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Learning two-node GMs

Probabilistic Graphical Models  (10Probabilistic Graphical Models  (10--708)708)

Lecture 8, Oct 10, 2007
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Reading: J-Chap. 5,6, KF-Chap. 8
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Two-node BNs
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Multimodal models
A bimodal probability density:
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Conditional Gaussian
The data:

Both nodes are observed:
Y is a class indicator vector

X is a conditional Gaussian variable with a class-specific mean

GM:
Yi

Xi
N

∏):(multi)(
k

y
knn

k
nyyp ππ ==

{ }2
2

1
212 22

11 )-(-exp
)(

),,|( / kn
k
nn xyxp µ

πσ
σµ

σ
==

∏ ∏ ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

n k

y
kn

k
nxNyxp ),:(),,|( σµσµ

{ }),(,),,(),,(),,( NN yxyxyxyx L332211



3

Eric Xing 5

Data log-likelihood

MLE

Cxyy

xN

yxpypyxpD

n k
kn

k
n

n k
k

k
n

n

y
k

k
n

n k

y
k

nn
n

n
n

nn

k
n

k
n

+=

+=

== ∏

∑∑∑∑
∑ ∏∑ ∏

∏

)-(-log

),;(loglog

),,|()|(log),(log);(

2
2

1
2 µπ

σµπ

σµπ

σ

θl

   ⇒                   

 s.t.     ,∀ ,);(   ⇒           ),;(maxarg

∑
∑

,

k
∂
∂

,

N
n

N
y

kDD

kn
k
n

MLEk

kMLEk k

==

===

π

ππ π

)

) 10θθ ll

the fraction of 
samples of class m

k

n n
k
n

n
k
n

n n
k
n

MLEkMLEk n

xy

y

xy
D

∑
∑
∑

,,    ⇒       ),;(maxarg === µµ )) θl the average of 
samples of class m

MLE of conditional Gaussian
GM:

Yi

Xi
N

Eric Xing 6

Prior:

Posterior mean (Bayesian est.)

Bsyesian estimation of 
conditional Gaussian

GM:
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Classification
From conditional density modeling to classification:

The joint probability of a datum and it label is:

Given a datum xn, we predict its label using the conditional probability of 
the label given the datum:

This is basic inference 
introduce evidence, and then normalize
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Naïve Bayes Classifier 
When X is  multivariate-Gaussian vector:

The joint probability of a datum and it label is:

The naïve Bayes simplification

More generally:

Where p(. | .) is an arbitrary conditional (discrete or continuous) 1-D density
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Transductive classification
Given Xn, what is its corresponding Yn

when we know the answer for 
a set of training data?

Frequentist prediction:
we fit π, µ and σ from data first, and then …

Bayesian:
we compute the posterior dist. of the parameters first …
Do you want to make it a homework (say, just assume that π and µ are 
uncertain)?
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The predictive distribution

Understanding the predictive distribution

For two class (i.e., K=2), * turns out to be the logistic function

For multiple class (i.e., K>2), * correspond to a softmax function
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Discussion
We've seen how to learning two-node model                 , but in 
certain problems the goal is to learning 

Can we model                   directly? 

How? 

)|( nn xyp

),( nn xyp
)|( nn xyp
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Generative and discriminative 
classifiers

Generative:
Modeling the joint distribution 
of all data

Discriminative:
Modeling only points 
at the boundary

How? Regression!
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Linear regression 
The data:

Both nodes are observed:
X is an input vector
Y is a response vector 
(we first consider y as a generic 
continuous response vector, then 
we consider the special case of 
classification where y is a discrete 
indicator)

A regression scheme can be 
used to model p(y|x) directly,
rather than p(x,y)

GM:
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Apartment hunting 
Now you've moved to 
Pittsburgh!! 
And you want to find the most 
reasonably priced apartment 
satisfying your needs:

square-ft., # of bedroom, 
distance to campus …

?1.5270

…
?1150

5001109
11002433
10002506
6001230

Rent ($)# bedroomLiving area (ft2)
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The learning problem

Features: 
Living area, distance to campus, # 
bedroom …
Denote as x=[x1, x2, … xk]

Target: 
Rent
Denoted as y

Training set:
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Linear Regression
Assume that Y (target) is a linear function of X (features):

e.g.:

let's assume a vacuous "feature" X0=1 (this is the intercept term, why?), 
and define the feature vector to be:

then we have the following general representation of the linear function:

Our goal is to pick the optimal       . How!
We seek      that minimize the following cost function:
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The Least-Mean-Square (LMS) 
method

The Cost Function:

Consider a gradient descent algorithm:
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The Least-Mean-Square (LMS) 
method

Now we have the following descent rule: 

For a single training point, we have: 

This is known as the LMS update rule, or the Widrow-Hoff learning rule
This is actually a "stochastic", "coordinate" descent algorithm
This can be used as a on-line algorithm

∑
=

+ −+=
n

i
in

tT
nn

t
j

t
j xy

1

1
,)( θαθθ x



10

Eric Xing 19

The Least-Mean-Square (LMS) 
method

Steepest descent
Note that:

This is as a batch gradient descent algorithm
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Some matrix derivatives
For                       , define:

Trace:

Some fact of matrix derivatives (without proof)
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The normal equations
Write the cost function in matrix form:

To minimize J(θ), take derivative and set to zero:
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A recap:
LMS update rule

Pros: on-line, low per-step cost
Cons: coordinate, maybe slow-converging

Steepest descent

Pros: fast-converging, easy to implement
Cons: a batch, 

Normal equations

Pros: a single-shot algorithm! Easiest to implement.
Cons: need to compute pseudo-inverse (XTX)-1, expensive, numerical issues 
(e.g., matrix is singular ..)
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Geometric Interpretation of LMS
The predictions on the training data are:

Note that

and 

is the orthogonal projection of
into the space spanned by the columns 
of X
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Probabilistic Interpretation of 
LMS

Let us assume that the target variable and the inputs are 
related by the equation:

where ε is an error term of unmodeled effects or random noise

Now assume that ε follows a Gaussian N(0,σ), then we have:

By independence assumption:
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Probabilistic Interpretation of 
LMS, cont.

Hence the log-likelihood is:

Do you recognize the last term?

Yes it is: 

Thus under independence assumption, LMS is equivalent to 
MLE of θ !
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Multivariate Linear Regression

Consider vector-valued input X∈Rk leading to vector-valued 
output Y∈Rd via regression matrix A∈Rkxd :

Log-(conditional-) likelihood

To take derivatives wrt a matrix, we use the following identity
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Multivariate Linear Regression

Log-(conditional-) likelihood

Using

we have

Hence
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1-D linear regression

In the special case of scalar outputs, let A = θT , and the 
design matrix X = [x1, …,xN] as a row vector and Y = [y1, …,yN]' 
as a column vector. Then we get the normal equations

1−= '' XXYX SSA

YXXX TT 1−= )(θ
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Bayesian linear regression

Eric Xing 30

Laplace Prior and Sparsity
The Laplace prior:

The joint likelihood:

The "regularized" regression cost function
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L1 regularization
The "regularized" cost:

The regularization term penalizes all factors equally. This makes the θ *SPARSE*
A sparse θ means reduced complexity
Can be viewed as a selection of relevant/important features
J(θ ) is Non-differentiable

Can transform into convex quadratic problem, and use standard convex 
optimization methods to solve, but these usually cannot handle large 
practical problems
J(θ ) is piece-wise differentiable, piece-wise gradient

Known as Lasso regression in Statistics
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Effects of L1-Regularization

Select λ by cross-validation
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L2 regularization
Let

The joint likelihood:

The "regularized" regression cost function

Regularization term restricts large value components
Smooth and convex,
Can be computed directly ( O(n3) ) 
Or can use iterative methods (e.g. conjugate gradients method)

( )TT
N

p )()(exp)|(
/

00
2

−−−⎟
⎠
⎞

⎜
⎝
⎛= θθλ

π
λλθ

( )2
2

2

2

2

22
1 θλ

π
λ

σ
θ

σπ
θ −⎟

⎠
⎞

⎜
⎝
⎛×⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ −
−= exp)(exp)|,(

/N
i

T
i

ii
yxyp x

2
2

2 θλθθ +−= )()( i
T

iyJ x

Eric Xing 34

Recall the condition-Gaussian 
classifier

So we have seen a new scheme based on LMS (ML) to learn 
two node GM:                                      discriminatively

Gradient descent
Normal equation

How can we use this scheme to learning the conditional 
Gaussian classifier discriminatively?

Recall that

where
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Logistic regression (sigmoid 
classifier)

The condition distribution: a Bernoulli

where µ is a logistic function

We can used the brute-force gradient method as in LR

But we can also apply generic laws by observing the p(y|x) is 
an exponential family function, more specifically, a 
generalized linear model (see next lecture!)
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Summary
Conditional Density Est.
Classification

Generative classifier
Discriminative classifier 

Linear Regression
Algorithms

LMS
Steepest descent
Normal equation

Regularized regression vs. Bayesian regression
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Exponential family
For a numeric random variable X

is an exponential family distribution with natural (canonical) parameter η

Function T(x) is a sufficient statistic.
Function A(η) = log Z(η) is the log normalizer.
Examples: Bernoulli, multinomial, Gaussian, Poisson, 
gamma,...
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Multivariate Gaussian 
Distribution

For a continuous vector random variable X∈Rk:

Exponential family representation

Note: a k-dimensional Gaussian is a (d+d2)-parameter distribution with a 
(d+d2)-element vector of sufficient statistics (but because of symmetry
and positivity, parameters are constrained and have lower degree of 
freedom)
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Multinomial distribution
For a binary vector random variable 

Exponential family representation
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Why exponential family?
Moment generating property
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Moment estimation
We can easily compute moments of any exponential family 
distribution by taking the derivatives of the log normalizer
A(η).
The qth derivative gives the qth centered moment.

When the sufficient statistic is a stacked vector, partial 
derivatives need to be considered.
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Moment vs canonical parameters
The moment parameter µ can be derived from the natural 
(canonical) parameter

A(η) is convex since

Hence we can invert the relationship and infer the canonical 
parameter from the moment parameter (1-to-1):

A distribution in the exponential family can be parameterized not only by η − the 
canonical parameterization, but also by µ − the moment parameterization.
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MLE for Exponential Family
For iid data, the log-likelihood is

Take derivatives and set to zero:

This amounts to moment matching.
We can infer the canonical parameters using
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Sufficiency
For p(x|θ), T(x) is sufficient for θ if there is no information in X
regarding θ yeyond that in T(x).

We can throw away X for the purpose pf inference w.r.t. θ . 

Bayesian view

Frequentist view

The Neyman factorization theorem

T(x) is sufficient for θ if  

T(x) θ

T(x) θX

T(x) θX

X ))(|()),(|( xTpxxTp θθ =

))(|()),(|( xTxpxTxp =θ

))(,()),(()),(,( xTxxTxTxp 21 ψθψθ =

))(,()),(()|( xTxhxTgxp θθ =⇒
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Examples
Gaussian:

Multinomial:

Poisson:
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Generalized Linear Models 
(GLIMs)

The graphical model
Linear regression
Discriminative linear classification
Commonality: 

model E(Y)=µ=f(θTX)
What is p(), the cond. dist. Of Y?
What is f(), the response function?

GLIM
The observed input x is assumed to enter into the model via a linear 
combination of its elements
The conditional mean µ is represented as a function f(ξ) of ξ, where f is 
known as the response function
The observed output y is assumed to be characterized by an 
exponential family distribution with conditional mean µ. 

Xn

Yn
N

xTθξ =
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GLIM, cont.

The choice of exp family is constrained by the nature of the data Y
Example: y is a continuous vector multivariate Gaussian

y is a class label Bernoulli or multinomial  

The choice of the response function
Following some mild constrains, e.g., [0,1]. Positivity …
Canonical response function:                 

In this case θTx directly corresponds to canonical parameter η.

η
ψfθ

x
µξ
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)(⋅= −1ψf
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MLE for GLIMs with natural 
response

Log-likelihood

Derivative of Log-likelihood

Online learning for canonical GLIMs
Stochastic gradient ascent = least mean squares (LMS) algorithm:
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Batch learning for canonical 
GLIMs

The Hessian matrix

where               is the design matrix and

which can be computed by calculating the 2nd derivative of A(ηn)
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Iteratively Reweighted Least 
Squares (IRLS)

Recall Newton-Raphson methods with cost function J

We now have

Now: 

where the adjusted response is

This can be understood as solving the following " Iteratively 
reweighted least squares " problem
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Example 1: logistic regression 
(sigmoid classifier)

The condition distribution: a Bernoulli 

where µ is a logistic function

p(y|x) is an exponential family function, with 
mean:

and canonical response function  
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Logistic regression: practical 
issues

It is very common to use regularized maximum likelihood.

IRLS takes O(Nd3) per iteration, where N = number of training cases 
and d = dimension of input x.
Quasi-Newton methods, that approximate the Hessian, work faster.
Conjugate gradient takes O(Nd) per iteration, and usually works best in 
practice.
Stochastic gradient descent can also be used if N is large c.f. perceptron
rule:
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Example 2: linear regression
The condition distribution: a Gaussian 

where µ is a linear function

p(y|x) is an exponential family function, with 
mean:

and canonical response function  
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