The Elimination Algorithm

Probabilistic Graphical Models (10-708)

Lecture 4, Sep 26, 2007

Eric Xing

Reading: J-Chap 3, KF-Chap. 8, 9

Questions?
Probabilistic Inference

- We now have compact representations of probability distributions: \textbf{Graphical Models}

- A GM G describes a unique probability distribution P

- How do we answer \textit{queries} about P?

- We use \textit{inference} as a name for the process of computing answers to such queries

Query 1: Likelihood

- Most of the queries one may ask involve \textit{evidence}
 - Evidence e is an assignment of values to a set E variables in the domain
 - Without loss of generality $E = \{X_{k+1}, \ldots, X_n\}$

- Simplest query: compute probability of evidence

$$P(e) = \sum_{x_1} \cdots \sum_{x_k} P(x_1, \ldots, x_k, e)$$

- this is often referred to as computing the \textit{likelihood} of e
Query 2: Conditional Probability

- Often we are interested in the **conditional probability distribution** of a variable given the evidence

\[P(X | e) = \frac{P(X, e)}{P(e)} = \frac{P(X, e)}{\sum_x P(X = x, e)} \]

- this is the **a posteriori belief** in \(X \), given evidence \(e \)

- We usually query a subset \(Y \) of all domain variables \(X = \{Y, Z\} \) and "don't care" about the remaining, \(Z \):

\[P(Y | e) = \sum_z P(Y, Z = z | e) \]

- the process of summing out the "don't care" variables \(Z \) is called **marginalization**, and the resulting \(P(Y | e) \) is called a **marginal** prob.

Applications of a posteriori Belief

- **Prediction**: what is the probability of an outcome given the starting condition

- the query node is a descendent of the evidence

- **Diagnosis**: what is the probability of disease/fault given symptoms

- the query node an ancestor of the evidence

- **Learning** under partial observation

 - fill in the unobserved values under an "EM" setting (more later)

- The directionality of information flow between variables is not restricted by the directionality of the edges in a GM

 - probabilistic inference can combine evidence form all parts of the network
Query 3: Most Probable Assignment

In this query we want to find the most probable joint assignment (MPA) for some variables of interest.

Such reasoning is usually performed under some given evidence \mathbf{e}, and ignoring (the values of) other variables \mathbf{z}:

$$
\text{MPA}(Y \mid \mathbf{e}) = \arg \max_{y \in Y} P(y \mid \mathbf{e}) = \arg \max_{y \in Y} \sum_{z} P(y, z \mid \mathbf{e})
$$

This is the maximum a posteriori configuration of y.

Applications of MPA

- Classification
 - find most likely label, given the evidence
- Explanation
 - what is the most likely scenario, given the evidence

Cautionary note:

- The MPA of a variable depends on its "context"---the set of variables been jointly queried

<table>
<thead>
<tr>
<th>x</th>
<th>y</th>
<th>$P(x,y)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0.35</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0.05</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0.3</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0.3</td>
</tr>
</tbody>
</table>

Example:

- MPA of X?
- MPA of (X, Y)?
Complexity of Inference

Thm:
Computing $P(X = x \mid e)$ in a GM is NP-hard

- Hardness does not mean we cannot solve inference
 - It implies that we cannot find a general procedure that works efficiently for arbitrary GMs
 - For particular families of GMs, we can have provably efficient procedures

Approaches to inference

- Exact inference algorithms
 - The elimination algorithm
 - Message-passing algorithm (sum-product, belief propagation)
 - The junction tree algorithms

- Approximate inference techniques
 - Stochastic simulation / sampling methods
 - Markov chain Monte Carlo methods
 - Variational algorithms
Marginalization and Elimination

- A signal transduction pathway:

\[A \rightarrow B \rightarrow C \rightarrow D \rightarrow E \]

What is the likelihood that protein E is active?

- Query: \(P(e) \)

\[
P(e) = \sum_d \sum_c \sum_b \sum_a P(a,b,c,d,e)
\]

By chain decomposition, we get

\[
= \sum_d \sum_c \sum_b \sum_a P(a)P(b|a)P(c|b)P(d|c)P(e|d)
\]

A naïve summation needs to enumerate over an exponential number of terms.

Elimination on Chains

- Rearranging terms ...

\[
P(e) = \sum_d \sum_c \sum_b \sum_a P(a)P(b|a)P(c|b)P(d|c)P(e|d)
\]

\[
= \sum_d \sum_c \sum_b \sum_a P(c|b)P(d|c)P(e|d)\sum_a P(a)P(b|a)
\]
Now we can perform innermost summation

\[
P(e) = \sum_d \sum_c \sum_b P(c \mid b) P(d \mid c) P(e \mid d) \sum_a P(a) P(b \mid a)
\]

\[
= \sum_d \sum_c \sum_b P(c \mid b) P(d \mid c) P(e \mid d) p(b)
\]

This summation "eliminates" one variable from our summation argument at a "local cost".

Rearranging and then summing again, we get

\[
P(e) = \sum_d \sum_c \sum_b P(c \mid b) P(d \mid c) P(e \mid d) p(b)
\]

\[
= \sum_d \sum_c P(d \mid c) P(e \mid d) \sum_b P(c \mid b) p(b)
\]

\[
= \sum_d \sum_c P(d \mid c) P(e \mid d) p(c)
\]
Elimination in Chains

- Eliminate nodes one by one all the way to the end, we get

\[P(e) = \sum_d P(e \mid d) p(d) \]

\[\sum_{x_e} P(x_e \mid x_{\overline{e}}) p(x_{\overline{e}}) \]

- Complexity:
 - Each step costs \(O(|\text{Val}(X_i)| \times |\text{Val}(X_{i+1})|) \) operations: \(O(kn^2) \)
 - Compare to naïve evaluation that sums over joint values of \(n-1 \) variables \(O(n^4) \)

Undirected Chains

- Rearranging terms ...

\[P = \frac{1}{Z} \sum \phi(\gamma, \phi_e) \]

\[P(e) = \frac{1}{Z} \sum_d \sum_c \sum_b \sum_a \phi(b, a) \phi(c, b) \phi(d, c) \phi(e, d) \]

\[= \frac{1}{Z} \sum_d \sum_c \sum_b \phi(c, b) \phi(d, c) \phi(e, d) \sum_a \phi(b, a) \]

\[= \cdots \]
The Sum-Product Operation

- In general, we can view the task at hand as that of computing the value of an expression of the form:

\[\sum_{\phi \in \mathcal{F}} \prod_{z} \phi \]

where \(\mathcal{F} \) is a set of factors

- We call this task the *sum-product* inference task.

Outcome of elimination

- Let \(X \) be some set of variables, let \(\mathcal{F} \) be a set of factors such that for each \(\phi \in \mathcal{F} \), \(\text{Scope}[\phi] \subseteq X \), let \(Y \subseteq X \) be a set of query variables, and let \(Z = X \setminus Y \) be the variable to be eliminated.

- The result of eliminating the variable \(Z \) is a factor

\[\tau(Y) = \sum_{\phi \in \mathcal{F}} \prod_{z} \phi \]

\[p(Y) = \frac{\tau(Y)}{\sum_{Y'}} \]

- This factor does not necessarily correspond to any probability or conditional probability in this network. (example forthcoming)
Dealing with evidence

- Conditioning as a Sum-Product Operation
 - The evidence potential: \(\delta(E_i, \bar{e}_i) = \begin{cases} 1 & \text{if } E_i = \bar{e}_i \\ 0 & \text{if } E_i \neq \bar{e}_i \end{cases} \)
 - Total evidence potential: \(\delta(E, \bar{e}) = \prod_{i \in E} \delta(E_i, \bar{e}_i) \)
 - Introducing evidence --- restricted factors:

\[
\tau(Y, \bar{e}) = \sum_{z, e} \prod_{\phi \in \mathcal{F}} \phi \times \delta(E, \bar{e})
\]

Inference on General GM via Variable Elimination

General idea:
- Write query in the form
 \[P(X_1, e) = \sum_{x_n} \cdots \sum_{x_1} \prod_{i \in \mathcal{N}} P(x_i \mid p a_i) \]
 - this suggests an "elimination order" of latent variables to be marginalized
- Iteratively
 - Move all irrelevant terms outside of innermost sum
 - Perform innermost sum, getting a new term
 - Insert the new term into the product
- wrap-up
 \[P(X_1 \mid e) = \frac{\phi(X_1, e)}{\sum_{a_1} \phi(X_1, e)} \]
The elimination algorithm

Procedure **Elimination** (G, E, Z, X)

1. Initialize (G)
2. Evidence (E)
3. Sum-Product-Elimination (F, Z, <)
4. Normalization (F)

Procedure **Initialize** (G, Z)

1. Let Z₁, . . . , Zᵦ be an ordering of Z such that Zᵢ < Zⱼ if i < j
2. Initialize F with the full set of factors

Procedure **Evidence** (E)

1. for each i ∈ E,
 F = F ∪ δ(Eᵢ, eᵢ)

Procedure **Sum-Product-Variable-Elimination** (F, Z, <)

1. for i = 1, . . . , k
 F ← Sum-Product-Eliminate-Var(F, Zᵢ)
2. φ⁺ ← Πᵢ∈F φ
3. return φ⁺
4. Normalization (φ⁺)
The elimination algorithm

Procedure Initialize \((G, Z)\)
1. Let \(Z_1, \ldots, Z_k\) be an ordering of \(Z\) such that \(Z_i < Z_j\) iff \(i < j\)
2. Initialize \(\mathcal{F}\) with the full set of factors

Procedure Evidence \((E)\)
1. \(\mathcal{F} = \mathcal{F} \cup \delta(E, e)\)

Procedure Sum-Product-Variable-Elimination \((\mathcal{F}, Z, <)\)
1. for \(i = 1, \ldots, k\)
 \(\mathcal{F} \leftarrow \text{Sum-Product-Eliminate-Var}(\mathcal{F}, Z_i)\)
2. \(\phi^* \leftarrow \prod_{\phi \in \mathcal{F}} \phi\)
3. return \(\phi^*\)
4. Normalization \((\phi^*)\)

Procedure Normalization \((\phi^*)\)
1. \(P(\lambda|E) = \phi^*(\lambda) / \sum\phi^*(\lambda)\)

Procedure Sum-Product-Eliminate-Var \((\mathcal{F}, Z, \text{variable to be eliminated})\)
1. \(\mathcal{F}' \leftarrow \{\phi \in \mathcal{F} : Z \in \text{Scope}[\phi]\}\)
2. \(\mathcal{F}'' \leftarrow \mathcal{F} - \mathcal{F}'\)
3. \(\psi \leftarrow \prod_{\phi \in \mathcal{F}''} \phi\)
4. \(\tau \leftarrow \sum\psi\)
5. return \(\mathcal{F}'' \cup \{\}\)

A more complex network

A food web

What is the probability that hawks are leaving given that the grass condition is poor?
Example: Variable Elimination

- Query: \(P(A \mid h) \)
 - Need to eliminate: \(B,C,D,E,F,G,H \)

- Initial factors:
 \[
P(a)P(b)P(c \mid b)P(d \mid a)P(e \mid c,d)P(f \mid a)P(g \mid e)P(h \mid e,f)
\]

- Choose an elimination order: \(H,G,F,E,D,C,B \)

- Step 1:
 - Conditioning (fix the evidence node (i.e., \(h \)) on its observed value (i.e., \(\hat{h} \))):
 \[
m_h(e, f) = p(h = \hat{h} \mid e, f)
 \]
 - This step is isomorphic to a marginalization step:
 \[
m_h(e, f) = \sum_h p(h \mid e, f) \delta(h = \hat{h})
 \]

Example: Variable Elimination

- Query: \(P(B \mid h) \)
 - Need to eliminate: \(B,C,D,E,F,G \)

- Initial factors:
 \[
P(a)P(b)P(c \mid b)P(d \mid a)P(e \mid c,d)P(f \mid a)P(g \mid e)P(h \mid e,f)
\Rightarrow P(a)P(b)P(c \mid b)P(d \mid a)P(e \mid c,d)P(f \mid a)P(g \mid e)m_g(e, f)
\]

- Step 2: Eliminate \(G \)
 - compute
 \[
m_g(e) = \sum_g p(g \mid e) = 1
 \]
 \[
\Rightarrow P(a)P(b)P(c \mid b)P(d \mid a)P(e \mid c,d)P(f \mid a)m_g(e, f)
= P(a)P(b)P(c \mid b)P(d \mid a)P(e \mid c,d)P(f \mid a)m_g(e, f)
\]
Example: Variable Elimination

- Query: $P(B \mid h)$
 - Need to eliminate: B,C,D,E,F

- Initial factors:
 $$P(a)P(b)P(c \mid b)P(d \mid a)P(e \mid c,d)P(f \mid a)P(g \mid e)P(h \mid e,f)$$
 $$\Rightarrow P(a)P(b)P(c \mid b)P(d \mid a)P(e \mid c,d)P(f \mid a)P(g \mid e)m_b(e,f)$$
 $$\Rightarrow P(a)P(b)P(c \mid b)P(d \mid a)P(e \mid c,d)P(f \mid a)m_a(e,f)$$

- Step 3: Eliminate F
 - compute
 $$m_f(e,a) = \sum_f p(f \mid a)m_b(e,f)$$
 $$\Rightarrow P(a)P(b)P(c \mid b)P(d \mid a)P(e \mid c,d)m_f(a,e)$$

Example: Variable Elimination

- Query: $P(B \mid h)$
 - Need to eliminate: B,C,D,E

- Initial factors:
 $$P(a)P(b)P(c \mid b)P(d \mid a)P(e \mid c,d)P(f \mid a)P(g \mid e)P(h \mid e,f)$$
 $$\Rightarrow P(a)P(b)P(c \mid b)P(d \mid a)P(e \mid c,d)P(f \mid a)P(g \mid e)m_b(e,f)$$
 $$\Rightarrow P(a)P(b)P(c \mid b)P(d \mid a)P(e \mid c,d)P(f \mid a)m_a(e,f)$$
 $$\Rightarrow P(a)P(b)P(c \mid b)P(d \mid a)P(e \mid c,d)m_e(a,c)$$

- Step 4: Eliminate E
 - compute
 $$m_e(a,c,d) = \sum_c p(e \mid c,d)m_f(a,e)$$
 $$\Rightarrow P(a)P(b)P(c \mid b)P(d \mid a)m_e(a,c,d)$$
Example: Variable Elimination

- Query: \(P(B \mid h) \)
 - Need to eliminate: \(B, C, D \)

- Initial factors:
 \[
P(a)P(b)P(c \mid b)P(d \mid a)P(e \mid c, d)P(f \mid a)P(g \mid e)P(h \mid e, f)
 \]
 \[
 \Rightarrow P(a)P(b)P(c \mid b)P(d \mid a)P(e \mid c, d)P(f \mid a)P(g \mid e)m_i(e, f)
 \]
 \[
 \Rightarrow P(a)P(b)P(c \mid b)P(d \mid a)eP(e \mid c, d)m_i(a, e)
 \]
 \[
 \Rightarrow P(a)P(b)P(c \mid b)P(d \mid a)m_i(a, c, d)
 \]

- Step 5: Eliminate \(D \)
 - compute \(m_j(a, c) = \sum_d p(d \mid a)m_i(a, c, d) \)
 \[
 \Rightarrow P(a)P(b)P(c \mid d)m_j(a, c)
 \]

Example: Variable Elimination

- Query: \(P(B \mid h) \)
 - Need to eliminate: \(B, C \)

- Initial factors:
 \[
P(a)P(b)P(c \mid d)P(d \mid a)P(e \mid c, d)P(f \mid a)P(g \mid e)P(h \mid e, f)
 \]
 \[
 \Rightarrow P(a)P(b)P(c \mid d)P(d \mid a)P(e \mid c, d)P(f \mid a)P(g \mid e)m_i(e, f)
 \]
 \[
 \Rightarrow P(a)P(b)P(c \mid d)P(d \mid a)eP(e \mid c, d)m_i(a, e)
 \]
 \[
 \Rightarrow P(a)P(b)P(c \mid d)P(d \mid a)m_i(a, c, d)
 \]

- Step 6: Eliminate \(C \)
 - compute \(m_j(a, b) = \sum_c p(c \mid b)m_j(a, c) \)
 \[
 \Rightarrow P(a)P(b)P(c \mid d)m_j(a, c)
 \]
Example: Variable Elimination

- **Query:** \(P(B | h) \)
 - Need to eliminate: \(B \)

- **Initial factors:**

 \[
 P(a)P(b)P(c|d)P(d|a)P(e|c,d)P(f|a)P(g|e)P(h|e,f) \\
 \Rightarrow P(a)P(b)P(c|d)P(d|a)P(e|c,d)P(f|a)P(g|e)m_f(e,f) \\
 \Rightarrow P(a)P(b)P(c|d)P(d|a)P(e|c,d)P(f|a)m_f(e,f) \\
 \Rightarrow P(a)P(b)P(c|d)P(d|a)eP(e|c,d)m_f(a,e) \\
 \Rightarrow P(a)P(b)P(c|d)P(d|a)eP(e|c,d)m_f(a,e,d) \\
 \Rightarrow P(a)P(b)P(c|d)P(d|a)eP(e|c,d)m_f(a,e,c) \\
 \Rightarrow P(a)P(b)eP(e|c,d)m_f(a) \\
 \Rightarrow P(a)m_f(a)
 \]

- **Step 7: Eliminate** \(B \)
 - Compute

 \[
 m_a(a) = \sum_b p(b)m_f(a,b)
 \]

 \[
 \Rightarrow P(a)m_f(a)
 \]

Example: Variable Elimination

- **Query:** \(P(B | h) \)
 - Need to eliminate: \(B \)

- **Initial factors:**

 \[
 P(a)P(b)P(c|d)P(d|a)P(e|c,d)P(f|a)P(g|e)P(h|e,f) \\
 \Rightarrow P(a)P(b)P(c|d)P(d|a)P(e|c,d)P(f|a)P(g|e)m_f(e,f) \\
 \Rightarrow P(a)P(b)P(c|d)P(d|a)P(e|c,d)P(f|a)m_f(e,f) \\
 \Rightarrow P(a)P(b)P(c|d)P(d|a)eP(e|c,d)m_f(a,e) \\
 \Rightarrow P(a)P(b)P(c|d)P(d|a)eP(e|c,d)m_f(a,e,d) \\
 \Rightarrow P(a)P(b)P(c|d)P(d|a)eP(e|c,d)m_f(a,e,c) \\
 \Rightarrow P(a)P(b)eP(e|c,d)m_f(a) \\
 \Rightarrow P(a)m_f(a)
 \]

- **Step 8: Wrap-up**

 \[
 p(a,\tilde{h}) = p(a)m_f(a), \quad p(\tilde{h}) = \sum_a p(a)m_f(a) \\
 \Rightarrow P(a|\tilde{h}) = \frac{p(a)m_f(a)}{\sum_a p(a)m_f(a)}
 \]
Suppose in one elimination step we compute

\[m_i(x_1, \ldots, x_k) = \sum_{x} m^i_{x_1}(x, x_1, \ldots, x_k) \]

\[m^i_{x_1}(x, x_1, \ldots, x_k) = \prod_{i=1}^{k} m_i(x, y_{c_i}) \]

This requires

- \(k \cdot |\text{Val}(X)| \cdot \prod_i |\text{Val}(\mathcal{C}_i)| \) multiplications
 - For each value for \(x, y_{p_1}, \ldots, y_{k_1} \), we do \(k \) multiplications
- \(|\text{Val}(X)| \cdot \prod_i |\text{Val}(\mathcal{C}_i)| \) additions
 - For each value of \(y_{p_1}, \ldots, y_{k_1} \), we do \(|\text{Val}(X)| \) additions

Complexity is exponential in number of variables in the intermediate factor

Complexity of variable elimination