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Learning generalized linear 
models and tabular CPT of 

structured full BN

Probabilistic Graphical Models  (10Probabilistic Graphical Models  (10--708)708)
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Reading: J-Chap. 7,8. 
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Linear Regression
Let us assume that the target variable and the inputs are 
related by the equation:

where ε is an error term of unmodeled effects or random noise

Now assume that ε follows a Gaussian N(0,σ), then we have:
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Logistic Regression (sigmoid 
classifier)

The condition distribution: a Bernoulli

where µ is a logistic function

We can used the brute-force gradient method as in LR

But we can also apply generic laws by observing the p(y|x) is 
an exponential family function, more specifically, a 
generalized linear model
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Exponential family
For a numeric random variable X

is an exponential family distribution with natural (canonical) parameter η

Function T(x) is a sufficient statistic.
Function A(η) = log Z(η) is the log normalizer.
Examples: Bernoulli, multinomial, Gaussian, Poisson, 
gamma,...
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Multivariate Gaussian 
Distribution

For a continuous vector random variable X∈Rk:

Exponential family representation

Note: a k-dimensional Gaussian is a (d+d2)-parameter distribution with a (d+d2)-
element vector of sufficient statistics (but because of symmetry and positivity, 
parameters are constrained and have lower degree of freedom)
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Multinomial distribution
For a binary vector random variable 

Exponential family representation
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Why exponential family?
Moment generating property
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Moment estimation
We can easily compute moments of any exponential family 
distribution by taking the derivatives of the log normalizer
A(η).
The qth derivative gives the qth centered moment.

When the sufficient statistic is a stacked vector, partial 
derivatives need to be considered.
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Moment vs canonical parameters
The moment parameter µ can be derived from the natural 
(canonical) parameter

A(h) is convex since

Hence we can invert the relationship and infer the canonical 
parameter from the moment parameter (1-to-1):

A distribution in the exponential family can be parameterized not only by η − the 
canonical parameterization, but also by µ − the moment parameterization.
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MLE for Exponential Family
For iid data, the log-likelihood is

Take derivatives and set to zero:

This amounts to moment matching.
We can infer the canonical parameters using
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Sufficiency
For p(x|θ), T(x) is sufficient for θ if there is no information in X
regarding θ yeyond that in T(x).

We can throw away X for the purpose pf inference w.r.t. θ . 

Bayesian view

Frequentist view

The Neyman factorization theorem

T(x) is sufficient for θ if  
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Examples
Gaussian:

Multinomial:

Poisson:
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Generalized Linear Models 
(GLIMs)

The graphical model
Linear regression
Discriminative linear classification
Commonality: 

model Ep(Y)=µ=f(θTX)
What is p()? the cond. dist. of Y.
What is f()? the response function.

GLIM
The observed input x is assumed to enter into the model via a linear 
combination of its elements
The conditional mean µ is represented as a function f(ξ) of ξ, where f is 
known as the response function
The observed output y is assumed to be characterized by an 
exponential family distribution with conditional mean µ. 
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GLIM, cont.

The choice of exp family is constrained by the nature of the data Y
Example: y is a continuous vector multivariate Gaussian

y is a class label Bernoulli or multinomial  

The choice of the response function
Following some mild constrains, e.g., [0,1]. Positivity …
Canonical response function:                 

In this case θTx directly corresponds to canonical parameter η.
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MLE for GLIMs with natural 
response

Log-likelihood

Derivative of Log-likelihood

Online learning for canonical GLIMs
Stochastic gradient ascent = least mean squares (LMS) algorithm:
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Batch learning for canonical 
GLIMs

The Hessian matrix

where               is the design matrix and

which can be computed by calculating the 2nd derivative of A(ηn)
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Recall LMS
Cost function in matrix form:

To minimize J(θ), take derivative and set to zero:
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Iteratively Reweighted Least 
Squares (IRLS)

Recall Newton-Raphson methods with cost function J

We now have

Now: 

where the adjusted response is

This can be understood as solving the following " Iteratively 
reweighted least squares " problem
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Example 1: logistic regression 
(sigmoid classifier)

The condition distribution: a Bernoulli 

where µ is a logistic function

p(y|x) is an exponential family function, with 
mean:

and canonical response function  

IRLS

yy xxxyp −−= 11 ))(()()|( µµ

)()( xe
x ηµ −+

=
1

1

[ ] )(| xe
xyE ηµ −+

==
1

1

xTθξη ==

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

−

−
=

−=

)(

)(

)(

NN

W

d
d

µµ

µµ

µµ
η
µ

1

1

1

11

O

Eric Xing 20

Logistic regression: practical 
issues

It is very common to use regularized maximum likelihood.

IRLS takes O(Nd3) per iteration, where N = number of training cases 
and d = dimension of input x.
Quasi-Newton methods, that approximate the Hessian, work faster.
Conjugate gradient takes O(Nd) per iteration, and usually works best in 
practice.
Stochastic gradient descent can also be used if N is large c.f. perceptron
rule:

( ) θθλθσθ

λθ

θσθ
θ

T

n
n

T
n

T
xy

xyl

Ip

xy
e

xyp T

2

0
1

11

1

−=

=
+

=±=

∑

−

−

)(log)(

),(Normal~)(

)(),(

( ) λθθσθ −−=∇ nnn
T

n xyxy )(1l



11

Eric Xing 21

Example 2: linear regression
The condition distribution: a Gaussian 

where µ is a linear function

p(y|x) is an exponential family function, with 
mean:

and canonical response function  
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Classification
Generative and discriminative approach

Q

X

Q

X

Regression
Linear, conditional mixture, nonparametric

X Y

Density estimation
Parametric and nonparametric  methods

µ,σ

XX

Simple GMs are the building 
blocks of complex BNs
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School of Computer ScienceAn 
(incomplete) 

genealogy 
of graphical 

models

The structures of most GMs 
(e.g., all listed here), are not 
learned from data, but 
designed by human.

But such designs are useful 
and indeed favored because 
thereby human knowledge 
are put into good use …
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MLE for general BNs
If we assume the parameters for each CPD are globally 
independent, and all nodes are fully observed, then the log-
likelihood function decomposes into a sum of local terms, one 
per node:
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Earthquake

Radio

Burglary

Alarm

Call
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Local Distributions 
defined by, e.g., multinomial parameters:

How to define parameter prior?

Assumptions (Geiger & Heckerman 97,99):
Complete Model Equivalence
Global Parameter Independence
Local Parameter Independence
Likelihood and Prior Modularity
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Global Parameter Independence
For every DAG model:

Local Parameter Independence
For every node:
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Provided all variables are observed in all cases, we can perform 
Bayesian update each parameter independently !!!

sample 1

sample 2

M

θ2|1θ1 θ2|1

X1 X2

X1 X2

Global Parameter
Independence

Local Parameter
Independence

Parameter Independence,
Graphical View

Eric Xing 28

Which PDFs Satisfy Our 
Assumptions? (Geiger & Heckerman 97,99)

Discrete DAG Models:

Dirichlet prior:

Gaussian DAG Models:

Normal prior:

Normal-Wishart prior:
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MLE for general BNs
If we assume the parameters for each CPD are globally 
independent, and all nodes are fully observed, then the log-
likelihood function decomposes into a sum of local terms, one 
per node:
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Consider the distribution defined by the directed acyclic GM:

This is exactly like learning four separate small BNs, each of 
which consists of a node and its parents.

Example: decomposable 
likelihood of a directed model
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MLE for BNs with tabular CPDs
Assume each CPD is represented as a table (multinomial) 
where

Note that in case of multiple parents,      will have a composite 
state, and the CPD will be a high-dimensional table
The sufficient statistics are counts of family configurations

The log-likelihood is

Using a Lagrange multiplier 
to enforce               , we get:
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MLE and Kulback-Leibler
divergence

KL divergence

Empirical distribution

Where δ(x,xn) is a Kronecker delta function

Maxθ(MLE)     Minθ(KL) 
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Consider a time-invariant (stationary) 1st-order Markov model
Initial state probability vector: 

State transition probability matrix:

The joint:

The log-likelihood:

Again, we optimize each parameter separately
π is a multinomial frequency vector, and we've seen it before
What about A?

Parameter sharing
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Learning a Markov chain 
transition matrix

A is a stochastic matrix: 
Each row of A is multinomial distribution.
So MLE of Aij is the fraction of transitions from i to j

Application: 
if the states Xt represent words, this is called a bigram language model

Sparse data problem:
If i j did not occur in data, we will have Aij =0, then any futher sequence with 
word pair i j will have zero probability. 
A standard hack: backoff smoothing or deleted interpolation
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Bayesian language model
Global and local parameter independence

The posterior of Ai · and Ai' · is factorized despite v-structure on Xt, because 
Xt-1 acts like a multiplexer
Assign a Dirichlet prior βi to each row of the transition matrix:

We could consider more realistic priors, e.g., mixtures of Dirichlets to account for 
types of words (adjectives, verbs, etc.)
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Example: HMM: two scenarios
Supervised learning: estimation when the “right answer” is known

Examples: 
GIVEN: a genomic region x = x1…x1,000,000 where we have good

(experimental) annotations of the CpG islands
GIVEN: the casino player allows us to observe him one evening, 

as he changes dice and produces 10,000 rolls

Unsupervised learning: estimation when the “right answer” is 
unknown

Examples:
GIVEN: the porcupine genome; we don’t know how frequent are the 

CpG islands there, neither do we know their composition
GIVEN: 10,000 rolls of the casino player, but we don’t see when he 

changes dice

QUESTION: Update the parameters θ of the model to maximize P(x|θ) -
-- Maximal likelihood (ML) estimation 



19

Eric Xing 37

Recall definition of HMM
Transition probabilities between 
any two states

or

Start probabilities 

Emission probabilities associated with each state

or in general:
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Supervised ML estimation
Given x = x1…xN for which the true state path y = y1…yN is known,

Define:
Aij = # times state transition i→j occurs in y
Bik = # times state i in y emits k in x

We can show that the maximum likelihood parameters θ are:

What if x is continuous? We can treat                           as N×T
observations of, e.g., a Gaussian, and apply learning rules for Gaussian …
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Supervised ML estimation, ctd.
Intuition:

When we know the underlying states, the best estimate of θ is the 
average frequency of transitions & emissions that occur in the training 
data

Drawback:
Given little data, there may be overfitting:

P(x|θ) is maximized, but θ is unreasonable
0 probabilities – VERY BAD

Example:
Given 10 casino rolls, we observe

x = 2, 1, 5, 6, 1, 2, 3, 6, 2, 3
y = F, F, F, F, F, F, F, F, F, F

Then: aFF = 1; aFL = 0
bF1 = bF3 = .2; 
bF2 = .3; bF4 = 0; bF5 = bF6 = .1 
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Pseudocounts
Solution for small training sets:

Add pseudocounts
Aij = # times state transition i→j occurs in y + Rij
Bik = # times state i in y emits k in x + Sik

Rij, Sij are pseudocounts representing our prior belief
Total pseudocounts: Ri = ΣjRij , Si = ΣkSik , 

--- "strength" of prior belief, 
--- total number of imaginary instances in the prior

Larger total pseudocounts ⇒ strong prior belief

Small total pseudocounts: just to avoid 0 probabilities --- smoothing

This is equivalent to Bayesian est. under a uniform prior with 
"parameter strength" equals to the pseudocounts


