

A recap:	
LMS update rule	
$\theta_j^{t+1} = \theta_j^t + \alpha (y_n - \mathbf{x}_n^T \theta^t) x_{n,i}$	
Pros: on-line, low per-step cost	
Cons: coordinate, maybe slow-converging	
Steepest descent	
$\boldsymbol{\theta}^{t+1} = \boldsymbol{\theta}^t + \alpha \sum_{i=1}^n (\boldsymbol{y}_n - \boldsymbol{\mathbf{x}}_n^T \boldsymbol{\theta}^t) \boldsymbol{\mathbf{x}}_n$	
 Pros: fast-converging, easy to implement 	
Cons: a batch,	
• Normal equations $\theta^* = (X^T X)^{-1} X^T \overline{y}$	
Pros: a single-shot algorithm! Easiest to implement.	
 Cons: need to compute pseudo-inverse (X^TX)⁻¹, expensive, numerical issues (e.g., matrix is singular) 	
Frie Vier	22

Logistic regression: practical issues • It is very common to use *regularized* maximum likelihood. $p(y = \pm 1 | x, \theta) = \frac{1}{1 + e^{-y \theta^{T} x}} = \sigma(y \theta^{T} x)$ $p(\theta) \sim \text{Normal}(0, \lambda^{-1} I)$ $l(\theta) = \sum_{n} \log(\sigma(y_{n} \theta^{T} x_{n})) - \frac{\lambda}{2} \theta^{T} \theta$ • IRLS takes $O(Md^{\delta})$ per iteration, where N = number of training cases and d = dimension of input x. • Quasi-Newton methods, that approximate the Hessian, work faster. • Conjugate gradient takes O(Nd) per iteration, and usually works best in practice. • Stochastic gradient descent can also be used if N is large c.f. perceptron rule: $P_{\theta} \ell = (1 - \sigma(y_{n} \theta^{T} x_{n}))y_{n}x_{n} - \lambda \theta$

Eric Xin

26

