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Linear Regression o

e Let us assume that the target variable and the inputs are

related by the equation:

;
yize X, té

where ¢ is an error term of unmodeled effects or random n

1 —0"x )?
p(yilxi;ﬁ)—maexp[_ 62 = ) j
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e Now assume that ¢ follows a Gaussian N(0,0), then we have:
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Logistic Regression (sigmoid sels
classifier) :

!
e The condition distribution: a Bernoulli 1 e
p(y1x)= p(x)" A= p(x)™
where g is a logistic function ' /
_ S
() = — e
1+

e We can used the brute-force gradient method as in LR

e But we can also apply generic laws by observing the p(y[x) is
an exponential family function, more specifically, a
generalized linear model

Exponential family 2

e For a numeric random variable X
p(x|7) = h(x)exply T(x) ~ A7)} @
h(x)expln T (x)}

N

1
Z(n)
is an exponential family distribution with natural (canonical) parameter 7
e Function 7{x) is a sufficient statistic.

e Function A(n) = log Z(n) is the log normalizer.

e Examples: Bernoulli, multinomial, Gaussian, Poisson,
gamma,...
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Multivariate Gaussian
Distribution

e For a continuous vector random variable XeR*:

1 Lo s
£ s e

Moment parameter

:%exp{ (Z xx )+yTZ x—Lu" = - IOg‘Z‘}
(27)
e Exponential family representation Natural parameter

= [Zilﬂ%%vec(zil )]: [Ulvvec(’b )]v m=2"pand 7, = *%271
T(x)= [x; VeC(xxT)]
A(m) =4 1" v logl=| = ~ L tr (] )~ $log (-2, )
h(x) =@2z)*"?
e Note: a Adimensional Gaussian is a (d+d?)-parameter distribution with a (4 ?)-

element vector of sufficient statistics (but because of symmetry and positivity,
parameters are constrained and have lower degree of freedom)

Multinomial distribution i

e For a binary vector random variable x ~ multi(x | z),

p(X‘ﬂ') :72'1"172"2‘2 ~~7r,§K :exp{Zx" In ﬂ'k}
k
K1 K-1 K1
exp{Zx |I’17[A+(1— xk]ln[ —27[4}
k=1 k=1 k=1
K1
= I In[1-
exp{;x n[l S »J+ n[ Z;z, j}

e Exponential family representation

117z, o)

T(x)=[x]

A(I])——m[l S lﬂ,j (Ze ]
P P

h(x)=1
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Why exponential family?

e Moment generating property

dA
7:7| - - “
dn~ dn 09Z(n) Z()dn Z(1n)

1
o) J.h(x)exp{n T(x) Jdx

= J.T(,\) 700 dx

= E[T(x)]

d*4 hx)exply ()},
i = [T%(x) 20" [T

= E[r?(0)]- E°[1 ()]
=Var|T(x)]

/1(x)eXp{r7'T(x)}dY 1 d

zo “zmyan”?
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Moment estimation

e We can easily compute moments of any exponential family
distribution by taking the derivatives of the log normalizer

A(n).
e The g™ derivative gives the " centered moment.

dA(n)

J = mean
n
2
ddA(Zﬂ) = variance
n

e When the sufficient statistic is a stacked vector, partial
derivatives need to be considered.
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Moment vs canonical parameters

e The moment parameter u can be derived from the natural
(canonical) parameter

dA(n) _
2 Er()]= p

e A(h) is convex since

dZA(ZU) =Var[T(x)]>0
dn

e Hence we can invert the relationship and infer the canonical

parameter from the moment parameter (1-to-1):
def

n=y(u)

e Addistribution in the exponential family can be parameterized not only by » —the
canonical parameterization, but also by x —the moment parameterization.

MLE for Exponential Family s

e For jid data, the log-likelihood is

(7, D) =log [ T h(x, ) exply" T(x,) - A(n)}

n

:Zlog h(xn)+[77TZT(x”)]—NA(7])
e Take derivatives and set to zero:
ol )
on = ZT(xn) Niai7 =0
6A(77) 1 ZT( )
By = ZT(X )

e This amounts to moment matchmg
e We can infer the canonical parameters using 77, =¥ ()

Eric Xing 10




Sufficiency

\
o For p(X|0), T(x) is sufficient for @if there is no information in X

regarding dyeyond that in 7{x).

e We can throw away Xfor the purpose pf inference w.r.t. 4.

Bayesian view P(OIT().2) = p(O17()

e Frequentist view @ @ 2] p(x|T(x),0) = p(x|T(x))
e The Neyman factorization theorem
G
@@
T(x) is sufficient for Qif
p(x,T(x),0) =y, (T (x),0)y, (x, T(x))
B = p(x[0) = g(T'(x),0)h(x,T(x))
(XY
o000
o000
s
Examples o
e Gaussian:

n= [ L ——vec( )]
T(x)= [\ vec XX )]
A(m) =1 "7 i+ Llog[3|

h(x)=@2z)*"?

. {m(’%k j;o}

1 1
= Mg = NZ Ti(x,) = ﬁzx”

e Multinomial:

7(x)=[x] = Hyr = lz-"”
K-1 K - N n
An) = 7|n[17 P j = IH[ZU”“ j
k=1 k=!
h(x)=1
e Poisson: 7 =log
T(x)=x 1
A(p)=2=e" = Hype = ﬁ an
h(x) :l
x!
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Generalized Linear Models
(GLIMSs)

e The graphical model

e Linear regression @
e Discriminative linear classification
e Commonality: Q

model E (Y)==("X)

What is p()? the cond. dist. of V.

What is A)? the response function.

e GLIM

e The observed input xis assumed to enter into the model via a linear
combination of its elements & = 67 x

e The conditional mean u is represented as a function A¢) of & where fis
known as the response function

e The observed output yis assumed to be characterized by an
exponential family distribution with conditional mean ..

GLIM, cont. s

¢ v
>§ A n
X

p(y|7) = h(y)exply” (x)y - A(n)}

= p(y1m) =h(»)explt(n” (x)y - 4(n))
e The choice of exp family is constrained by the nature of the data Y

e Example: Yy is a continuous vector > multivariate Gaussian

y is a class label = Bernoulli or multinomial

e The choice of the response function
e Following some mild constrains, e.g., [0,1]. Positivity ...
e Canonical response function: # =y ' (-)

In this case #"x directly corresponds to canonical parameter 7.
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MLE for GLIMs with natural
response

e Log-likelihood
¢=Y logh(y,)+, (HTxnyn - A(m))

n

e Derivative of Log-likelihood

@ o, ddm)dn,
de % dn, do

=> v —u)x,

! This is a fixed point function
_XT( _ ) . .
- y-H because u is a function of &

e Online learning for canonical GLIMs
e Stochastic gradient ascent = least mean squares (LMS) algorithm:

0" =0+ ply, -l )x,
where u = (9’ )Tx,, and p isastepsize
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Batch learning for canonical sels
GLIMs °?
e The Hessian matrix B B
x|~ X 7T
d%¢ d d Lo
H=M=ﬁ2(%rﬂn)xn=zxu d';l'r’ -— X, —-
n n .Vl
du, dn,
Sl e |t
:—;xn Z’L’; "xf sincen,=0"x, "
=—X"wx

where X =[x7] is the design matrix and
/4 :diag[cwl,...,%J
dn, dny
which can be computed by calculating the 2" derivative of A(7,)
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Recall LMS

e Cost function in matrix form: B

J(e):gi(xﬁ'e—y,)z

e To minimize J(0), take derivative and set to zero:

v,J :%Vﬂtr(HTXTX()—HTXTj'—.T»TXé)Jrj/*Tﬁ)
=| X'X0=X"y

=V, tr0" X" X0 -2V try" X0+ V 1y y
2< ¢ o o y) The normal equations

:%(Xfxmxfxafzxfy) Il

=X"X0-X"y=0 o :(XTX)%XT?

Eric Xing 17

Iteratively Reweighted Least
Squares (IRLS) o

e Recall Newton-Raphson methods with cost function J
HHI — Ht _HflvgJ

e We now have VI = X" ()
H=-X"WX
e Now: 0 =0 s HWV ¢
=(xmw x ) xwexe + x7 (v - ')
. =(xTwex ) x W

where the adjusted response is z'=X0' +(W')7l (y—pu")

This can be understood as solving the following " Iteratively
reweighted least squares " problem

0" =arg min(z - X0)"W(z-X0)

Eric Xing 18




Example 1: logistic regression
(sigmoid classifier)

e The condition distribution: a Bernoulli

PO = u@) A=) /

where g is a logistic function

u(x) = e { e

e p(yY|x) is an exponential family function, with

e mean: E[J/|X]:#:W

e and canonical response function 75 =¢= 0" x
e IRLS %zﬂa‘“)

AT
W=

Eric Xing Hy (1 ~Hy ) 19

. . . . [ X X ]
Logistic regression: practical S
. [
issues 2

e Itis very common to use regularized maximum likelihood.

p(y==l1

1
x,0)=———=c(y0"x
)= = o0

¥

p(6) ~ Normal(0, A1)
16) =3 log(o( ynHTx,,))—gé?TQ

e IRLS takes O(Na®) per iteration, where N= number of training cases
and d'= dimension of input x.

e Quasi-Newton methods, that approximate the Hessian, work faster.
e Conjugate gradient takes O(Nd) per iteration, and usually works best in

practice.
e Stochastic gradient descent can also be used if Nis large c.f. perceptron
rule:
V£ =[-0(3,0"x,))y,x, - 20
Eric Xing 20
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Example 2: linear regression

e The condition distribution: a Gaussian )

1 1 e ¥
p(]x.6,%) =W6Xp{—f(y—#(x» b 1(y—#(X))} L /é
(271') ‘Z‘ 2 T ‘l/x"/ll L.
Rescale = h(x)exp— 12 (;" (x)y - A(n))} g-/ﬁ/‘ ‘
where s a linear function | e
p(x)=06"x=n(x)
e p(y|x) is an exponential family function, with
e mean: E[ylx]z,uz@’x
e and canonical response function m=E=0"x
du ot =(x"wx) xTw'z
iy | e
* RLS 470 o = x ) x(x0 + (- ) 2 oo=(x"x) X"y
w=1I =0 +(x"x) X (y-p)
e i Steepest descent Normal equatior;l
H . . [ X X ]
Simple GMs are the building sels
blocks of complex BNs o
Density estimation o wo
Parametric and nonparametric methods X
X
Regression
X Y
Linear, conditional mixture, nonparametric @, @)
Classification Q Q
Generative and discriminative approach X X

Eric Xing 22
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M e e K
(incomplete)
genealogy
of graphical
___models

SBN,
Boltzrnann
Machines

/ dyn

Cooperative
Wector
Quantization

dist?k\

Gaussians
vQ)
mix

Gaussian

v

The structures of most GMs
(e.g., all listed here), are not
learned from data, but
designed by human.

w\_dim

Factor Analysis|

dyn Hi
Mixture of /

/
PCA)
o
nan V \
i Aw'

Factorial HWMM

distrio

mix mixture
red-dim : reduced
dimension
dyn Tdynamics
distrib [ distributed
representation

nonlin -nonlinear

switch © switching

M A
X
red-dim

Mixture of
HMMs

Mixture of
Factor Analyzers

N‘

Switching
State-space
Models

. 1CA Dy ical
But such designs are useful Systame (Sans) .
and indeed favored because o
thereby human knowledge noniin Mixture of
are put into good use ... d LDSs
Monlinear "
Gaussian Nonlinear
Belief Nets Dynarnical
Systems
o000
o000
o000
eo0
o0
Oor genera S o

e [f we assume the parameters for each CPD are globally
independent, and all nodes are fully observed, then the log-
likelihood function decomposes into a sum of local terms, one

per node:

£(6;D)=log p(D]6) =log] |

Eric Xing

[H P, X, - ﬂ)j = Z[Z log p(x,; 1X, -, ,9,)]

i

24
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How to define parameter prior?

|
Factorization: p(X =x) = ﬁ px;1X,)

/=1

Earthquake

Burglary

Local Distributions
defined by, e.g., multinomial parameters:

P(X,-k |X£,.):0

X,-k |x//7'/
Call
Assumptions (Geiger & Heckerman 97,99):

e Complete Model Equivalence

e Global Parameter Independence

e Local Parameter Independence

e Likelihood and Prior Modularity

Eric Xing 25
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Global & Local Parameter oo
[ X J

Independence °

m Global Parameter Independence

For every DAG model: \
M

p0,16)=1] p,16)

/=1

Earthquake Burglary

For every node:

9
p(HI |6) - H p(ex,-klxj_ |6)
J-1 :

Eric Xing
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Parameter Independence,
Graphical View

Global Parameter
Independence
Local Parameter
Independence

sample 1

Provided all variables are observed in all cases, we can perform
Bayesian update each parameter independently !

Eric Xing

. . [ X X ]
Which PDFs Satisfy Our sels
Assum ptl ONS? (Geiger & Heckerman 97,99) o°

e Discrete DAG Models: x; |7 ~Multi(d)
r(Z:Ofk)
Dirichlet prior: P(O) = —~ ot =c ot
P ) Hr(ak)lk_I p (a)lkT p
k
e Gaussian DAG Models: x|z ~ Normal(x,X)
Normal prior: P(#Iv.‘l’):WGXD{—%(;I—V)'T’IW—V)}
Normal-Wishart prior:
plulv,a,, W)= Normal(v, (a”W)’l ),
p(W]a,,T)=c(n,a,)|T™"%w|@ D" exp{%tr{TW}},
whereW =31,

14



MLE for general BNs

\
e If we assume the parameters for each CPD are globally

independent, and all nodes are fully observed, then the log-
likelihood function decomposes into a sum of local terms, one

per node:
¢(6,D)=log p(D|0) . Hﬂ ,EE aﬂ
=log H[H px,, 1%, .0, )j H ) /.\\_/I' ) - :'\BH -
= Z(Z log p(x,, X, ,Hl)j :/53—'\;‘:/.
Eric Xing 2

Example: decomposable
likelihood of a directed model 2

e Consider the distribution defined by the directed acyclic GM:

p(x|0)=p(x16) p(x, | %1,6) p(x3 | x1,05) p(x4 | X5, %3, 6,)

e This is exactly like learning four separate small BNs, each of
which consists of a node and its parents.

Eric Xing 30
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MLE for BNs with tabular CPDs

e Assume each CPD is represented as a table (multinomial)

where def _ 3
Oy = p(X,=j| X, =k) \EE]
Note that in case of multiple parents, X, will have a composite ':-’,f%eﬂ

state, and the CPD will be a high-dimensional table -‘"'.'EE; .

The sufficient statistics are counts of family configurations Y
def

nr//\ = Z” xl{,ixl/;,ff,
e The log-likelihood is
£(6;0)=log [ [ 0% = > 1, 1096,
i.J.k

i.J.k

e Using a Lagrange multiplier

me Mg
to enforce ;% =1, we get: iik >,
kK
i,j'k
Eric Xing 31

. 00
MLE and Kulback-Leibler sels
divergence o
e KL divergence
Dlg) Il p()) =Y g(x) 'ngqa((i))
e Empirical distribution
N R
”(“‘)’N,,Zf’(“‘”‘”)
e Where Jx,x,) is a Kronecker delta function
e Max(MLE) = Min(KL) )
D(FWI p(+19)= 3 59log ,{f(\i;)
= 5 log 5(x) - Y. 5(x)log p(x| 6)
=3 50)log ()~ 3 log p(x, 1)
1,
N =C+—£(0:D)

16



Parameter sharing

Cx )

e Consider a time-invariant (stationary) 1st-order Markov model
def
e Initial state probability vector: 7, = P(XzA =1)

def
e State transition probability matrix: 4; = p(X/=11X,=1)

e Thejoint:  p(Xy,10)=px D] []]p(X,1X, )

t=2 t=2
T
e The log-likelihood:  ¢#(9;D)= Zlog plx,q|7) +22|Og px,, |x,, 4, 4)
n n =2
e Again, we optimize each parameter separately

7is a multinomial frequency vector, and we've seen it before
What about A?
Eric Xing 33

. . (XX}
o000
Learning a Markov chain 3
0o
.. . -
transition matrix .
e 4isastochastic matrix: ), 4, =1
e Each row of A is multinomial distribution.
e So MLE of 4 is the fraction of transitions from /to j
. . i j
AAWL — #(l % .]) — Z/‘I 21:2 x’7’171x”'/
ij . T i
# (l - .) Zm thz x”v”l
e Application:
o if the states X} represent words, this is called a bigram language model
e Sparse data problem:
e If /= jdid not occur in data, we will have A,j =0, then any futher sequence with
word pair /=> j will have zero probability.
e A standard hack: backoff smoothing or deleted interpolation
4 ML
A/'*)l = ﬂ*nr + (1 - A)A/An
Eric Xing 34
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Bayesian language model

e Global and local parameter independence

e The posterior of 4; 5. and 4; . is factorized despite v-structure on X}, because
X,_;acts like a multiplexer

e Assign a Dirichlet prior g; to each row of the transition matrix:

#i— )+ P,
#(i —e)+|B)|

b,
+#(i —> o)

B

We could consider more realistic priors, e.g., mixtures of Dirichlets to account for
types of words (adjectives, verbs, etc.)

def .
Al_/[""—“"‘ = p(] | i! D’ﬂi) = = ﬂzﬂi‘k + (1_11)/4 VL Where j’z =

i

[ X X ]
eecs
. e0o
Example: HMM: two scenarios o2

e Supervised learning: estimation when the “right answer” is known

e Examples:

GIVEN:  agenomic region X = X;...X; g00,000 Where we have good
(experimental) annotations of the CpG islands

GIVEN: the casino player allows us to observe him one evening,
as he changes dice and produces 10,000 rolls

e Unsupervised learning: estimation when the “right answer” is

unknown
e Examples:

GIVEN: the porcupine genome; we don’t know how frequent are the
CpG islands there, neither do we know their composition

GIVEN: 10,000 rolls of the casino player, but we don’'t see when he
changes dice

e QUESTION: Update the parameters 6 of the model to maximize Ax{0) -
-- Maximal likelihood (ML) estimation

Eric Xing 36
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Recall definition of HMM

N \
e Transition probabilities between Q @ @ G
any two states
b7 =115 =D =a,, ONONOEN®

°" p(, 1y, =1)~ Multinomial(a, . a,5,...,q, , ) Vie .

e Start probabilities
p(,) ~ Multinomial(z;, 7,,..., 7,, )
e Emission probabilities associated with each state
p(x, |y =1) ~ Multinomial(p, ;, b, ,....b, ) Vie .
or in general: p(x |y =1)~f(|0)Viel.

Eric Xing 37

Supervised ML estimation

e Given x = x,...xy for which the true state path y'= y;...y, is known,

e Define:
A = # times state transition /- occursiny
By = # times state /in y emits Ain x

e We can show that the maximum likelihood parameters fare:

T 1
B )) 2oVt Ay

Lo Y Y e 2

g _#ioR) X3 v, B,
Lo R LB

e What if x is continuous? We can treat {(x,,‘,,y”‘,):t =1.T,n=1: N} as Nk T
observations of, e.g., a Gaussian, and apply learning rules for Gaussian ...
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Supervised ML estimation, ctd.

e Intuition:

e When we know the underlying states, the best estimate of &is the
average frequency of transitions & emissions that occur in the training
data

e Drawback:
e Given little data, there may be overfitting:
P(x|6) is maximized, but 6 is unreasonable
0 probabilities — VERY BAD

e Example:
e Given 10 casino rolls, we observe
x=2,1,5,6,1, 2, 3, 6, 2, 3
y=F, F, F, F, F, F, F, F, F, F
e Then: age=1;, ag =0
Dry = beg = .2;
Dry = .3; bey = 0; bes = beg = .1

o000

cose

[ X X )
Pseudocounts o2

e Solution for small training sets:

e Add pseudocounts
A = # times state transition /—joccursiny + R;;
By = # times state /in y emits AKin x + S,

° R,.J-, S;are pseudocounts representing our prior belief

e Total pseudocounts: R,=% R, 5=, 5y,
--- "strength” of prior belief,
--- total number of imaginary instances in the prior

e Larger total pseudocounts = strong prior belief
e Small total pseudocounts: just to avoid O probabilities --- smoothing

e This is equivalent to Bayesian est. under a uniform prior with
"parameter strength" equals to the pseudocounts

Eric Xing 40
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