarily corresponding to a Bayesian posterior that is
induced by the Bayes’ rule. In the sequel, in order to distinguish q(·) from the Bayesian
posterior, we will call it post-data distribution in short or post-data posterior distribution
in full. For notation simplicity, we have omitted the condition D in the post-data posterior
distribution q(M).
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3.2 Regularized Bayesian Inference with Expectation Constraints

In the variational formulation of Bayes’ rule in Eq. (5), the constraints on q(M) is merely
due to the law of conservation of belief, i.e., q(M) ∈ Pprob, which does not capture
any domain knowledge or structures of the model or data. But this optimization-based
formulation makes it straightforward to generalize Bayesian inference to a richer type of
posterior inference, by replacing the trivial normality constraint on q with a wide spectrum
of knowledge-driven and/or data-driven constraints or regularization. (To contrast, we will
refer to the problem in Eq. (5) as “unconstrained” or “unregularized”.) Formally, we define
Regularized Bayesian Inference (RegBayes) as a generalized posterior inference procedure
that solves a constrained optimization problem due to such additional regularizations
imposed on q:

inf
q(M),ξ

KL(q(M)∥π(M))−
∫
M

log p(D|M)q(M)dM+ U(ξ) (6)

s.t. : q(M) ∈ Ppost(ξ),

where Ppost(ξ) is a subspace of distributions that satisfies a set of additional constraints
besides the standard normality constraint of a probability distribution. Using the variational
formulation in Eq. (3), problem (6) can be rewritten in the form of the master equation (2),
of which the objective is: L(q(M)) = KL(q(M)∥π(M)) −

∫
M log p(D|M)q(M)dM =

KL(q(M)∥p(M,D)) and the posterior regularization is Ω(q(M)) = infξ U(ξ), s.t.: q(M|D) ∈
Ppost(ξ).

Obviously this formulation enables different types of constraints to be employed in
practice. In this paper, we focus on the expectation constraints, of which each one is a
function of q(M) through an expectation operator. For instance, let ψ = (ψ1, · · · , ψT )
be a vector of feature functions, each of which is ψt(M;D) defined on M and possibly
data dependent. Then a subspace of feasible post-data distributions can be defined in the
following form:

Ppost(ξ)
def
=

{
q(M)| ∀t = 1, · · · , T, h

(
Eq(ψt;D)

)
≤ ξt

}
, (7)

where E is the expectation operator that maps q(M) to a point in the space RT , and for

each feature function ψt: Eq(ψt;D)
def
= Eq(M)[ψt(M;D)]. The function h can be of any form

in theory, though a simple h function will make the optimization problem easy to solve.
The auxiliary parameters ξ are usually nonnegative and interpreted as slack variables. The
constraints with non-trivial ξ are soft constraints as illustrated in Figure 1(b). But we
emphasize that by defining U as an indicator function, the formulation (6) covers the case
where hard constraints are imposed. For instance, if we define

U(ξ) =

T∑
t=1

I(ξt = γt) = I(ξ = γ),

where I(c) is an indicator function that equals to 0 if the condition c is satisfied; otherwise∞,
then all the expectation constraints (7) are hard constraints. As illustrated in Figure 1(a),
hard constraints define one single feasible subspace (assuming to be non-empty). In general,
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we assume that U(ξ) is a convex function, which represents a penalty on the size of the
feasible subspaces, as illustrated in Figure 1(b). A larger subspace typically leads to models
with a higher complexity. In the classification models to be presented, U corresponds to a
surrogate loss, e.g., hinge loss of a prediction rule, as we shall see.

Similarly, the formulation of RegBayes with expectation constraints (7) can be
equivalently written in an “unconstrained” form by using the rule in (3). Specifically, let

g(Eq(ψ;D))
def
= infξ U(ξ), s.t. : h(Eq(ψt;D)) ≤ ξt, ∀t, we have the equivalent optimization

problem:

inf
q(M)∈Pprob

KL(q(M)∥π(M))−
∫
M

log p(D|M)q(M)dM+ g(Eq(ψ;D)), (8)

where Eq(ψ;D) is a point in RT and the t-th coordinate is Eq(ψt;D), a function of q(M)
as defined before. We assume that the real-valued function g : RT → R is convex and
lower semi-continuous. For each U , we can induce a g function by taking the infimum of
U(ξ) over ξ with the posterior constraints; vice versa. If we use hard constraints, similar as
in regularized maximum entropy density estimation (Altun and Smola, 2006; Dud́ık et al.,
2007), we have

g(Eq) =
T∑
t=1

I(h(Eq(ψt;D)) ≤ γt). (9)

For the regularization function g, as well as U , we can have many choices, besides
the above mentioned indicator function. For example, if the feature function ψt is an
indicator function and we could obtain ‘prior’ expectations Ep̃[ψt] (i.e., a distribution p̃(M))
from domain/expert knowledge about M, one natural regularization function would be
the KL-divergence between prior expectations and the expectations computed from the
model posterior if those expectations are normalized, i.e., g(Eq) =

∑
tKL(Ep̃[ψt]∥Eq(ψt)) =

KL(p̃(M)∥q(M)), or the general Bregman divergence for unnormalized expectations. This
kind of KL-divergence regularization function has been used in (Mann and McCallum,
2010) for label regularization, in the context of semi-supervised learning. Other choices
of the regularization function include the ℓ22 penalty or indicator function with equality
constraints (Please see Table 1 in (Dud́ık et al., 2007) for a summary).

So far, we have focused on RegBayes in the context of full Bayesian inference. Indeed,
RegBayes can be generalized to apply to empirical Bayesian inference, where some model
parameters need to be estimated. More generally, RegBayes applies to both directed
Bayesian networks (of which the hierarchical Bayesian models we have discussed are an
example) and undirected Markov random fields. But for undirected models, a RegBayes
treatment will have to deal with a chain graph resultant from Bayesian inference, which is
more challenging due to existence of normalization factors. We will discuss some details
and examples in Appendix A.

3.3 Optimization with Convex Duality Theory

Depending on several factors, including the size of the model space, the data likelihood
model, the prior distribution, and the regularization function, a RegBayes problem in
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general can be highly non-trivial to solve, either in the constrained or unconstrained form, as
can be seen from several concrete examples of RegBayes models we will present in the next
section and in the Appendix B. In this section, we present some results of convex analysis
theory to deal with the convex RegBayes problem (8) with expectation regularization.

To make the subsequent statements general, we consider the following problem:

inf
x∈X

f(x) + g(Ax) (10)

where f : X → R is a convex function; A : X → B is a bounded linear operator; and
g : B → R is also convex. Below we introduce some tools in convex analysis theory to
study this problem. We begin by formulating the primal-dual space relationships of convex
optimization problems in the general settings, where we assume both X and B are Banach
spaces2. An important result we build on is the Fenchel duality theorem.

Definition 1 (Convex Conjugate) Let X be a Banach space and X ∗ be its dual space.
The convex conjugate or the Legendre-Frenchel transformation of a function f : X →
[−∞,+∞] is f∗ : X ∗ → [−∞,+∞], where

f∗(x∗) = sup
x∈X

{⟨x∗, x⟩ − f(x)}. (11)

Theorem 2 (Fenchel Duality (Borwein and Zhu, 2005)) Let X and B be Banach
spaces, f : X → R ∪ {+∞} and g : B → R ∪ {+∞} be convex functions and A : X → B
be a bounded linear map. Define the primal and dual values t, d by the Fenchel problems

t = inf
x∈X

{f(x) + g(Ax)} and d = sup
x∗∈B∗

{−f∗(A∗x∗)− g∗(−x∗)}.

Then these values satisfy the weak duality inequality p ≥ d. If f , g and A satisfy either

0 ∈ core(domg −Adomf) and both f and g are lower semicontinuous (lsc), (12)

or

Adomf ∩ contg ̸= ∅, (13)

then t = d and the supremum to the dual problem is attainable if finite.

Let S be a subset of a Banach space B. In the above theorem, we say s is in the core of S,
denoted by s ∈ core(S), provided that ∪λ>0λ(S − s) = B.

The Fenchel duality theorem can be applied to solve divergence minimization problems

for density estimation (Altun and Smola, 2006; Dud́ık et al., 2007). Let ψ
def
= (ψ1, · · · , ψT )

be a vector of feature functions ψt : X → Bt and B be the product space obtained from Bt’s.
Let A be the expectation operator of the feature functions with respect to the distribution q

on X , that is, Aq
def
= Ex∼q[ψ(x)], where ψ(x) = (ψ1(x), · · · , ψT (x)). Given a set of observed

data D = {xn}Nn=1, we let ψ̃ denote the observed empirical values of the features, namely,
ψ̃ = 1

N

∑N
n=1ψ(xn). Then, when the f function is a KL-divergence and the constraints are

relaxed moment matching constraints, the following result can be proven.

2. A Banach space is a vector space with a metric that allows the computation of vector length and distance
between vectors. Moreover, a Cauchy sequence of vectors always converges to a well defined limit in the
space.
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Lemma 3 (KL-divergence with Constraints (Altun and Smola, 2006))

inf
q

{
KL(q∥p) s.t. : ∥Eq[ψ]− ψ̃∥B ≤ ϵ and q ∈ Pprob

}
(14)

= sup
ϕ

{
⟨ϕ, ψ̃⟩ − log

∫
X
p(x) exp(⟨ϕ,ψ(x)⟩)dx− ϵ∥ϕ∥B∗

}
,

where the unique solution is given by q̂ϕ̂(x) = p(x) exp(⟨ϕ̂,ψ(x)⟩ − Λϕ̂); ϕ̂ is the solution
of the dual problem; and Λϕ̂ is the log-partition function.

Note that for this lemma and the ones to be presented below to hold, the problems need to
meet some regularity conditions (or constraint qualifications), such as those in Theorem 2.
In practice it can be difficult to check whether the constraint qualifications hold. One
solution is to solve the dual optimization problem and examine if the conditions hold
depending on whether the solution diverge or not (Altun and Smola, 2006).

The problem in the above lemma is subject to hard constraints, therefore the
corresponding g is the indicator function I(∥Ep[ψ] − ψ̃∥B ≤ ϵ) when applying the Fenchel
duality theorem. Other examples of the posterior constraints can be found in (Dud́ık
et al., 2007; Mann and McCallum, 2010; Ganchev et al., 2010), as we have discussed in
Section 3.2. In this paper, we consider the general soft constraints as defined in the RegBayes
problem (Eq. (6)). Furthermore, we do not assume the existence of a fully observed dataset
to compute the empirical expectation ϕ̃. Specifically, following a similar line of reasoning
as in (Altun and Smola, 2006), though this time with an un-normalized p in KL(q∥p), we
have the following result.

Lemma 4 (RegBayes) Let E be the expectation operator with feature functions ψ(M;D),
and assume g is convex and lower semicontinuous (lsc). We have

inf
q(M)

{
KL(q(M)∥p(M,D)) + g(Eq) s.t. : q(M) ∈ Pprob

}
(15)

= sup
ϕ

{
− log

∫
M
p(M,D) exp(⟨ϕ,ψ(M;D)⟩)dM− g∗(−ϕ)

}
,

where the unique solution is given by q̂ϕ̂(M) = p(M,D) exp(⟨ϕ̂,ψ(M;D)⟩ − Λϕ̂); and ϕ̂ is
the solution of the dual problem; and Λϕ̂ is the log-partition function.

From the optimum solution q̂ϕ̂(M), we can see that the form of the RegBayes posterior
is symbolically similar to that of the Bayesian posterior; but instead of multiplying
the likelihood term with a prior distribution, RegBayes introduces an alternative term,
exp(⟨ϕ̂,ψ(M;D)⟩ − Λϕ̂), whose coefficients are derived from an constrained optimization

problem resultant from the constraints on the posterior. If ϕ(M;D) depends on the model
M only, this term contributes to define a new prior π′(M) ∝ π(M) exp(⟨ϕ̂,ψ(M;D)⟩−Λϕ̂);
if it depends on both M and D, this term contributes to the likelihood term. This new term
could make RegBayes more flexible than the standard Bayesian inference, where the prior
and likelihood model are explicitly defined, but no additional constraints or regularization
can be incorporated. Of course, this modeling flexibility comes with risks. For example, it
might lead to inconsistent posteriors (Barron et al., 1999; Choi and Ramamoorthi, 2008).
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This paper focuses on presenting several practical instances of RegBayes and we leave a
systematic analysis of the Bayesian asymptotic properties (e.g., posterior consistency and
convergence rates) for future work.

It is worth mentioning that although the above lemma provides a generic solution to
RegBayes, in practice we usually need to make additional assumptions in order to make
either the primal or dual problem tractable to solve. Since such assumptions could make the
feasible space non-convex, additional cautions need to be paid. For instance, the mean-field
assumptions will lead to a non-convex feasible space (Wainright and Jordan, 2008), and
we can only apply the convex analysis theory to deal with convex sub-problems within an
EM-type procedure. More concrete examples will be provided later along the developments
of various models.

Now, we derive the conjugate functions of three examples which will be used shortly
for developing the infinite latent SVM models we have intended. We defer the proof to
Appendix C. Specifically, the first one is the conjugate of a simple function, which will be
used in a binary latent SVM classification model.

Lemma 5 Let g0 : R → R be defined as g0(x) = Cmax(0, x). Then, we have

g∗0(µ) = I(0 ≤ µ ≤ C).

The second function is slightly more complex, which will be used for defining a multi-way
latent SVM classifier. Specifically, we define the function g1 : RL → R as

g1(x) = Cmax(x), (16)

where max(x)
def
= max(x1, · · · , xL). Apparently, g1 is convex because it is a point-wise

maximum (Boyd and Vandenberghe, 2004) of the simple linear functions ϕi(x) = xi. Then,
we have the following results.

Lemma 6 The convex conjugate of g1(x) as defined above is

g∗1(µ) = I
(
∀i, µi ≥ 0; and

∑
i

µi = C
)
.

Let y ∈ R and ϵ ∈ R+ are fixed parameters. The last function that we are interested in
is g2 : R → R, where

g2(x; y, ϵ) = Cmax(0, |x− y| − ϵ). (17)

Finally, we have the following lemma, which will be used in developing large-margin
regression models.

Lemma 7 The convex conjugate of g2(x) as defined above is

g∗2(µ; y, ϵ) = µy + ϵ|µ|+ I
(
|µ| ≤ C

)
.

11



Zhu, Chen and Xing

4. Infinite Latent Support Vector Machines

Given the general theoretical framework of RegBayes introduced in Section 3, now we
are ready to present its application to the development of two interesting nonparametric
RegBayes models. In these two models we conjoin the ideas behind the nonparametric
Bayesian infinite feature model known as the Indian Buffet Process, and the large margin
classifier known as support vector machines (SVM) to build a new class of models for
simultaneous single-task or multi-task classification, and feature learning. A parametric
example is presented in Appendix B.

Specifically, to illustrate how to develop latent large-margin classifiers and automatically
resolve the unknown dimensionality of latent features from data, we demonstrate how to
choose/define the three key elements of RegBayes, that is, prior distribution, likelihood
model, and posterior regularization. We first present the single-task classification model.
The basic setup is that we project each data example x ∈ X ⊂ RD to a latent feature
vector z. Here, we consider binary features3. Given a set of N data examples, let Z be
the matrix, of which each row is a binary vector zn associated with data sample n. Instead
of pre-specifying a fixed dimension of z, we resort to the nonparametric Bayesian methods
and let z have an infinite number of dimensions. To make the expected number of active
latent features finite, we employ an IBP as prior for the binary feature matrix Z.

4.1 Indian Buffet Process

The Indian Buffet Process (IBP) was proposed in (Griffiths and Ghahramani, 2005) and
has been successfully applied in various fields, such as link prediction (Miller et al., 2009)
and multi-task learning (Rai and Daume III, 2010). We will make use of its stick-breaking
construction (Teh et al., 2007), which is good for developing efficient inference methods.
Let πk ∈ (0, 1) be a parameter associated with each column of the binary matrix Z. Given
πk, each znk in column k is sampled independently from Bernoulli(πk). The parameter π
are generated by a stick-breaking process

π1 = ν1, and πk = νkπk−1 =

k∏
i=1

νi, (18)

where νi ∼ Beta(α, 1). This process results in a decreasing sequence of πk. Specifically,
given a finite dataset, the probability of seeing feature k decreases exponentially with k.

4.2 Infinite Latent Support Vector Machines

Consider a single-task, but multi-way classification, where each training data is provided

with a categorical label y, where y ∈ Y def
= {1, · · · , L}. Suppose that the latent features zn

for document n are given, then we can define the latent discriminant function as linear

f(y,xn, zn;η)
def
= η⊤g(y,xn, zn), (19)

3. Real-valued features can be easily considered as in (Griffiths and Ghahramani, 2005).
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where g(y,xn, zn) is a vector stacking L subvectors4 of which the yth is z⊤n and all the
others are zero; η is the corresponding infinite-dimensional vector of feature weights. Since
we are doing Bayesian inference, we need to maintain the entire distribution profile of the
latent feature matrix Z. However, in order to make a prediction on the observed data x, we
need to remove the uncertainty of Z. Here, we define the effective discriminant function as
an expectation5 (i.e., a weighted average considering all possible values of Z) of the latent
discriminant function. To fully explore the flexibility offered by Bayesian inference, we also
treat η as random and aim to infer its posterior distribution from given data. For the
prior, we assume all the dimensions of η are independent and each dimension ηk follows the
standard normal distribution. This is in fact a Gaussian process (GP) prior as η is infinite
dimensional. More formally, the effective discriminant function f : X × Y 7→ R is

f
(
y,xn; q(Z,η,W)

) def
= Eq(Z,η,W)

[
f(y,xn, zn;η)

]
(20)

= Eq(Z,η,W)

[
η⊤g(y,xn, zn)

]
,

where q(Z,η,W) is the post-data posterior distribution we want to infer. We have included
W as a place holder for any other variables we may define, e.g., the variables arising from
a data likelihood model. Since we are taking the expectation, the variables which do not
appear in the feature map g (i.e., W) will be marginalized out.

With the above definitions, we define the Ppost(ξ) in problem (6) using soft6 large-margin
constraints as

Pc
post(ξ)

def
=

{
q(Z,η,W)

∀n ∈ Itr : ∆f(y,xn; q(Z,η,W)) ≥ ℓ∆n (y)− ξn, ∀y
ξn ≥ 0

}
,

where ∆f(y,xn; q(Z,η,W))
def
= f(yn,xn; q(Z,η,W)) − f(y,xn; q(Z,η,W)) is the margin

favored by the true label yn over an arbitrary label y and the superscript is used to
distinguish from the posterior constraints for multi-task iLSVM to be presented. We define
the penalty function for classification as

U c(ξ)
def
= C

∑
n∈Itr

ξκn,

where κ ≥ 1. If κ is 1, minimizing U c(ξ) is equivalent to minimizing the hinge-loss (or
ℓ1-loss) Rc

h of the averaging prediction rule (27), where

Rc
h(q(Z,η,W)) = C

∑
n∈Itr

max
y

(
ℓ∆n (y)−∆f(yn,xn; q(Z,η,W))

)
;

if κ is 2, the surrogate loss is the ℓ2-loss. For clarity, we consider the hinge loss. The
non-negative cost function ℓ∆n (y) (e.g., 0/1-cost) measures the cost of predicting xn to be y
when its true label is yn. Itr is the index set of training data.

4. We can consider the input features xn or its certain statistics in combination with the latent features zn
to define a classifier boundary, by simply concatenating them in the subvectors.

5. Although other choices such as taking the mode are possible, our choice could lead to a computationally
easy problem because expectation is a linear functional of the distribution under which the expectation
is taken. Moreover, expectation can be more robust than taking the mode (Khan et al., 2010), and it
has been widely used in (Zhu et al., 2009, 2011b).

6. Hard constraints for the separable cases are covered by simply setting ξ = 0.
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Besides performing the prediction task, we may also be interested in explaining observed
data x using the latent factors Z. This can be done by defining a likelihood model p(x|Z).
Here, we define the most common linear-Gaussian likelihood model for real-valued data

p
(
xn|zn,W, σ2n0

)
= N

(
xn|Wz⊤n , σ

2
n0I

)
, (21)

whereW is a random loading matrix. We assumeW follows an independent Gaussian prior,
i.e., π(W) =

∏
dN (wd|0, σ20I), where I is an identity matrix with appropriate dimensions.

The hyperparameters σ20 and σ2n0 can be set a priori or estimated from observed data (See
Appendix D.2 for details). Figure 2 (a) shows the graphical structure of iLSVM as defined
above, where the plate means N replicates.

Training: Putting the above definitions together, we get the RegBayes problem for
iLSVM in the following two equivalent forms

inf
q(Z,η,W),ξ

KL(q(Z,η,W)∥p(Z,η,W,D)) + U c(ξ) (22)

s.t. : q(Z,η,W) ∈ Pc
post(ξ)

⇐⇒ inf
q(Z,η,W)∈Pprob

KL(q(Z,η,W)∥p(Z,η,W,D)) +Rc
h(q(Z,η,W)), (23)

where p(Z,η,W,D) = π(η)π(Z)π(W)
∏N

n=1 p(xn|zn,W, σ2n0) is the joint distribution of
the model; π(Z) is an IBP prior; and π(η) and π(W) are Gaussian process priors with
identity covariance functions.

Note that in order to arrive at a well-defined RegBayes model, we need to ensure that the
objective function and the posterior constraints have finite values. This can be intuitively
verified7 as follows. Although the number of latent features is allowed to be infinite, the
number of non-zero features is finite with probability one when only a finite number of
data are observed, under the IBP prior. Moreover, because of the facts that the KL-
term in Eq. (6) has the “zero forcing” property (Bishop, 2006, Chap. 10) and the prior
distribution of feature znk decreases exponentially as k increases, we can expect that the
posterior distribution of feature znk also decreases exponentially, when a finite set of data
is observed. Thus, both the objective function and the large-margin constraints are well-
defined. Finally, to make the problem computationally feasible, we usually set a finite upper
bound K to the number of possible features, where K is sufficiently large and known as the
truncation level (See Section 4.4 and Appendix D.2 for details). As shown in (Doshi-Velez,
2009), the ℓ1-distance truncation error of marginal distributions decreases exponentially as
K increases.

Directly solving the iLSVM problems is not easy because either the posterior constraints
or the non-smooth regularization functionRc is hard to deal with. Thus, we resort to convex
duality theory, which will be useful for developing approximate inference algorithms. We
can either solve the constrained form (E.q. (22)) using Lagrangian duality theory (Ito and

7. A rigorous derivation of finiteness of these quantities is beyond the scope of this work and could require
additional technical conditions (Orbanz, 2012). We refer the readers to (Stummer and Vajda, 2012) for
a generic definition of Bregman divergence (or KL divergence in particular) on Banach spaces and in the
case where the second measure is unnormalized.
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Kunisch, 2008) or solve the unconstrained form (E.q. (23)) using Fenchel duality theory.
Here, we take the second approach. In this case, the linear operator is the expectation
operator, denoted by E : Pprob → R|Itr|×L and the element of Eq evaluated at y for the
nth example is

Eq(n, y)
def
= ∆f

(
y,xn; q(Z,η,W)

)
= Eq(Z,η,W)

[
η⊤∆gn(y,Z)

]
, (24)

where ∆gn(y,Z)
def
= g(yn,xn, z)− g(y,xn, z). We can easily prove that ∀n, maxy(ℓ

∆
n (y)−

Eq(n, y)) ≥ 0. Then, let g1 : RL → R be a function defined in the same form as in Eq. (16).
We have

Rc
h

(
q(Z,η,W)

)
=

∑
n∈Itr

g1
(
ℓ∆n − Eq(n)

)
,

where Eq(n)
def
= (Eq(n, 1), · · · , Eq(n,L)) and ℓ∆n

def
= (ℓ∆n (1), · · · , ℓ∆n (L)) are the vectors of

elements evaluated for nth data. By the Fenchel’s duality theorem and the results in
Lemma 6, we can derive the conjugate of the problem (23). The proof is deferred to
Appendix C.4.

Lemma 8 (Conjugate of iLSVM) For the iLSVM problem, we have that

inf
q(Z,η,W)∈Pprob

KL
(
q(Z,η,W)∥p(Z,η,W,D)

)
+Rc

h

(
q(Z,η,W)

)
(25)

= sup
ω

− logZ(ω|D) +
∑
n∈Itr

∑
y

ωy
nℓ

∆
n (y)−

∑
n

g∗1(ωn),

where ωn = (ω1
n, · · · , ωL

n ) is the subvector associated with data n. Moreover, The optimum
distribution is the posterior distribution

q̂(Z,η,W) =
1

Z(ω̂|D)
p(Z,η,W,D) exp

{ ∑
n∈Itr

∑
y

ω̂y
nη

⊤∆gn(y, Z)
}
, (26)

where Z(ω̂|D) is the normalization factor and ω̂ is the solution of the dual problem.

Testing: to make prediction on test examples, we put both training and test data
together to do regularized Bayesian inference. For training data, we impose the above
large-margin constraints because of the awareness of their true labels, while for test data,
we do the inference without the large-margin constraints since we do not know their true
labels. Therefore, the classifier (i.e., q(η)) is learned from the training data only, while both
training and testing data influence the posterior distributions of the likelihood model W.
After inference, we make the prediction via the rule

y∗
def
= argmax

y
f
(
y,x; q(Z,η,W)

)
. (27)

Note that the ability to generalize to test data relies on the fact that all the data examples
share η and the IBP prior. We can also cast the problem as a transductive inference
problem by imposing additional large-margin constraints on test data (Joachims, 1999).
However, the resulting problem will be generally harder to solve because it needs to resolve
the unknown labels of testing examples. We also note that the testing is different from
the standard inductive setting (Zhu et al., 2011b), where the latent features of a new data
example can be approximately inferred given the training data. Our empirical study shows
little difference on performance between our setting and the standard inductive setting.
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Figure 2: Graphical structures of (a) infinite latent SVM (iLSVM); and (b) multi-task
infinite latent SVM (MT-iLSVM). For MT-iLSVM, the dashed nodes (i.e., ςm)
illustrate the task relatedness but do not exist.

4.3 Multi-Task Infinite Latent Support Vector Machines

Different from classification, which is typically formulated as a single learning task, multi-
task learning aims to improve a set of related tasks through sharing statistical strength
among these tasks, which are performed jointly. Many different approaches have been
developed for multi-task learning (See (Jebara, 2011) for a review). In particular, learning
a common latent representation shared by all the related tasks has proven to be an effective
way to capture task relationships (Ando and Zhang, 2005; Argyriou et al., 2007; Rai and
Daume III, 2010). Below, we present the multi-task infinite latent SVM (MT-iLSVM) for
learning a common binary projection matrix Z to capture the relationships among multiple
tasks. Similar as in iLSVM, we also put the IBP prior on Z to allow it to have an unbounded
number of columns.

Suppose we have M related tasks. Let Dm = {(xmn, ymn)}n∈Im
tr

be the training data
for task m. We consider binary classification tasks, where Ym = {+1,−1}. Extension to
multi-way classification or regression can be easily done. A näıve way to solve this learning
problem with multiple tasks is to perform the multiple tasks independently. In order to make
the multiple tasks coupled and share statistical strength, MT-iLSVM introduces a latent
projection matrix Z. If the latent matrix Z is given, we define the latent discriminant
function for task m as

fm(xmn,Z;ηm)
def
= (Zηm)⊤xmn = η⊤m(Z⊤xmn), (28)

where xmn is one data example in Dm and ηm is the vector of parameters for task m.
The dimension of ηm is the number of columns of the latent projection matrix Z, which is
unbounded in the nonparametric setting. This definition provides two views of how the M
tasks get related.

(1) If we let ςm = Zηm, then ςm is the actual parameter of task m and all ςm in different
tasks are coupled by sharing the same latent matrix Z;
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(2) Another view is that each task m has its own parameters ηm, but all the tasks share the
same latent projection matrix Z to extract latent features Z⊤xmn, which is a projection
of the input features xmn.

As such, our method can be viewed as a nonparametric Bayesian treatment of alternating
structure optimization (ASO) (Ando and Zhang, 2005), which learns a single projection
matrix with a pre-specified latent dimension. Moreover, different from (Jebara, 2011),
which learns a binary vector with known dimensionality to select features or kernels on x,
we learn an unbounded projection matrix Z using nonparametric Bayesian techniques.

As in iLSVM, we employ a Bayesian treatment of ηm, and view it as random variables.
We assume that ηm has a fully-factorized Gaussian prior, i.e., ηmk ∼ N (0, 1). Then, we
define the effective discriminant function for task m as the expectation

fm
(
x; q(Z,η,W)

) def
= Eq(Z,η,W)

[
fm(x,Z;ηm)

]
= Eq(Z,η,W)[Zηm]⊤x, (29)

where W is a place holder for the variables that possibly arise from other parts of the
model. As in iLSVM, since we are taking expectation, the variables which do not appear
in the feature map (i.e., W) will be marginalized out. Then, the prediction rule for task

m is naturally y∗m
def
= signfm(x). Similarly, we perform regularized Bayesian inference by

defining:

UMT (ξ)
def
= C

∑
m,n∈Im

tr

ξmn

and imposing the following constraints:

PMT
post(ξ)

def
=

{
q(Z,η,W)

∀m, ∀n ∈ Im
tr : ymnEq(Z,η,W)[Zηm]⊤xmn ≥ 1− ξmn

ξmn ≥ 0

}
. (30)

Finally, as in iLSVM we may also be interested in explaining observed data x. Therefore,
we relate Z to the observed data x by defining a likelihood model:

p
(
xmn|wmn,Z, λ

2
mn

)
= N

(
xmn|Zwmn, λ

2
mnI

)
, (31)

wherewmn is a vector. We assumeW has an independent prior π(W) =
∏

mnN (wmn|0, σ2m0I).
Fig. 2 (b) illustrates the graphical structure of MT-iLSVM.

For training, we can derive the similar convex conjugate as in the case of iLSVM. Similar
as in iLSVM, minimizing UMT (ξ) is equivalent to minimizing the hinge-loss RMT

h of the
multiple binary prediction rules, where

RMT
h

(
q(Z,η,W)

)
= C

∑
m,n∈Im

tr

max
(
0, 1− ymnEq(Z,η,W)[Zηm]⊤xmn

)
. (32)

Thus, the RegBayes problem of MT-iLSVM can be equivalently written as

inf
q(Z,η,W)

KL
(
q(Z,η,W)∥p(Z,η,W,D)

)
+RMT

h

(
q(Z,η,W)

)
. (33)

Then, by the Fenchel’s duality theorem and Lemma 5, we can derive the conjugate of
MT-iLSVM. The proof is deferred to Appendix C.5.
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Lemma 9 (Conjugate of MT-iLSVM) For the MT-iLSVM problem, we have that

inf
q(Z,η,W)∈Pprob

KL(q(Z,η,W)∥p(Z,η,W,D)) +RMT
h (q(Z,η,W)) (34)

= sup
ω

− logZ ′(ω|D) +
∑
m,n

ωmn −
∑
m,n

g∗0(ωmn).

Moreover, The optimum distribution is the posterior distribution

q̂(Z,η,W) =
1

Z ′(ω̂|D)
p(Z,η,W,D) exp

{∑
m,n

ymnω̂mn(Zηm)⊤xmn

}
, (35)

where Z ′(ω̂|D) is the normalization factor and ω̂ is the solution of the dual problem.

For testing, we use the same strategy as in iLSVM to do Bayesian inference on both
training and test data. The difference is that training data are subject to large-margin
constraints, while test data are not. Similarly, the hyper-parameters σ2m0 and λ2mn can be
set a priori or estimated from data (See Appendix D.1 for details).

4.4 Inference with Truncated Mean-Field Constraints

Now we discuss how to perform regularized Bayesian inference with the large-margin
constraints for both iLSVM and MT-iLSVM. From the primal-dual formulations, it is
obvious that there are basically two methods to perform the regularized Bayesian inference.
One is to directly solve the posterior distribution q(Z,η,W), and the other is to first solve
the dual problem for the optimum ω̂ and then infer the posterior distribution. However,
both the primal and dual problems are intractable to solve for iLSVM and MT-iLSVM. The
intrinsic hardness is due to the mutual dependency among the latent variables in the desired
posterior distribution. Therefore, a natural approximation method is the mean field (Jordan
et al., 1999), which breaks the mutual dependency by assuming q is of some factorization
form. This method approximates the original problems by imposing additional constraints.
An alternative method is to apply approximate methods (e.g., MCMC sampling) to infer the
true posterior distributions derived via convex conjugates as above, and iteratively estimate
the dual parameters using approximate statistics (e.g., feature expectations estimated using
samples) (Schofield, 2006). Below, we use MT-iLSVM as an example to illustrate the idea
of the first strategy. A full discussion on the second strategy is beyond the scope of this
paper. For iLSVM, similar procedure applies and we defer its details to Appendix D.2.

To make the problem easier to solve, we use the stick-breaking representation of IBP,
which includes the auxiliary variable ν, and infer the expanded posterior q(ν,W,Z,η). The
joint model distribution is now q(ν,W,Z,η,D). Furthermore, we impose the truncated
mean-field constraint that

q(ν,W,Z,η) = q(η)

K∏
k=1

(
q(νk|γk)

D∏
d=1

q(zdk|ψdk)
)∏

mn

q
(
wmn|Φmn, σ

2
mnI

)
, (36)

where K is the truncation level, and we assume that

q(νk|γk) = Beta(γk1, γk2),

18



Regularized Bayesian Inference and Infinite Latent SVMs

Algorithm 1 Inference Algorithm for Infinite Latent SVMs

1: Input: corpus D and constants (α,C).
2: Output: posterior distribution q(ν,Z,η,W).
3: repeat
4: infer q(ν), q(W) and q(Z) with q(η) and ω given;
5: infer q(η) and solve for ω with q(Z) given.
6: until convergence

q(zdk|ψdk) = Bernoulli(ψdk),

q(wmn|Φmn, σ
2
mnI) = N (wmn|Φmn, σ

2
mnI).

Then, we can use the duality theory8 to solve the RegBayes problem by alternating between
two substeps, as outlined in Algorithm 1 and detailed below.

Infer q(ν), q(W) and q(Z): Since q(ν) and q(W) are not directly involved in the
posterior constraints, we can solve for them by using standard Bayesian inference, i.e.,
minimizing a KL-divergence. Specifically, for q(W), since the prior is also normal, we can
easily derive the update rules for Φmn and σ2mn. For q(ν), we have the same update rules
as in (Doshi-Velez, 2009). We defer the details to Appendix D.1.

For q(Z), it is directly involved in the posterior constraints. So, we need to solve it
together with q(η) using conjugate theory. However, this is intractable. Here, we adopt an
alternating strategy that first infers q(Z) with q(η) and dual parameters ω fixed, and then
infers q(η) and solves for ω. Specifically, since the large-margin constraints are linear of
q(Z), we can get the mean-field update equation as

ψdk =
1

1 + e−ϑdk
,

where

ϑdk =

k∑
j=1

Eq[log vj ]− Lν
k −

∑
mn

1

2λ2mn

(
(Kσ2mn + (ϕkmn)

2) (37)

−2xdmnϕ
k
mn + 2

∑
j ̸=k

ϕjmnϕ
k
mnψdj

)
+

∑
m,n∈Im

tr

ymnEq[ηmk]x
d
mn,

and Lν
k is an lower bound of Eq[log(1−

∏k
j=1 vj)] (See Appendix D.1 for details). The last

term of ϑdk is due to the large-margin posterior constraints as defined in Eq. (30). We can
how the large-margin constraints regularize the procedure of inferring the latent matrix Z.

Infer q(η) and solve for ω: Now, we can apply the convex conjugate theory and show
that the optimum posterior distribution of η is

q(η) =
∏
m

q(ηm), where q(ηm) ∝ π(ηm) exp{η⊤mµm},

8. Lagrangian duality (Ito and Kunisch, 2008) was used in (Zhu et al., 2011a) to solve the constrained
variational formulations, which is closely related to Fenchel duality (Magnanti, 1974) and leads to the
same solutions for iLSVM and MT-iLSVM.
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and µm =
∑

n∈Im
tr
ymnωmn(ψ

⊤xmn). Here, we assume π(ηm) is standard normal. Then, we

have q(ηm) = N (ηm|µm, I) and the optimum dual parameters can be obtained by solving
the following M independent dual problems

sup
ωm

−1

2
µ⊤
mµm +

∑
n∈Im

tr

ωmn (38)

∀n ∈ Im
tr , s.t. : 0 ≤ ωmn ≤ C,

where the constraints are from the conjugate function g∗0 in Lemma 9. These dual problems
(or their primal forms) can be efficiently solved with a binary SVM solver, such as SVM-light
or LibSVM.

5. Experiments

We present empirical results for both classification and multi-task learning. Our results
appear to demonstrate the merits inherited from both Bayesian nonparametrics and large-
margin learning.

5.1 Multi-way Classification

We evaluate the infinite latent SVM (iLSVM) for classification on the real TRECVID2003
and Flickr image datasets, which have been extensively evaluated in the context of learning
finite latent feature models (Chen et al., 2010). TRECVID2003 consists of 1078 video
key-frames that belong to 5 categories, including Airplane scene, Basketball scene, Weather
news, Baseball scene, and Hockey scene. Each data example has two types of features
– 1894-dimension binary vector of text features and 165-dimension HSV color histogram.
The Flickr image dataset consists of 3411 natural scene images about 13 types of animals,
including squirrel, cow, cat, zebra, tiger, lion, elephant, whales, rabbit, snake, antlers, hawk
and wolf, downloaded from the Flickr website9. Also, each example has two types of features,
including 500-dimension SIFT bag-of-words and 634-dimension real-valued features (e.g.,
color histogram, edge direction histogram, and block-wise color moments). Here, we
consider the real-valued features only by defining Gaussian likelihood distributions for x;
and we define the discriminant function using latent features only as in Eq. (19). We follow
the same training/testing splits as in (Chen et al., 2010).

We compare iLSVM with the large-margin Harmonium (MMH) (Chen et al., 2010),
which was shown to outperform many other latent feature models, and two decoupled
approaches – EFH+SVM and IBP+SVM. EFH+SVM uses the exponential family Harmo-
nium (EFH) (Welling et al., 2004) to discover latent features and then learns a multi-way
SVM classifier. IBP+SVM is similar, but uses an IBP factor analysis model (Griffiths
and Ghahramani, 2005) to discover latent features. To initialize the learning algorithms
for these models, we found that using the SVD factors of the input feature matrix as
the initial weights for MMH and EFH can produce better results. Here, we also use
the SVD factors as the initial mean of weights in the likelihood models for iLSVM. Both
MMH and EFH+SVM are finite models and they need to pre-specify the dimensionality

9. http://www.flickr.com/
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Table 1: Classification accuracy and F1 scores on the TRECVID2003 and Flickr image
datasets (Note: MMH and EFH have zero std because of their deterministic
initialization).

TRECVID2003 Flickr
Model Accuracy F1 score Accuracy F1 score

EFH+SVM 0.565 ± 0.0 0.427 ± 0.0 0.476 ± 0.0 0.461 ± 0.0
MMH 0.566 ± 0.0 0.430 ± 0.0 0.538 ± 0.0 0.512 ± 0.0

IBP+SVM 0.553 ± 0.013 0.397 ± 0.030 0.500 ± 0.004 0.477 ± 0.009
iLSVM 0.563 ± 0.010 0.448 ± 0.011 0.533 ± 0.005 0.510 ± 0.010
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Figure 3: Accuracy and F1 score of MMH on the Flickr dataset with different numbers of
latent features.

of latent features. We report their results on classification accuracy and F1 score (i.e.,
the average F1 score over all possible classes) (Zhu et al., 2011b) achieved with the best
dimensionality in Table 1. Figure 3 illustrates the performance change of MMH when using
different number of latent features, from which we can see that K = 40 produces the best
performance and either increasing or decreasing K could make the performance worse. For
iLSVM and IBP+SVM, we use the mean-field inference method and present the average
performance with 5 randomly initialized runs (Please see Appendix D.2 for the algorithm
and initialization details). We perform 5-fold cross-validation on training data to select
hyperparameters, e.g., α and C (we use the same procedure for MT-iLSVM). We can see
that iLSVM can achieve comparable performance with the nearly optimal MMH, without
needing to pre-specify the latent feature dimension10, and is much better than the decoupled
approaches (i.e., IBP+SVM and EFH+SVM). For the two stage methods, we don’t have a
clear winner – IBP+SVM performs a bit worse than EFH+SVM on the TRECVID dataset,
while it outperforms EFH+SVM on the flickr dataset. The reason for the difference may
be due to the initialization or different properties of the data.

10. We set the truncation level to 300, which is large enough.
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Figure 4: (Up) the overall average values of the latent features with standard deviation
over different classes; and (Bottom) the per-class average values of latent features
learned by iLSVM on the TRECVID dataset.
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Figure 5: The overall average values of the latent features with standard deviation over
different classes on the Flickr dataset.

It is also interesting to examine the discovered latent features. Figure 4 shows the
overall average values of latent features and the per-class average feature values of iLSVM
in one run on the TRECVID dataset. We can see that on average only about 45 features
are active for the TRECVID dataset. For the overall average, we also present the standard
deviation over the 5 categories. A larger deviation means that the corresponding feature
is more discriminative when predicting different categories. For example, feature 26 and
feature 34 are generally less discriminative than many other features, such as feature 1
and feature 30. Figure 5 shows the overall average feature values together with standard
deviation on the Flickr dataset. We omitted the per-class average because that figure is too
crowded with 13 categories. We can that as k increases, the probability that feature k is
active decreases. The reason for the features with stable values (i.e., standard deviations
are extremely small) is due to our initialization strategy (each feature has 0.5 probability
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Figure 6: Six example features discovered iLSVM on the Flickr animal dataset. For each
feature, we show 5 top-ranked images.

to be active). Initializing ψdk as being exponentially decreasing (e.g., like the constructing
process of π) leads to a faster decay and many features will be inactive. To examine the
semantics11 of each feature, Figure 6 presents some example features discovered on the
Flickr animal dataset. For each feature, we present 5 top-ranked images which have large
values on this particular feature. We can see that most of the features are semantically
interpretable. For instance, feature F1 is about squirrel; feature F2 is about ocean animal,
which is whales in the Flickr dataset; and feature F4 is about hawk. We can also see that
some features are about different aspects of the same category. For example, feature F2
and feature F3 are both about whales, but with different background.

5.2 Multi-task Learning

Now, we evaluate the multi-task infinite latent SVM (MT-iLSVM) on several well-studied
real datasets.

11. The interpretation of latent features depends heavily on the input data.
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Table 2: Multi-label classification performance on Scene and Yeast datasets.

Dataset Model Acc F1-Micro F1-Macro

Yeast

YaXue 0.5106 0.3897 0.4022
Piyushrai-1 0.5212 0.3631 0.3901
Piyushrai-2 0.5424 0.3946 0.4112

MT-IBP+SVM 0.5475 ± 0.005 0.3910 ± 0.006 0.4345 ± 0.007
MT-iLSVM 0.5792 ± 0.003 0.4258 ± 0.005 0.4742 ± 0.008

Scene

YaXue 0.7765 0.2669 0.2816
Piyushrai-1 0.7756 0.3153 0.3242
Piyushrai-2 0.7911 0.3214 0.3226

MT-IBP+SVM 0.8590 ± 0.002 0.4880 ± 0.012 0.5147 ± 0.018
MT-iLSVM 0.8752 ± 0.004 0.5834 ± 0.026 0.6148 ± 0.020

5.2.1 Description of the Data

Scene and Yeast Data: These datasets are from the UCI repository, and each data
example has multiple labels. As in (Rai and Daume III, 2010), we treat the multi-label
classification as a multi-task learning problem, where each label assignment is treated as a
binary classification task. The Yeast dataset consists of 1500 training and 917 test examples,
each having 103 features, and the number of labels (or tasks) per example is 14. The Scene
dataset consists 1211 training and 1196 test examples, each having 294 features, and the
number of labels (or tasks) per example for this dataset is 6.

School Data: This dataset comes from the Inner London Education Authority and has
been used to study the effectiveness of schools. It consists of examination records of 15,362
students from 139 secondary schools in years 1985, 1986 and 1987. The dataset is publicly
available and has been extensively evaluated in various multi-task learning methods (Bakker
and Heskes, 2003; Bonilla et al., 2008; Zhang and Yeung, 2010), where each task is defined
as predicting the exam scores of students belonging to a specific school based on four
student-dependent features (year of the exam, gender, VR band and ethnic group) and four
school-dependent features (percentage of students eligible for free school meals, percentage
of students in VR band 1, school gender and school denomination). In order to compare
with the above methods, we follow the same setup described in (Argyriou et al., 2007;
Bakker and Heskes, 2003) and similarly we create dummy variables for those features that
are categorical forming a total of 19 student-dependent features and 8 school-dependent
features. We use the same 10 random splits12 of the data, so that 75% of the examples
from each school (task) belong to the training set and 25% to the test set. On average, the
training set includes about 80 students per school and the test set about 30 students per
school.

12. Available at: http://ttic.uchicago.edu/∼argyriou/code/index.html
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Figure 7: Percentage of explained variance by various models on the School dataset.

5.2.2 Results

Scene and Yeast Data: We compare with the closely related nonparametric Bayesian
methods, including kernel stick-breaking (YaXue) (Xue et al., 2007) and the basic and
augmented infinite predictor subspace models (i.e., Piyushrai-1 and Piyushrai-2) (Rai and
Daume III, 2010). These nonparametric Bayesian models were shown to outperform the
independent Bayesian logistic regression and a single-task pooling approach (Rai and Daume
III, 2010). We also compare with a decoupled method MT-IBP+SVM13 that uses an IBP
factor analysis model to find shared latent features among multiple tasks and then builds
separate SVM classifiers for different tasks. For MT-iLSVM and MT-IBP+SVM, we use the
mean-field inference method in Sec 4.4 and report the average performance with 5 randomly
initialized runs (See Appendix D.1 for initialization details). For comparison with (Rai and
Daume III, 2010; Xue et al., 2007), we use the overall classification accuracy, F1-Macro
and F1-Micro as performance measures. Table 2 shows the results. On both datasets, MT-
iLSVM needs less than 50 latent features on average. We can see that the large-margin
MT-iLSVM performs much better than other nonparametric Bayesian methods and MT-
IBP+SVM, which separates the inference of latent features from learning the classifiers.

School Data: We use the percentage of explained variance (Bakker and Heskes, 2003)
as the measure of the regression performance, which is defined as the total variance of the
data minus the sum-squared error on the test set as a percentage of the total variance.
Since we use the same settings, we can compare with the state-of-the-art results of

(1) Bayesian multi-task learning (BMTL) (Bakker and Heskes, 2003);

(2) Multi-task Gaussian processes (MTGP) (Bonilla et al., 2008);

(3) Convex multi-task relationship learning (MTRL) (Zhang and Yeung, 2010);

and single-task learning (STL) as reported in (Bonilla et al., 2008; Zhang and Yeung,
2010). For MT-iLSVM and MT-IBP+SVM, we also report the results achieved by

13. This decoupled approach is in fact an one-iteration MT-iLSVM, where we first infer the shared latent
matrix Z and then learn an SVM classifier for each task.
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Figure 8: Sensitivity study of MT-iLSVM: (a) classification accuracy with different α
on Yeast data; (b) classification accuracy with different C on Yeast data; (c)
percentage of explained variance with different α on School data; and (d)
percentage of explained variance with different C on School data.

using both the latent features (i.e., Z⊤x) and the original input features x through
vector concatenation, and we denote the corresponding methods by MT-iLSVMf and MT-
IBP+SVMf , respectively. On average the multi-task latent SVM (i.e., MT-iLSVM) needs
about 50 latent features to get sufficiently good and robust performance. From the results in
Figure 7, we can see that the MT-iLSVM achieves better results than the existing methods
that have been tested in previous studies. Again, the joint MT-iLSVM performs much better
than the decoupled method MT-IBP+SVM, which separates the latent feature inference
from the training of large-margin classifiers. Finally, using both latent features and the
original input features can boost the performance slightly for MT-iLSVM, while much more
significantly for the decoupled MT-IBP+SVM.
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Figure 9: Percentage of explained variance and running time by MT-iLSVM with various
training sizes.

5.3 Sensitivity Analysis

Figure 8 shows how the performance of MT-iLSVM changes against the hyper-parameter
α and regularization constant C on the Yeast and School datasets. We can see that on
the Yeast dataset, MT-iLSVM is insensitive to both α and C. For the School dataset,
MT-iLSVM is very insensitive the α, and it is stable when C is set between 0.3 and 1.

Figure 9 shows how the training size affects the performance and running time of MT-
iLSVM on the School dataset. We use the first b% (b = 50, 60, 70, 80, 90, 100) of the training
data in each of the 10 random splits as training set and use the corresponding test data
as test set. We can see that as training size increases, the performance and running time
generally increase; and MT-iLSVM achieves the state-of-art performance when using about
70% training data. From the running time, we can also see that MT-iLSVM is generally
quite efficient by using mean-field inference.

Finally, we investigate how the performance of MT-iLSVM changes against the
hyperparameters σ2m0 and λ2mn. We initially set σ2m0 = 1 and compute λ2mn from observed
data. If we further estimate them by maximizing the objective function, the performance
does not change much (±0.3% for average explained variance on the School dataset). We
have similar observations for iLSVM.

6. Conclusions and Discussions

We present regularized Bayesian inference (RegBayes), a computational framework to
perform post-data posterior inference with a convex regularization on the desired posterior
distributions. RegBayes is applicable to both directed and undirected graphical models.
General conjugate results are derived when the posterior regularization is induced from a
linear operator (e.g., expectation). Furthermore, we particularly concentrate on developing
two large-margin nonparametric Bayesian models under the RegBayes framework to learn
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predictive latent features for classification and multi-task learning, by exploring the large-
margin principle to define posterior constraints. Both models allow the latent dimension
to be automatically resolved from the data. The empirical results on several real
datasets appear to demonstrate that our methods inherit the merits from both Bayesian
nonparametrics and large-margin learning.

Regularized Bayesian inference offers a computational framework for considering
posterior regularization in performing parametric or nonparametric Bayesian inference.
For future work, we plan to study other posterior regularization beyond the large-margin
constraints, such as posterior constraints defined on manifold structures (Huh and Fienberg,
2010), and investigate how posterior regularization can be used in other interesting
nonparametric Bayesian models (Beal et al., 2002; Teh et al., 2006; Blei and Frazier, 2010) in
different contexts, such as link prediction (Miller et al., 2009) for social network analysis and
low-rank matrix factorization for collaborative prediction. Some preliminary results (Xu
et al., 2012; Zhu, 2012) have shown great promise. It is interesting to investigate more
carefully along this direction. Moreover, as we have stated, RegBayes can be developed for
undirected MRFs. But the inference would be even harder. We plan to do a systematic
investigation along this direction too. We have some preliminary results presented in (Chen
et al., 2011), but there is a lot of room to further improve. Finally, regularized Bayesian
inference in general leads to a highly nontrivial inference problem. Although the general
solution can be derived with convex analysis theory, it is normally intractable to infer them
directly. Therefore, approximate inference techniques such as the truncated mean-field
approximation have to be used. For the current truncated inference methods, one key limit
is to pre-specify the truncation level. A too conservative truncation level could lead to
a waste of computing resources. So, it is important to develop inference algorithms that
could adaptively determine the number of latent features, such as Monte Carlo methods.
We have some preliminary progress along this direction as reported in (Jiang et al., 2012;
Zhu et al., 2013). It is interesting to extend these techniques to deal with other challenging
nonparametric Bayesian models.
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Appendix A: Generalization Beyond Bayesian Networks

Standard Bayesian inference and the proposed regularized Bayesian inference implicitly
make the assumption that the model can be graphically drawn as a Bayesian network
as illustrated in Figure 10(a)14. Here, we consider a more general formulation which
could cover both directed and undirected latent variable models, such as the well-studied

14. The structure within M can be arbitrary, either a directed, undirected or hybrid chain graph.
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Boltzmann machines (Murray and Ghahramani, 2004; Welling et al., 2004), as well as the
case where a model could have some unknown parameters (e.g., hyper-parameters) and need
an estimation procedure, such as maximum likelihood estimation (MLE), besides posterior
inference. The latter is also known as empirical Bayesian methods, which are frequently
employed by practitioners.

Extension 1: Empirical Bayesian Inference with Unknown Parameters: As
illustrated in Figure 10(b), in some cases we need to perform the empirical Bayesian
inference in the presence of unknown parameters. For instance, in a linear-Gaussian
Bayesian model, we may choose to estimate its covariance matrix using MLE; and in a
latent Dirichlet allocation (LDA) (Blei et al., 2003) model, we may choose to estimate the
unknown topical dictionary, although in principle we can treat these parameters as random
variables and perform full Bayesian inference. In such cases, we need some mechanisms
to estimate the unknown parameters when doing Bayesian inference. Let Θ be model
parameters. We can formulate empirical Bayesian inference as solving15

inf
Θ,q(M)

KL(q(M)∥π(M))−
∫
M

log p(D|M,Θ)q(M)dM (39)

s.t. : q(M) ∈ Pprob.

Although the problem is convex over q(M) for any fixed Θ, it is not jointly convex in general.
A natural algorithm to solve this problem is the well-known EM procedure (Dempster et al.,
1977), which converges to a local optimum. Specifically, we have the following result.

Lemma 10 For problem (39), the optimum solution of q(M) is equivalent to the posterior
distribution by Bayes’ theorem for any Θ; and the optimum Θ∗ is the MLE

Θ∗ = argmax
Θ

log p(D|Θ).

Proof According to the variational formulation of Bayes’ rule in Eq. (5), we get that the
optimum solution is q(M) = p(M|D,Θ) for any Θ. Substituting the optimum solution of q
into the objective, we get the optimization problem of Θ.

Extension 2: Chain Graph: In the above cases, we have assumed that the observed
data are generated by some model in a directed causal sense. This assumption holds
in directed latent variable models. However, in many cases, we may choose alternative
formulations to define the joint distribution of a model and the observed data. Figure 10(c)
illustrates one such scenario, where the modelM consists of two subsets of random variables.
One subsetH is connected to the observed data via an undirected graph and the other subset
Z is connected to the observed data and H using directed edges. This graph is known as
a chain graph. Due to the Markov properties of chain graph (Frydenberg, 1990), we know
that the joint distribution has the factorization form as

p(M,D) = p(Z)p(H,D|Z), (40)

15. The objective can be derived using variational techniques. It is in fact a variational upper bound of the
negative log-likelihood.
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Figure 10: Illustration graphs for three different types of models that involve Bayesian
inference: (a) a Bayesian generative model; (b) a Bayesian generative model
with unknown parameters Θ; and (c) a chain graph model.

where p(H,D|Z) is a Markov random field (MRF). One concrete example of such a hybrid
chain model is the Bayesian Boltzman machines (Murray and Ghahramani, 2004), which
treat the parameters of a Boltzmann machine as random variables and perform Bayesian
inference with MCMC sampling methods.

The insights that RegBayes covers undirected or chain graph latent variable models come
from the observation that the objective L(q(M)) of problem (5) is in fact an KL-divergence,
namely, we can show that

L(q(M)) = KL(q(M)∥p(M,D)), (41)

where p(M,D) is the joint distribution. Note that when D is given, the distribution
p(M,D) is non-normalized for M; and we have abused the KL notation for non-normalized
distributions in Eq. (41), but with the same formula. For directed Bayesian networks (Zhu
et al., 2011a), we naturally have p(M,D) = π(M)p(D|M). For the undirected MRF models,
we have M = {Z,H} and again we can define the joint distribution as in Eq. (40).

Putting the above two extensions of Bayesian inference together, the regularized
Bayesian inference with estimating unknown model parameters can be generally formulated
as

inf
Θ,q(M),ξ

L(Θ, q(M)) + U(ξ) or inf
Θ,q(M)

L(Θ, q(M)) + g(Eq(M)) (42)

s.t. : q(M) ∈ Ppost(ξ) s.t. : q(M) ∈ Pprob,

where L(Θ, q(M)) is the objective function of problem (39). These two formulations
are equivalent. We will call the former a constrained formulation and call the latter an
unconstrained formulation by ignoring the standard normalization constraints, which are
easy to deal with.
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Appendix B: MedLDA—A RegBayes Model with Finite Latent Features

This section presents a new interpretation of MedLDA (maximum entropy discrimination
latent Dirichlet allocation) (Zhu et al., 2009) under the framework of regularized Bayesian
inference. MedLDA is a max-margin supervised topic model, an extension of latent Dirichlet
allocation (LDA) (Blei et al., 2003) for supervised learning tasks. In MedLDA, each data
example is projected to a point in a finite dimensional latent space, of which each feature
corresponds to a topic, i.e., a unigram distribution over the terms in a vocabulary. MedLDA
represents each data as a probability distribution over the features, which results in a
conservation constraint (i.e., the more a data expresses on one feature, the less it can express
others) (Griffiths and Ghahramani, 2005). The infinite latent feature models discussed in
Section 4 do not have such a constraint.

Without loss of generality, we consider the MedLDA regression model as an example
(classification model is similar), whose graphical structure is shown in Figure 11. We assume
that all data examples have the same length V for notation simplicity. Each document
is associated with a response variable Y , which is observed in the training phase but
unobserved in testing. We will use y to denote an instance value of Y . Let K be the
number of topics or the dimensionality of the latent topic space. MedLDA builds an LDA
model to describe the observed words. The generating process of LDA is that each document
n has a mixing proportion θn ∼ Dirichlet(α); each word wnm is associated with a topic
znm ∼ θn, which indexes the topic that generates the word, i.e., wnm ∼ βznm

. Define

Z̄n = 1
V

∑V
m=1 Znm as the average topic assignment for document n. Let Θ = {α,β, δ2}

denote the unknown model parameters and D = {yn, wnm} be the training set. MedLDA
was defined as solving a regularized MLE problem with expectation constraints

inf
Θ,ξ,ξ∗

− log p({yn, wnm}|Θ) + C
N∑

n=1

(ξn + ξ∗n) (43)

s.t. ∀n :


yn − Ep[η

⊤Z̄n] ≤ ϵ+ ξn
−yn + Ep[η

⊤Z̄n] ≤ ϵ+ ξ∗n
ξn, ξ

∗
n ≥ 0

The posterior constraints are imposed following the large-margin principle and they
correspond to a quality measure of the prediction results on training data. In fact, it
is easy to show that minimizing U(ξ, ξ∗) = C

∑N
n=1(ξn + ξ∗n) under the above constraints

is equivalent to minimizing an ϵ-insensitive loss (Smola and Schölkopf, 2003)

Rϵ

(
p({θn, znm,η}|D,Θ)

)
= C

N∑
n=1

max(0, |yn − Ep[η
⊤Z̄n]| − ϵ). (44)

of the expected linear prediction rule ŷn = Ep[η
⊤Z̄n].

To practically learn an MedLDA model, since the above problem is intractable,
variational methods were used by introducing an auxiliary distribution q({θn, znm,η}|Θ) 16

to approximate the true posterior p({θn, znm,η}|D,Θ), replacing the negative data

16. We have explicitly written the condition on model parameters.
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Figure 11: Graphical structure of MedLDA.

likelihood with its upper bound L
(
q({θn, znm,η}|Θ)

)
, and replacing p by q in the

constraints. The variational MedLDA regression model is

inf
q,Θ,ξ,ξ∗

L
(
q({θn, znm,η}|Θ)

)
+ C

N∑
n=1

(ξn + ξ∗n) (45)

s.t. ∀n :


yn − Eq[η

⊤Z̄n] ≤ ϵ+ ξn
−yn + Eq[η

⊤Z̄n] ≤ ϵ+ ξ∗n
ξn, ξ

∗
n ≥ 0

where L
(
q({θn, znm,η}|Θ)

)
= −Eq

[
log p({θn, znm,η},D|Θ)

]
− H

(
q({θn, znm,η}|Θ)

)
is a

variational upper-bound of the negative data log-likelihood. The upper bound is tight if no
restricting constraints are made on the variational distribution q. In practice, additional
assumptions (e.g., mean-field) can be made on q to derive a practical approximate algorithm.

Based on the previous discussions on the extensions of RegBayes and the duality in
Lemma 10, we can reformulate the MedLDA regression model as an example of RegBayes.
Specifically, for the MedLDA regression model, we have M = {θn, znm,η}. According to
Eq. (41), we can easily show that

L
(
q({θn, znm,η}|Θ)

)
= KL

(
q({θn, znm,η}|Θ)∥p({θn, znm,η}, {wnm, yn}|Θ)

)
= LB

(
Θ, q(M|Θ)

)
.

Then, the MedLDA problem is a RegBayes model in Eq. (42) with

PMedLDA
post (Θ, ξ, ξ∗)

def
=

q({θn, znm,η}|Θ)
∀n : yn − Eq[η

⊤Z̄n]≤ ϵ+ ξn
−yn + Eq[η

⊤Z̄n]≤ ϵ+ ξ∗n
ξn, ξ

∗
n ≥ 0

 . (46)

For the MedLDA problem, we can use Lagrangian methods to solve the constrained
formulation. Alternatively, we can also use the convex duality theorem to solve the
equivalent unconstrained form. For the variational MedLDA, the ϵ-insensitive loss is
Rϵ(q({θn, znm,η}|Θ)). Its conjugate can be derived using the results of Lemma 7.
Specifically, we have the following result, whose proof is deferred to Appendix C.6.
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Lemma 11 (Conjugate of MedLDA) For the variational MedLDA problem, we have

inf
Θ,q({θn,znm,η}|Θ)∈Pprob

L(q({θn, znm,η}|Θ),Θ) +Rϵ(q({θn, znm,η}|Θ)) (47)

= sup
ω

− logZ ′(ω,Θ∗)−
∑
n

g∗2(ωn;−yn + ϵ, yn + ϵ),

where ωn = (ωn, ω
′
n). Moreover, The optimum distribution is the posterior distribution

q̂({θn, znm,η}|Θ∗) =
1

Z ′(ω̂,Θ∗|D)
p({θn, znm,η},D|Θ∗) exp

{∑
n

(ω̂n − ω̂′
n)η

⊤z̄n

}
, (48)

where Z ′(ω̂,Θ|D) is the normalization factor and the optimum parameters are

Θ∗ = argmax
Θ

log p(D|Θ). (49)

Note that although in general, either the primal or the dual problem is hard to
solve exactly, the above conjugate results are still useful when developing approximate
inference algorithms. For instance, we can impose additional mean-field assumptions on
q in the primal formulation and iteratively solve for each factor; and in this process
convex conjugates are useful to deal with the large-margin constraints (Zhu et al., 2009).
Alternatively, we can apply approximate methods (e.g., MCMC sampling) to infer the q
based on its solution in Eq. (48), and iteratively solves for the dual parameters ω using
approximate statistics (Schofield, 2006). We will discuss more on this when presenting the
inference algorithms for iLSVM and MT-iLSVM.

In the above discussions, we have treated the topics β as fixed unknown parameters.
A fully Bayesian formulation would treat β as random variables, e.g., with a Dirichlet
prior (Blei et al., 2003; Griffiths and Steyvers, 2004). Under the RegBayes interpretation,
we can easily do such an extension of MedLDA, simply by moving β from Θ to M.

Appendix C: Proof of the Lemmas

Appendix C.1: Proof of Lemma 5

Proof By definition, g∗0(µ) = supx∈R(xµ − Cmax(0, x)). We consider two cases. First, if
µ < 0, we have

g∗0(µ) ≥ sup
x<0

(xµ− Cmax(0, x)) = sup
x<0

xµ = ∞.

Therefore, we have g∗0(µ) = ∞ if µ < 0. Second, if µ ≥ 0, we have

g∗0(µ) = sup
x≥0

(xµ− Cx) = I(µ ≤ C).

Putting the above results together, we prove the claim.
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Appendix C.2: Proof of Lemma 6

Proof The proof has a similar structure as the proof of Lemma 5. By definition, we have

g∗1(µ) = sup
x

{
µ⊤x− g1(x)

}
= sup

x

{∑
j

µjxj −max(x1, · · · , xL)
}
.

We first show that ∀i, µi ≥ 0 in order to have finite g∗1 values. Suppose that ∃j, µj < 0.
Then, we define

Gj = {x ∈ RL : xj < 0}, and Go
j = {x ∈ Gj : xi = 0, if i ̸= j}. (50)

Since Go
j ⊂ Gj ⊂ RL, we have

g∗1(µ) ≥ sup
x∈Gj

{µ⊤x− g1(x)} ≥ sup
x∈Go

j

{µ⊤x− g1(x)} = sup
xj∈R−

{xjµj − 0} = ∞.

Therefore, g∗1(µ) = ∞ if ∃j, µj < 0.
Now, we consider the second case, where ∀i, µi ≥ 0. We can easily show that

∀x ∈ RL, µ⊤x− g1(x) ≤
∑
i

µimax(x)− g1(x).

Therefore
g∗1(µ) ≤ sup

x∈RL

{
(
∑
i

µi − C)max(x)
}
= I

(∑
i

µi = C
)
.

Moreover, let G1 = {x ∈ RL : x = xe, x ∈ R}, where e is a vector with every element
being 1. Then, we have

g∗1(µ) ≥ sup
x∈G1

{µ⊤x− g1(x)} = sup
x∈R

{
(
∑
i

µi − C)x
}
= I

(∑
i

µi = C
)
.

Putting the above results together proves the claim.

Appendix C.3: Proof of Lemma 7

Proof By definition, the conjugate is

g∗2(µ) = sup
x∈R

{
µx− Cmax(0, |x− y| − ϵ)

}
.

= − inf
x∈R

{
− µx+ Cmax(0, |x− y| − ϵ)

}
.

= − inf
x∈R;t≥0;t≥|x−y|−ϵ

{
− µx+ Ct

}
= − sup

α,β≥0

{
inf

x,t∈R

{
− µx+ Ct− α(t− |x− y|+ ϵ)− βt

}}
= − sup

α,β≥0

{
inf
x∈R

{
− µx+ α|x− y|

}
+ inf

t∈R

{
Ct− αt− βt

}
− αϵ

}
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For the second infimum, it is easy to show that

inf
t∈R

{
Ct− αt− βt

}
= −I(α+ β = C).

For the first infimum, we can show that

inf
x∈R

{
− µx+ α|x− y|

}
= −µy + inf

x′∈R

{
− µx′ + α|x′|

}
= −µy − I(|µ| ≤ α).

Thus, we have

g∗2(µ) = − sup
α,β≥0

{
− µy − αϵ− I(|µ| ≤ α)− I(α+ β = C)

}
= −(−µy − ϵ|µ| − I(|µ| ≤ C))

= µy + ϵ|µ|+ I(|µ| ≤ C),

where the second equality holds by setting α = |µ|, under the condition that ϵ is positive;
the condition |µ| ≤ C is induced from the conditions α+ β = C and β ≥ 0.

Appendix C.4: Proof of Lemma 8

Proof By definition, we have g(Eq)
def
= Rc

h

(
q(Z,η,W)

)
=

∑
n g1(ℓ

∆
n − Eq(n)). Let µn =

Eq(n). We have the conjugate

g∗(ω) = sup
µ

{
ω⊤µ−

∑
n

g1(ℓ
∆
n − µn)

}
=

∑
n

sup
µn

{
ω⊤

nµn − g1(ℓ
∆
n − µn)

}
=

∑
n

sup
νn

{
ω⊤

n (ℓ
∆
n − νn)− g1(νn)

}
=

∑
n

(
ω⊤

n ℓ
∆
n + g∗1(−ωn)

)
.

Thus,

g∗(−ω) =
∑
n

(
− ω⊤

n ℓ
∆
n + g∗1(ωn)

)
.

Using the results of Lemma 4 proves the claim.

Appendix C.5: Proof of Lemma 9

Proof Similar structure as the proof of Lemma 8. In this case, the linear expectation
operator is E : Pprob → R

∑
m |Im

tr | and the element of Eq evaluated at the nth example for
task m is

Eq(n,m)
def
= ymnEq(Z,η)[Zηm]⊤xmn = Eq(Z,η)[ymn(Zηm)⊤xmn]. (51)
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Then, let g0 : R → R be a function defined in Lemma 5. We have

g(Eq)
def
= RMT

h

(
q(Z,η,W)

)
=

∑
m,n∈Im

tr

g0

(
1−Eq(n,m)

)
.

Let µ = Eq. By definition, the conjugate is

g∗(ω) = sup
µ

{
ω⊤µ−

∑
m,n∈Im

tr

g0(1− µmn)
}

=
∑

m,n∈Im
tr

sup
µmn

{
ωmnµmn − g0(1− µmn)

}
=

∑
m,n∈Im

tr

sup
νmn

{
ωmn(1− νmn)− g0(νmn)

}
=

∑
m,n∈Im

tr

(
ωmn + g∗0(−ωmn)

)
.

Thus,

g∗(−ω) =
∑

m,n∈Im
tr

(
− ωmn + g∗0(ωmn)

)
.

By the results in Lemma 4 and Lemma 5, we can derive the conjugate of the problem (33).

Appendix C.6: Proof of Lemma 11

Proof Similar structure as the proof of Lemma 8. In this case, the linear expectation
operator is E : Pprob → RN and the elements of Eq evaluated at the nth example is

µn = Eq({θn,znm,η}|Θ)[η
⊤z̄n]. (52)

Then, using the g2 function defined in Lemma 7, we have

g(Eq)
def
= Rϵ(q({θn, znm,η}|Θ)) =

∑
n

g2

(
µn; yn, ϵ

)
.

Therefore g∗(ω) =
∑

n g
∗
2(ωn; yn, ϵ) and g∗(−ω) =

∑
n g

∗
2(−ωn; yn, ϵ). By the results in

Lemma 4 and Lemma 5, we can derive the conjugate and the optimum solution of q̂. The
optimum solution of Θ is due to Lemma 10. Note that the constraints are not directly
dependent on Θ.

Appendix D: Inference Algorithms for Infinite Latent SVMs

Appendix D.1: Inference for MT-iLSVM

In this section, we provide the deviation of the inference algorithm for MT-iLSVM, which
is outlined in Algorithm 2 and detailed below.
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For MT-iLSVM, the model M consists of all the latent variables (ν,W,Z,η). Let

Lmn(q)
def
= Eq[log p(xmn|Z,wmn, λ

2
mn)] be the expected data likelihood. Then, under the

truncated mean-field assumption (36), we have

Lmn(q) = −x⊤
mnxmn − 2x⊤

mnEq[Zwmn] + Eq[w
⊤
mnUwmn]

2λ2mn

− D log(2πλ2mn)

2
,

where x⊤
mnEq[Zwmn] =

∑
k x

⊤
mnψ.k; ψ.k

def
= (ψ1k · · ·ψDk)

⊤ is the kth column of ψ = Eq[Z];

Eq[w
⊤
mnUwmn] = 2

∑
j<k

ϕjmnϕ
k
mnUjk +

∑
k

Ukk(Kσ
2
mn +Φ⊤

mnΦmn);

and U
def
= Eq[Z

⊤Z] is a K ×K matrix, whose element is

Uij =

{∑
d ψdi, if i = j∑
d ψdiψdj , otherwise.

For the KL-divergence term, we have KL(q(M)∥π(M)) = KL(q(ν)∥π(ν))+KL(q(W)∥π(W))+
Eq(ν)[KL(q(Z)∥π(Z|ν))] + KL(q(η)∥π(η)), where the individual terms are

KL(q(ν)∥π(ν)) =
K∑
k=1

(
(γk1 − α)(φ(γk1)− φ(γk1 + γk2)) + (γk2 − 1)(φ(γk2)− φ(γk1 + γk2))

− log
Γ(γk1)Γ(γk2)

Γ(γk1 + γk2)

)
−K logα,

Eq(ν)[KL(p(Z)∥π(Z|ν))] =
∑
dk

(
− ψdk

k∑
j=1

Eq[log νj ]− (1− ψdk)Eq[log(1−
k∏

j=1

νj)]

+ψdk logψdk + (1− ψdk) log(1− ψdk)
)

KL(q(W)∥π(W)) =
∑
mn

(Kσ2mn +Φ⊤
mnΦmn

2σ2m0

−
K(1 + log σ2

mn

σ2
m0

)

2

)
.

where φ(·) is the digamma function and Eq[log vj ] = φ(γj1) − φ(γj1 + γj2). For
KL(q(η)∥π(η)), we do not need to write it explicitly, as we shall see. Finally, the effective
discriminant function is

fm(xmn; q(Z,η)) = Eq[ηm]⊤ψ⊤xmn =

K∑
k=1

Eq[ηmk]ψ
⊤
.kxmn.

All the above terms can be easily computed, except the term Eq[log(1 −
∏k

j=1 νj)]. Here,
we adopt the multivariate lower bound (Doshi-Velez, 2009)

Eq[log(1−
k∏

j=1

νj)] ≥
k∑

m=1

qkmφ(γm2) +

k−1∑
m=1

(

k∑
n=m+1

qkn)φ(γm1)

−
k∑

m=1

(

k∑
n=m

qkn)φ(γm1 + γm2) +H(qk.),
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Algorithm 2 Inference Algorithm of MT-iLSVM

1: Input: data D = {(xmn, ymn)}m,n∈Im
tr
∪ {xmn}m,n∈Im

tst
, constants α and C

2: Output: distributions q(ν), q(Z), q(W), q(η) and hyper-parameters σ2m0 and λ2mn

3: Initialize γk1 = α, γk2 = 1, ψdk = 0.5 + ϵ, where ϵ ∼ N (0, 0.001), Φmn = 0, σ2mn =
σ2m0 = 1, µm = 0, λ2mn is computed from D.

4: repeat
5: repeat
6: update (γk1, γk2) using Eq. (55), ∀1 ≤ k ≤ K;
7: update ϕkmn and σ2mn using Eq. (54), ∀m, ∀n,∀1 ≤ k ≤ K;
8: update ψdk using Eq. (56), ∀1 ≤ d ≤ D, ∀1 ≤ k ≤ K;
9: until relative change of L is less than τ (e.g., 1e−3) or iteration number is T (e.g.,

10)
10: for m = 1 to M do
11: solve the dual problem (57) using a binary SVM learner.
12: end for
13: update the hyper-parameters σ2m0 using Eq. (58) and λ2mn using Eq. (59). (Optional)
14: until relative change of L is less than τ ′ (e.g., 1e−4) or iteration number is T ′ (e.g., 20)

where the variational parameters qk. = (qk1 · · · qkk)⊤ belong to the k-simplex, and H(qk.) is
the entropy of qk.. The tightest lower bound is achieved by setting qk. to be the optimum
value

qkm =
1

Zk
exp

(
φ(γm2) +

m−1∑
n=1

φ(γn1)−
m∑

n=1

φ(γn1 + γn2)
)
, (53)

where Zk is a normalization factor to make qk. be a distribution. We denote the tightest
lower bound by Lν

k. Replacing the term Eq[log(1 −
∏k

j=1 νj)] with its lower bound Lν
k, we

can have an upper bound of KL(q(M)∥π(M)) and we denote this upper bound by L(q).
With the above terms and the upper bound L(q), we can implement the general

procedure outlined in Algorithm 1 to solve the MT-iLSVM problem. Specifically, the
inference procedure iteratively solves the following steps, as summarized in Algorithm 2:

Infer q(ν), q(Z) and q(W): For q(W), since both the prior π(W) and q(W) are
Gaussian, we can easily derive the update rules, similar as in Gaussian mixture models

ϕkmn =

∑
d x

d
mnψdk −

∑
j ̸=k ϕ

j
mnUkj

λ2mn

( 1

σ2m0

+

∑
d ψdk

λ2mn

)−1
(54)

σ2mn =
( 1

σ2m0

+
1

K

∑
k

Ukk

λ2mn

)−1

For q(ν), we have the update rules similar as in (Doshi-Velez, 2009), that is,

γk1 = α+
K∑

m=k

D∑
d=1

ψdm +
K∑

m=k+1

(D −
D∑

d=1

ψdm)(
m∑

i=k+1

qmi) (55)

γk2 = 1 +

K∑
m=k

(D −
D∑

d=1

ψdm)qmk.
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For q(Z), we have the mean-field update equation as

ψdk =
1

1 + e−ϑdk
, (56)

where

ϑdk =
k∑

j=1

Eq[log vj ]− Lν
k −

∑
mn

1

2λ2mn

(
(Kσ2mn + (ϕkmn)

2)

−2xdmnϕ
k
mn + 2

∑
j ̸=k

ϕjmnϕ
k
mnψdj

)
+

∑
m,n∈Im

tr

ymnEq[ηmk]x
d
mn.

Infer q(η) and solve for ω: By the convex duality theory, we have the solution

q(η) ∝ π(η) exp
{ ∑

m,n∈Im
tr

ymnωmnη
⊤
mψ

⊤xmn

}

=
M∏

m=1

π(ηm) exp
{
η⊤m

( ∑
n∈Im

tr

ymnωmnψ
⊤xmn

)}
.

Therefore, we can see that although we did not assume q(η) is factorized, we can get the
induced factorization form q(η) =

∏
m q(ηm), where

q(ηm) ∝ π(ηm) exp
{
η⊤m

( ∑
n∈Im

tr

ymnωmnψ
⊤xmn

)}
.

Here, we assume π(ηm) is standard normal. Then, we have q(ηm) = N (ηm|µm, I), where

µm =
∑
n∈Im

tr

ymnωmnψ
⊤xmn.

The optimum dual parameters can be obtained by solving the following M independent
dual problems

sup
ωm

− 1

2
µ⊤
mµm +

∑
n∈Im

tr

ωmn s.t.. : 0 ≤ ωmn ≤ C, ∀n ∈ Im
tr , (57)

which (and its primal form) can be efficiently solved with a binary SVM solver, such as
SVM-light.

As we have stated, the hyperparameters σ20 and λ2mn can be set a priori or estimated
from the data. The empirical estimation can be easily done with closed form solutions by
optimizing the RegBayes objective with all the variational terms fixed. For MT-iLSVM, we
have

σ2m0 =

∑Nm
n=1(Kσ

2
mn +Φ⊤

mnΦmn)

KNm
(58)

λ2mn =
x⊤
mnxmn − 2x⊤

mnEq[Zwmn] + Eq[w
⊤
mnUwmn]

D
. (59)
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Appendix D.2: Inference for Infinite Latent SVM

In this section, we develop the inference algorithm for iLSVM based on the stick-breaking
construction of the IBP prior. The algorithm is outlined in Algorithm 3.

Similar as in the inference for MT-iLSVM, we make the additional constraint about the
feasible distribution

q(ν,W,Z,η) = q(η)q(W|Φ,Σ)
∏
n

( K∏
k=1

q(znk|ψnk)
) K∏

k=1

q(νk|γk),

where K is the truncation level; q(W|Φ,Σ) =
∏

k N (W.k|Φ.k, σ
2
kI); q(znk|ϕnk) =

Bernoulli(ϕnk); and q(νk|γk) = Beta(γk1, γk2). Then, we solve the unconstrained problem

using convex duality with dual parameters being ω. Let Ln(q)
def
= Eq[log p(xn|zn,W)]. We

have

Ln(q) = −x⊤
nxn − 2x⊤

nΦEq[zn]
⊤ + Eq[znAz⊤n ]

2σ2n0
− D log(2πσ2n0)

2
, (60)

where A
def
= Eq[W

⊤W] is a K ×K matrix; x⊤
nΦEq[zn]

⊤ = 2
∑

k ψnk(x
⊤
nΦ.k); and

Eq[znAz⊤n ] = 2
∑
j<k

ψnjψnkAjk +
∑
k

ψnk(Dσ
2
k +Akk).

The effective discriminant function is f(y,xn) =
∑

k Eq[η
k
y ]ψnk. Again, for computational

tractability, we need the lower bound Lν
k of the term Eq[log(1 −

∏k
j=1 vj)]. Using this

lower bound, we can get an upper bound of the KL-divergence term. Then, the inference
procedure iteratively solves the following steps:

Infer q(ν), q(Z) and q(W): For q(W), we have the update rules

Φ.k =
∑
n

ψnk

σ2n0

(
xn −

∑
j ̸=k

ψnjΦ.j

)(
1 +

∑
n

ψnk

σ2n0

)−1
(61)

σ2k =
(
1 +

∑
n

ψnk

σ2n0

)−1
.

For q(ν), we have the update rules similar as in (Doshi-Velez, 2009), that is,

γk1 = α+

K∑
m=k

N∑
n=1

ψnm +

K∑
m=k+1

(N −
N∑

n=1

ψnm)(

m∑
i=k+1

qmi) (62)

γk2 = 1 +

K∑
m=k

(N −
N∑

n=1

ψnm)qmk,

where q.k is computed in the same way as in Eq. (53). For q(Z), the mean-field update
equation for ψ is

ψnk =
1

1 + e−ϑnk
, (63)

where
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Algorithm 3 Inference Algorithm of iLSVM

1: Input: data D = {(xn, yn)}n∈Itr ∪ {xn}n∈Itst , constants α and C
2: Output: distributions q(ν), q(Z), q(W), q(η) and hyper-parameters σ20 and σ2n0
3: Initialize γk1 = α, γk2 = 1, ψnk = 0.5 + ϵ, where ϵ ∼ N (0, 0.001), Φ.k = 0, σ2k = σ20 = 1,
µ = 0, σ2n0 is computed from D.

4: repeat
5: repeat
6: update (γk1, γk2) using Eq. (62), ∀1 ≤ k ≤ K;
7: update Φ.k and σ2k using Eq. (61), ∀1 ≤ k ≤ K;
8: update ψnk using Eq. (63), ∀n ∈ Itr, ∀1 ≤ k ≤ K;
9: update ψnk using Eq. (63), but ϑnk doesn’t have the last term, ∀n ∈ Itst, ∀1 ≤ k ≤

K;
10: until relative change of L is less than τ (e.g., 1e−3) or iteration number is T (e.g.,

10)
11: solve the dual problem (64) (or its primal form) using a multi-class SVM learner.
12: update the hyper-parameters σ20 using Eq. (65) and σ2n0 using Eq. (66). (Optional)
13: until relative change of L is less than τ ′ (e.g., 1e−4) or iteration number is T ′ (e.g., 20)

ϑnk =

k∑
j=1

Eq[log vj ]− Lν
k(q)−

1

2σ2n0
(Dσ2k +Φ⊤

.kΦ.k)

+
1

σ2n0
Φ⊤
.k

(
xn −

∑
j ̸=k

ψnjΦ.j

)
+

∑
y

ωy
nEq[η

k
yn − ηky ].

For testing data, ϑnk does not have the last term because of the absence of large-margin
constraints.

Infer q(η) and solve for ω: By the convex duality theory, we have

q(η) ∝ π(η) exp
{
η⊤(

∑
n∈Itr

∑
y

ωy
nEq[g(yn,xn, zn)− g(y,xn, zn)])

}
.

For the standard normal prior π(η), we have that q(η) is also normal, with mean

µ =
∑
n∈Itr

∑
y

ωy
dEq[g(yn,xn, zn)− g(y,xn, zn)]

and identity covariance matrix. The dual problem is

sup
ω

− 1

2
µ⊤µ+

∑
n∈Itr

∑
y

ωy
n s.t.. : ωy

n ≥ 0,
∑
y

ωy
n = C, ∀n ∈ Itr, (64)

which (and its primal form) can be efficiently solved with a multi-class SVM solver.

Similar as in MT-iLSVM, the hyperparameters σ20 and σ2n0 can be set a priori or
estimated from the data. The empirical estimation can be easily done with closed form
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solutions. For iLSVM, we have

σ20 =

∑K
k=1(Dσ

2
k +Φ⊤

.kΦk)

KD
(65)

σ2n0 =
x⊤
nxn − 2x⊤

nΦEp[zn]
⊤ + Eq[znAz⊤n ]

D
. (66)
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