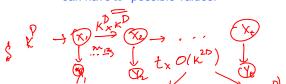


Representing complex dynamic processes

- The problem with HMMs
 - Suppose we want to track the state (e.g., the position) of D objects in an image sequence.
 - Let each object be in K possible states.
 - Then $X_t = (X_t(1), \dots, X_t(D))$ can have K^D possible values.



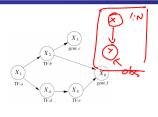
 $\Rightarrow P(X_t|X_{t-1})$ need

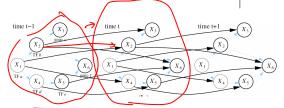
parameters to specify.

 $M_{12} = \leq P(Y_2|Y_1)$ $1 \sim P(Y_3)$

Eric Xing

Dynamic Bayesian Network





- A DBN represents the state of the world at time t using a set of random variables, $X_t^{(1)}, \ldots, X_t^{(D)}$ (factored/ distributed representation).
- A DBN represents $P(X_t|X_{t-1})$ in a compact way using a parameterized graph.
 - ⇒ A DBN may have exponentially fewer parameters than its corresponding HMM.
 - ⇒ Inference in a DBN may be exponentially faster than in the corresponding HMM.

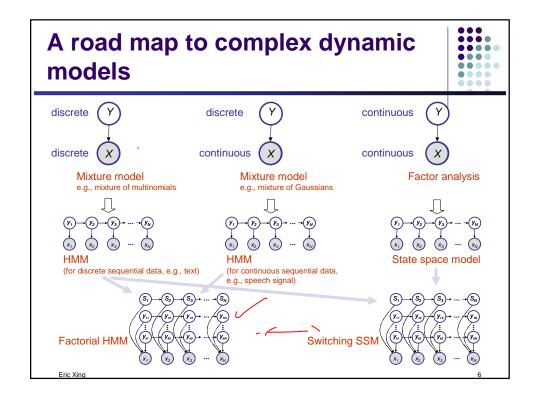
Eric Xino

DBNs are a kind of graphical model

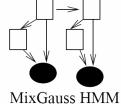
- In a graphical model, nodes represent random variables, and (lack of) arcs represents conditional independencies.
- DBNs are Bayes nets for dynamic processes.
- Informally, an arc from X_t^i to X_{t+1}^j means X_i "causes" X_i .
- Can "resolve" cycles in a "static" BN

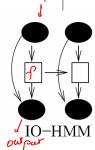
Eric Xino

5



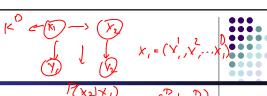
HMM variants represented as **DBNs**



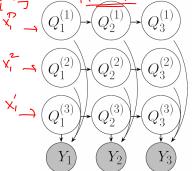


• The same code (standard forward-backward, viterbi, and Baum-Welsh) can do inference and learning in all of these models.

Factorial HMM

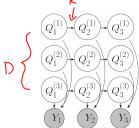


- The belief state at each time is $X_{t} = \{Q_{t}^{(1)}, \dots, Q_{t}^{(k)}\}$ and in the most general case has a state space $O(d^k)$ for k d-nary chains
- The common observed child Y_t couples all the parents (explaining away).
- But the parameterization cost for fHMM is $O(ka^p)$ for k chain-specific transition models $P(Q_t^{(i)} | Q_{t-1}^{(i)})$ rather than $O(\sigma^{pk})$ for $p(X_t | X_{t-1})$



Factorial HMMs vs HMMs

- Let us compare a factorial HMM with D chains, each with K values, to its equivalent HMM.
- Num. parameters to specify $p(X_i | X_{i-1})$
 - HMM: LO(K2D)
 - fHMM: + O(k20)

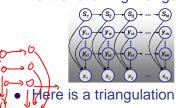


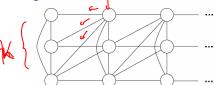
Eric Xino

a

Triangulating fHMM

• Is the following triangulation correct?



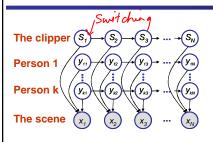


• We have created cliques of size k+1, and there are O(kT) of them. The junction tree algorithm is not efficient for factorial HMMs.

Eric Xino

10

Special case: switching HMM



- Different chains have different state space and different semantics
- The exact calculation is intractable and we must use approximate inference methods

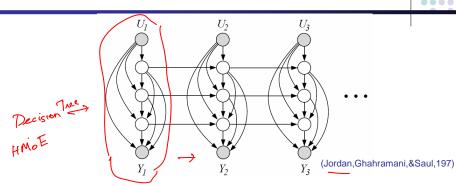
Multi-View Face Tracking with Factorial and Switching HMM

Peng Wang , Qiang Ji Department of Electrical, Computer and System Engineering Rensselaer Polyrechnic Institute Troy, NY 12180

Eric Xing

11

Hidden Markov decision trees



- A combination of decision trees with factorial HMMs
- This gives a "command structure" to the factorial representation
- Appropriate for multi-resolution time series
- Again, the exact calculation is intractable and we must use approximate inference methods

Eric Xing

12

Problems with SSMs • linearity • Gaussianity • Uni-modality Eric Xing

