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Learning two-node GMs
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Lecture 8, Oct 10, 2007 o0
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Eric Xing
Reading: J-Chap. 5,6, KF-Chap. 8
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Two-node BNs .
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X Y p(Y|X)
R"” R regression
R" {0,1} binary classification
{o,1}" {0,1} binary classification
R” {L,..., K}|  multiclass classification
{1,..., K} IR conditional density modeling
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Multimodal models o°
e A bimodal probability density:
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Conditional Gaussian :°

e The data: GM:

{(x1:,V1)1(X2’,V2)a (xad/a)a"'a(x,xwyfv)}

-0

e Both nodes are observed:
e Yis aclass indicator vector

k

e Xis a conditional Gaussian variable with a class-specific mean

(27[02)1/2 exp{- ﬁ ('xn - ll’l/()2 }

p(x|y,u,0)= H[H N(x, : p,, 0)7‘./3 J
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MLE of conditional Gaussian g
e Data log-likelihood GM: T
£(0; D) = log Hp(x,,, v.)= Iongo,, | 2)p(x, | ¥, 14,0) X
M
= Zlog H/rA + zlog HN(x” T ,0)
= ZZ}’H log 7, - ZZ"N 57 (%, - ) +C
n k n k
e MLE
Ty yup =argmax£(0; D), = 2£(0;D)=0,Vk, st 2r, =1
k
> 7= Zu )’V _n the fraction of
e N N samples of class m
Z Vk.X Z ykx
~ _ . T A S the average of
Ly pp =ATGMAX£(0; D), = [y STy 0 samples of class m
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Bsyesian estimation of sess
conditional Gaussian o°

e Prior: GM:
P(7| @) = Dir(7 : @) @\
P(u, |v)=Normal(x, :v,7) @l | >
C XD
M

e Posterior mean (Bayesian est.)

N o] @ _m+a
k Bayes N+‘a‘ F ML N+‘a‘ ‘a‘ N +‘a‘
n, |o? ~ 1/7°
Hi Bayes =
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Classification

\
e From conditional density modeling to classification: T

e The joint probability of a datum and it label is:
C XD
px, v, =1lu,0)=p(y, =Dxp(x, |y, =1, 1,0)
1
(2 2)1/2 ex p{'ﬁ(xn _:u/;)z}

e Given a datum x,, we predict its label using the conditional probability of
the label given the datum:

1
(2 2)1/2 EXp{ 252 (x, - H/) }

p(yy =1lx,, p,0) = 1
(2 )1/2 ex p{' 262 (X” Hye ) }

e This is basic inference
e introduce evidence, and then normalize

[ X X ]
esce
. [
Naive Bayes Classifier o2

e When X is multivariate-Gaussian vector:
e The joint probability of a datum and it label is:

pE, vy =1 2.2) = p(ys =D)xp(%, |y, =1 4,%)
1 B

=7, ————exp-1 (¥, - 11,) (X, - i,
7T (Zﬂ‘z‘)lm Xp{ z(\u ) (%, /1/\)}

e The naive Bayes simplification

p(x, vy =1 wo)=ply =Dx[ ]G 1ys =L ;. 00,)
J

1 j
= ”AHWeXp{ﬁ;’(X” -/1/\',/)2}

e More generally: “ :
p(x, v, 1 7)=p, | 2)x] | p(x] | y,.7)
j=1
Where p(. | .) is an arbitrary conditional (discrete or continuous) 1-D density
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Transductive classification :
e Given X, what is its corresponding Y, GM:
when we know the answer for
a set of training data?
(| | D>
e Frequentist prediction: X D
e we fit 7, xand o from data first, and then ... N
k=1 N
p(y,/;:1|xn,/l,0',72'):p(y” ,x”|/,l,0,72'): ﬂ.k (‘xn’lll’l/\"a)
p(x, | uo,m) 27N (x,| 4;,0)
e Bayesian: /
e we compute the posterior dist. of the parameters first ...
e Do you want to make it a homework (say, just assume that zand x are
uncertain)?
Eric Xing 9
X
o000
0000
[
- - - - - ..
The predictive distribution °

e Understanding the predictive distribution

p(ylll\ :l’xn |II.I,U,7Z') — ”A'N(xn’| /‘ll\"g) *
p(‘xnl/‘l'd) ZH/N(.X”,LLI/-,O—)

J

p(yi=1|x,, u,0,7)=

e For two class (i.e., K=2), * turns out to be the logistic function

1 1 ) 1
p(yu = 1 | X”) - [ T 1 1 b
o Lexplx, & (s - ;) +log 2

A
1 ey St |

7
0"x,

e For multiple class (i.e., K>2), * correspond to a softmax function
@79[‘”
k
p, =1lx,)= ———
o

J
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Discussion

\
e We've seen how to learning two-node model p(y,,x,) , butin

certain problems the goal is to learning p(y, | x,)
e Canwe model 7(», |x,) directly?

e How?

Eric Xing 11
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Generative and discriminative sess
classifiers 3

e Generative:
e Modeling the joint distribut
of all data

e Discriminative:
e Modeling only points
at the boundary

e How? Regression!

Eric Xing 12
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Linear regression o
e The data: GM: T
{030, (620 32), (e, ), (e, )} o
M

e Both nodes are observed:
e Xis an input vector
° Yisa response vector A

(we first consider y as a generic
continuous response vector, then
we consider the special case of
classification where y is a discrete
indicator)

e Aregression scheme can be
used to model p(y|x) directly,
rather than p(x,y)

Eric Xing 12

Apartment hunting

e Now you've moved to
Pittsburgh!!
And you want to find the most
reasonably priced apartment
satisfying your needs:

square-ft., # of bedroom,
distance to campus ...

Living area (ft?) # bedroom Rent ($)
150 1 ?
270 1.5 ?

Eric Xing 14




The learning problem

e Features:
ol e Living area, distance to campus, #
@ bedroom ...
Lo ' e Denote as x=[x,, x,, ... x;]
| e Target: ]
. . i e Rent r I
Living area e Denoted asy
Y .
e Training set:
§ Training
-— X —= X1 M2 Xy set
% X=| ".2 I P "zz X2,
= X, T [Xar Xaz e X Learning
, — oy, - algorithm
1, Ve - Y. -
2 Y= or . .
L Location : ool x—».—» predicted y
— ) (living area of (predicted prics)
e Y - Y.~ house)) of houze)
Living areat

Cuu iy
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Linear Regression

e Assume that Y (target) is a linear function of X (features):
° &0 $=0,+ 0, +O,x,

e let's assume a vacuous "feature” X,=1 (this is the intercept term, why?),
and define the feature vector to be:

e then we have the following general representation of the linear function:

e Our goal is to pick the optimal ¢ . How!
e We seek @ that minimize the following cost function:

JO)= 13 G.) -0
24

Eric Xing 16




The Least-Mean-Square (LMS) sels
method 2
e The Cost Function:
0= 3 (/0-1)
e Consider a gradient descent algorithm:
0" =0 —a(fg/ J(0)
The Least-Mean-Square (LMS) sels
method s

e Now we have the following descent rule:

n
t+1 t T nt
H_[ = H_[ +az (yn —X” H )xlz,i
i=1

e For a single training point, we have:

e This is known as the LMS update rule, or the Widrow-Hoff learning rule
e This is actually a "stochastic", "coordinate" descent algorithm
e This can be used as a on-line algorithm

Eric Xing 18




The Least-Mean-Square (LMS)

method

e Steepest descent
e Note that:

T
W{%,...,@J} -3, -x,O)x,
i=1

00, 00,

01 =0'+ad (v,-x,/0)x, 4/
i=1

e Thisis as a batch gradient descent algorithm

Eric Xing
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Some matrix derivatives

e For f:R"™ R, define:

o 0
—f - —f
04y 04,
V.fA)=| : :
0 ’ 0 r
(’}Alm . ’:A ::::: :
e Trace:
trd=>"A4, tra=a ,
i=1

trdBC =trCAB =trBCA4

e Some fact of matrix derivatives (without proof)

VtrAB=B" ,  V trABA"C =CAB+C"AB" ,

Eric Xing
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The normal equations

e \Write the cost function in matrix form:

JO=5 3 0-0) g -
i=1 : :
=2 (x0-7) (x0-3) — X,
: N
07X xX0-0" x5~ 57 x0+57) 5=

Yn
e To minimize J(0), take derivative and set to zero:

V,J = %vﬂtr(mxfxefafxf;-qﬁxm;ﬁy)

- %(VﬁtrHTXTXH—ZVHtryTXH+VHtrj;T)7)

=| X'X0=X"y

The normal equations

:%(Xfxmxfxe—zxfy) U
o o =(x"x)'x"y
[ X X ]
0000
0000
HH
A recap: :

e LMS update rule
t+1 t T nt
0, =0, +a(y,-x, 0')x

e Pros: on-line, low per-step cost

n,i

e Cons: coordinate, maybe slow-converging

e Steepest descent
QHI = 0’ + az (yn - xnret)xn
i=1

e Pros: fast-converging, easy to implement

e Cons: a batch,
e Normal equations . o
0 =(x"x)' X"y

e Pros: a single-shot algorithm! Easiest to implement.

e Cons: need to compute pseudo-inverse (XTX)1, expensive, numerical issues

(e.g., matrix is singular ..)

Eric Xing
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Geometric Interpretation of LMS

e The predictions on the training data are:

y=Xx0 =x(x"x]" X"y B
e Note that x=| xz .
5=l x) xr - BN

and
X" (5-5)=x"(x(xrx) x7 - 1)y
:(XTX(XTX)’l)(T—XT)y
=01
):; is the orthogonal projection of )7
into the space spanned by the column
of X

Probabilistic Interpretation of
LMS o

e Let us assume that the target variable and the inputs are
related by the equation: ;

_nT
y,=0'x,+¢

where ¢ is an error term of unmodeled effects or random n

X

e Now assume that ¢ follows a Gaussian N(0,0), then we have:

1 797" ) 2
PO 1%:0) = — exp[ Lot j

e By independence assumption:

" n n o 9’1' ‘ 2
L) =TT p(r,15,:6) = [égj exp(—z”(yz‘gzx’)}
i=1

Eric Xing 24
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Probabilistic Interpretation of
LMS, cont.

e Hence the log-likelihood is:

1 —

11 ’
1(9)2}’1'09@0 ?Ezle(yi_glxl)z

e Do you recognize the last term?
. 1, 5
Yes it is: J(H)—EZ(XI. 6-y,)
i=1

e Thus under independence assumption, LMS is equivalent to
MLE of 6!

Eric Xing 25

Multivariate Linear Regression

e Consider vector-valued input XeR* leading to vector-valued
output YeR9via regression matrix AcR*x?:

1 1 -
(1) :Wexp{—zo—Ax)’z 1<y—Ax)}

(27)

e Log-(conditional-) likelihood

1 1
€= 2l -5 2, = 4x) 2y, dx, ) e

e To take derivatives wrt a matrix, we use the following identity

n

o((Ma +b)" C(Ma +b))
oM
whereM = 4,a=-x,b=y, andC=3%"

=(C+C"(Ma+b)a"

Eric Xing 26
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Multivariate Linear Regression

e Log-(conditional-) likelihood
1 1 .
/= —EZ‘Z‘ —EZ(y” —Ax”)TZ l(y” —Ax,)+c

e Using  a(Ma+b)C(Ma+b))
oM

=(C+C")(Ma+b)a”

we have ¢ 1 1 r
— == 2 2% — Ax )x
aA 2 - (y" 71) n

def

- 1[Zyr7xnrAZ'xnanj_z 1(‘SYX'7145’XX'):O
where S,,. and S, are the sufficient statistics.

Hence A=5,.SL

Eric Xing 27

1-D linear regression

A= SYX'S;Y'

¢ In the special case of scalar outputs, let A = 87, and the
design matrix X'= [x,, .., Xx\] as a row vector and Y= [y,, .. v\l
as a column vector. Then we get the normal equations

3
,‘.

0=(X"X)'x"Y

o x
Eric Xing <
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Bayesian linear regression o
T ol
u
X,
0 c
]
\ el
) 4
N
Laplace Prior and Sparsity o

e The Laplace prior:

p(6,12) = el 76,

p(017)=expl- 20}

e The joint likelihood:

1 —0"x,)*) A
p(yr’glxl):mgexp[_ (yl 202x,) ]Xzexp<_/191)

e The "regularized" regression cost function

J(O)=(y,—0"x,)* + 26|,

Eric Xing
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L1 regularization

e The "regularized" cost:
J(O)=(y,—0"x,)* + 26|,

e The regularization term penalizes all factors equally. This makes the §*SPARSE*
e A sparse dmeans reduced complexity

e Can be viewed as a selection of relevant/important features

e J(0) is Non-differentiable

Can transform into convex quadratic problem, and use standard convex
optimization methods to solve, but these usually cannot handle large
practical problems

J(@) is piece-wise differentiable, > piece-wise gradient
Zexpl-2(0, +l0.])) 6,20
pO12)=1 2

Eexp(f/l(f()ﬁ +o.])) 6,<0

e Known as Lasso regression in Statistics

Effects of L1-Regularization s

1 ground truth gularized (A=0)
0 e ma '
-1
1 A=0.05 A=0.1
0 PR | —— —mn
-1
1 A=045 h=0.2
0
-1
0 16 32 48 0 16 32 48

Select 1 by cross-validation

Eric Xing 32
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(X))
o000
e000

L. 3

L2 regularization &

° Let 2 NI2 , ;
pWL@z[;j expl- 2(0-0) (0-0)")
e The joint likelihood:
y B 1 7(}’1—613(1)2 X(;Lj\'/Z - 5
p(v,.0|x)= s exp[ 27 ] - exp( /1\9\2)
e The "regularized" regression cost function
J(0)= (3, - 0"x,)* + 2l

e Regularization term restricts large value components

e Smooth and convex,

e Can be computed directly ( O(n3))

e Or can use iterative methods (e.g. conjugate gradients method)

- . (XY
Recall the condition-Gaussian sels
classifier 2

e So we have seen a new scheme based on LMS (ML) to learn
two node GM: p(y|x;6) :./l/(y;GTx,(fz) discriminatively
e Gradient descent
e Normal equation

e How can we use this scheme to learning the conditional
Gaussian classifier discriminatively?
o Recallthat  p(y|x)=p(x) (- p(x)"™
1

where ,u(x) =0
1+e7"

Eric Xing 34
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. . . . . [ X X ]
Logistic regression (sigmoid sels
classifier) :

!
e The condition distribution: a Bernoulli 1 e
p(y1x) = pu(x)" (A= p()™
where g is a logistic function ' /
__ 1 S
() = — e
1+ r

e We can used the brute-force gradient method as in LR

e But we can also apply generic laws by observing the p(y[x) is
an exponential family function, more specifically, a
generalized linear model (see next lecture!)

000

0000

e
Summary .

e Conditional Density Est.

e Classification
e Generative classifier
e Discriminative classifier
e Linear Regression
e Algorithms
LMS
Steepest descent
Normal equation

e Regularized regression vs. Bayesian regression

Eric Xing 36
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Exponential family

e For a numeric random variable X
plx |7) = h(x)exply T (x) - An)} @ "
= ﬁh(x) exp{an(X)}

is an exponential family distribution with natural (canonical) parameter 7

e Function T(x) is a sufficient statistic.
e Function A(7) = log Z(#) is the log normalizer.

e Examples: Bernoulli, multinomial, Gaussian, Poisson,
gamma,...

Eric Xing 37

Multivariate Gaussian
Distribution o°

e For a continuous vector random variable XeR*:

1 1 P
P(xﬁlvz)—WeXp{—z(X—ﬂ) Z%

1 B - B
:Wexp{—%tr(i 1xxr)+yTZ —1u'x ly—log‘Z‘}
e Exponential family representation Natural parameter

n= [271%_%\/8(:(271 )]: [’71vvec(772 )], = Z71/1 and 77, = _%271

T(x)= [x;vec(xx' )]
A(n) =5 12 p+ogls| = =L tr(nmn ) - % log(-27,)
h(x) =(@2x)*"?
e Note: a Adimensional Gaussian is a (&4 c?)-parameter distribution with a
(a*d?)-element vector of sufficient statistics (but because of symmetry

and positivity, parameters are constrained and have lower degree of

Eric Xing freedom) 38

Moment parameter
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[ X X ]
0000
0000
: : .. : ese
Multinomial distribution e
\
e For a binary vector random variable x ~ multi(x | z),
p(x|z) = A exp{Zx"' In 7[,}
exp{Kle‘ In;z,\v+(1 S 1)ﬁ"jln 1- 3 1@}}
K-1
_eXpJZx In[1 fo /j In(l /17TA]}
e Exponential family representation
7))
7(x) =[x]
A(77):In[lKlﬁkJ:In(ﬁ:e"*]
N h(x)=1 | |
[ X X ]
0000
0000
- - HH
Why exponential family? o
e Moment generating property
dA
dT] dT] 0gZ(n )—m% (1)
Z(ln) i [ h(x)exply T (x)jax
- 7 () 1P T()] e);p({:) Ty,
= E[T(x)]
d*4 2 h(x)exp{nTT(x) h \’)GXp{i] T(x)} 1 d
— = T (x)————Hdx—|T dx —Z7
) Z(n) Jrea’s Z(n) 2y dn” "
= E[r*(0)]- [T ()]
=Var [T(v)]

Eric Xing
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Moment estimation

\
e We can easily compute moments of any exponential family

distribution by taking the derivatives of the log normalizer
A(n).

e The g derivative gives the gt centered moment.

D _ yegn
dn
2
d A(277) = variance
dn

e When the sufficient statistic is a stacked vector, partial
derivatives need to be considered.

Eric Xing 41

Moment vs canonical parameters

e The moment parameter u can be derived from the natural
(canonical) parameter

20 _ plr()]= p
dn

e A(n) is convex since

daA(;” = Var[T(x)] >0
dn

e Hence we can invert the relationship and infer the canonical

parameter from the moment parameter (1-to-1):
def

n=y(u)

e A distribution in the exponential family can be parameterized not only by 7 —the
canonical parameterization, but also by ¢ —the moment parameterization.
Eric Xing 42
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MLE for Exponential Family

e For jid data, the log-likelihood is

¢(n; D) =log [T h(x,)expln " T(x,) — A(n)}

=Y logh(x,) +(UTZT(X,I)jNA(77)
Take derivatives and set to zero:

ol 04(n)
0’7 ;T( )-N— on =0

Hypp =— ZT(X )
This amounts to moment matchmg

e We can infer the canonical parameters using 77,,- = (i, ¢)

(X X ]

esce

- . [ X0
Sufficiency s

o For p(x|6), T(x) is sufficient for @if there is no information in X
regarding dyeyond that in 7(x).

e We can throw away X for the purpose pf inference w.r.t. 4.

Bayesian view @ @ @ p(01T(x),x) = p(0|T(x))

Frequentist view @ @ @ p(x|T(x),0) = p(x|T(x))

The Neyman factorization theorem

Y
CO—@—©
T(x) is sufficient for Qif
p(x,T(x),0) =y (T (x), O)y, (x,T(x))
= p(x|0) = g(T(x), O)h(x,T(x))

Eric Xing 44
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Examples

e Gaussian:
n=[z l,u' vecz )]
) [‘c vec xx ] . _ 1 B 1
Hunr = 2. (%) =—2_x,
A(T]) =175 u+4logls] " N; ! N;
h(x)= (271)7”2
e Multinomial:
=% Jo]
p 1
T(x)=[x] = ==
. . Hoye N ; X,
A(7]):—|n[l ﬂA] [ZU j
k=1 k=1
h(x)=1
e Poisson: y=log A
T(x)=x 1
Am)=A=e" = Mg = ﬁ an
h(x)=—
Eric Xing A5

Generalized Linear Models
(GLIMS) o°

e The graphical model

e Linear regression @
e Discriminative linear classification
e Commonality:

model E(V)=1="X) e N

What is p(), the cond. dist. Of ¥?
What is A), the response function?

e GLIM

e The observed input xis assumed to enter into the model via a linear
combination of its elements & = 6" x

e The conditional mean u is represented as a function A¢&) of & where fis
known as the response function

e The observed output yis assumed to be characterized by an

exponential family distribution with conditional mean .
Eric Xing 46
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GLIM, cont.

G '3 4
>§ H 7
X
p(y|7) = h(x)exply” (x)y - A(n)}

— 1,7
= p(vlm) = h(x)explt (" (x)y - 40n))
e The choice of exp family is constrained by the nature of the data ¥
e Example: yis a continuous vector > multivariate Gaussian
y is a class label - Bernoulli or multinomial
e The choice of the response function
e Following some mild constrains, e.g., [0,1]. Positivity ...
e Canonical response function: 7 = ' (-)

In this case #"x directly corresponds to canonical parameter 7.
Eric Xing 47

MLE for GLIMs with natural
response o

e Log-likelihood
=Y logh(y,)+ Y (0"x,5, - 4(,))

e Derivative of Log-likelihood

S|, dAm) dn,
do % dn, do

=> v —u)x,
- This is a fixed point function
=X (r-p) because  is a function of 6

e Online learning for canonical GLIMs
e Stochastic gradient ascent = least mean squares (LMS) algorithm:

0 =0+ ply, - 1, v,
where z = (H’)TX,, and p isastepsize

Eric Xing 48
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Batch learning for canonical
GLIMs

e The Hessian matrix

d*¢ d du
H = - — = n
TR (v, = s, )%, =D x, 5

n n

du, dn,
=-x, et
dn, dO

n

n

d .
=) X, Aoy sincen,=6"x,
n 77/1

=-X"wx

where x =[x7 | is the design matrix and
W= diag[dﬂ1 ..... d’u‘]
dm dmny
which can be computed by calculating the 2" derivative of A(7,)

Eric Xing 49

Iteratively Reweighted Least
Squares (IRLS) o

e Recall Newton-Raphson methods with cost function J
0 =0'-H'V,J
We now have

VoI = X" (v )

H=-X"WX
e Now: 0 =0 s HWV ¢
=(xwx) xwexe + x"(y-u)]
[ _ (XTWtX)’IXTWtZt

where the adjusted response is z'=X0' +(W/>71 (y—pu")

This can be understood as solving the following " Iteratively
reweighted least squares " problem

0" =arg min(z - X0)"W(z-X0)

Eric Xing 50
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Example 1: logistic regression
(sigmoid classifier)

e The condition distribution: a Bernoulli

PO = u@) A=) /

where g is a logistic function

u(x) = e { e

e p(yY|x) is an exponential family function, with

e mean: E[J/|X]:#:W

e and canonical response function 75 =¢= 0" x
e IRLS %zﬂa‘“)

AT
W=

Eric Xing Hy (1 My ) 51

. . . . [ X X ]
Logistic regression: practical S
. [
issues 2

e Itis very common to use regularized maximum likelihood.

p(y==l1

1
x,0)=———=c(y0"x
)= = o0

¥

p(6) ~ Normal(0, A1)
16) =3 log(o( ynHTx,,))—gé?TQ

e IRLS takes O(Na®) per iteration, where N= number of training cases
and d'= dimension of input x.

e Quasi-Newton methods, that approximate the Hessian, work faster.
e Conjugate gradient takes O(Nd) per iteration, and usually works best in

practice.
e Stochastic gradient descent can also be used if Nis large c.f. perceptron
rule:
V£ =[-0(3,0"x,))y,x, - 20
Eric Xing 52

26



Example 2: linear regression

e The condition distribution: a Gaussian v

1 1 N
P()’X:H:E)=WGXP{—Z()’—#(X)) (y ll(x))}

Rescale = h(x) exp{—%Z’1 (77T (x)y— A(ry))}
where #is a linear function

u(x)=6"x =n(x)

e p(y|x) is an exponential family function, with
e mean: E[y|X]:,u:0TX
e and canonical response function m=E=0"x

RLs Fop 0w
el L t—w
. dp T = ()X (xe s (- ) = 0=(X"X)"XTY
W=rI =0 +(x"x) X (y-p)

Steepest descent Normal equation
Eric Xing 53




