MLE for general BNs

- If we assume the parameters for each CPD are globally independent, and all nodes are fully observed, then the log-likelihood function decomposes into a sum of local terms, one per node:

\[
\ell(\theta; D) = \log p(D | \theta) = \log \prod \left(\prod p(x_{i,j} | x_{n,n}, \theta_j) \right) = \sum \left(\sum \log p(x_{n,i} | x_{n,n}, \theta_j) \right)
\]

How to define parameter prior?

- Factorization: \(p(X = x) = \prod_{i=1}^{M} p(x_i | x_{\pi_i}) \)

- Local Distributions defined by, e.g., multinomial parameters:

\[
p(x_i^k | x_{\pi_i}^j) = \theta x_i^k | x_{\pi_i}^j
\]

\(p(\theta | G)? \)
Global & Local Parameter Independence

- Global Parameter Independence
 For every DAG model:
 \[p(\theta | G) = \prod_{i=1}^{M} p(\theta_i | G) \]

- Local Parameter Independence
 For every node:
 \[p(\theta_i | G) = \prod_{j=1}^{q_i} p(\theta_{s_i j} | x_i | G) \]

- The Bayesian posterior
 \[P(\theta | D, G) = P(D | \theta) P(\theta | G) \]
 \[= \prod_{i,j} p(x_i | x_{s_i j}, \theta_{s_i j}) P(\theta_{s_i j} | G) \]

Example: decomposable likelihood of a directed model

- Consider the distribution defined by the directed acyclic GM:
 \[p(x | \theta) = p(x_1 | \theta_1) p(x_2 | x_1, \theta_1) p(x_3 | x_1, \theta_1) p(x_4 | x_2, x_3, \theta_1) \]

- This is exactly like learning four separate small BNs, each of which consists of a node and its parents.
MLE for BNs with tabular CPDs

- Assume each CPD is represented as a table (multinomial) where
 \[\theta_{ik}^{\text{def}} = p(X_j = j | X_{-i} = k) \]
 - Note that in case of multiple parents, \(X_{-i} \) will have a composite state, and the CPD will be a high-dimensional table
 - The sufficient statistics are counts of family configurations
 \[n_{jk} = \sum_i x_{ij} x_{ik} \]
- The log-likelihood is
 \[\ell(\theta, D) = \log \prod \theta_{ij}^{\text{def}} = \sum_{i,j,k} n_{ijk} \log \theta_{ijk} \]
- Using a Lagrange multiplier to enforce \(\sum_j \theta_{ijk} = 1 \), we get:
 \[\theta_{ijk}^{\text{MLE}} = \frac{n_{ijk}}{\sum_{i,j,k} n_{ijk}} \]

Parameter sharing

- Consider a time-invariant (stationary) 1st-order Markov model
 - Initial state probability vector:
 \[\pi_i \overset{\text{def}}{=} p(X_1 = i) \]
 - State transition probability matrix:
 \[A_{ij} \overset{\text{def}}{=} p(X_t = j | X_{t-1} = i) \]
 - The joint:
 \[p(X_{1:T} | \theta) = p(x_1 | \pi) \prod_{t=2}^T \prod_{i} p(X_t | X_{t-1}) \]
 - The log-likelihood:
 \[\ell(\theta, D) = \sum_n \log p(x_{n+1} | \pi) + \sum_{n=2}^T \sum_n \log p(x_n | x_{n-1:T}) \]
 - Again, we optimize each parameter separately
 - \(\pi \) is a multinomial frequency vector, and we’ve seen it before
 - What about \(A \)?
Learning a Markov chain transition matrix

- \(A \) is a stochastic matrix: \(\sum_j A_{ij} = 1 \)
- Each row of \(A \) is multinomial distribution.
- So MLE of \(A_{ij} \) is the fraction of transitions from \(i \) to \(j \)

\[
A_{ij}^{ML} = \frac{\#(i \rightarrow j)}{\#(i \rightarrow \bullet)} = \frac{\sum_{\tau=2}^{T} x_{\tau,j-1} x_{\tau,j}}{\sum_{\tau=2}^{T} x_{\tau,j-1}}
\]

- Application:
 - if the states \(X_t \) represent words, this is called a bigram language model
- Sparse data problem:
 - If \(i \rightarrow j \) did not occur in data, we will have \(A_{ij} = 0 \), then any future sequence with word pair \(i \rightarrow j \) will have zero probability.
 - A standard hack: backoff smoothing or deleted interpolation

\[
\tilde{A}_{i \rightarrow \bullet} = \lambda \eta_i + (1 - \lambda) A_{i \rightarrow \bullet}^{ML}
\]

Bayesian language model

- Global and local parameter independence

\[
A_{ij}^{Bayes} = p(j \mid i, D, \beta) = \frac{\#(i \rightarrow j) + \beta_{ij}}{\#(i \rightarrow \bullet) + \| \beta \|} = \lambda \beta_{ij} + (1 - \lambda) A_{ij}^{ML}, \quad \text{where} \quad \lambda = \frac{\| \beta \|}{\#(i \rightarrow \bullet) + \| \beta \|}
\]

- The posterior of \(A_{i \rightarrow} \) and \(A_{i' \rightarrow} \) is factorized despite v-structure on \(X_t \), because \(X_{t-1} \) acts like a multiplexer
- Assign a Dirichlet prior \(\beta_i \) to each row of the transition matrix:

\[
A_{ij}^{Bayes} = p(j \mid i, D, \beta) = \frac{\#(i \rightarrow j) + \beta_{ij}}{\#(i \rightarrow \bullet) + \| \beta \|} = \lambda \beta_{ij} + (1 - \lambda) A_{ij}^{ML}, \quad \text{where} \quad \lambda = \frac{\| \beta \|}{\#(i \rightarrow \bullet) + \| \beta \|}
\]

- We could consider more realistic priors, e.g., mixtures of Dirichlets to account for types of words (adjectives, verbs, etc.)
Example: HMM: two scenarios

- **Supervised learning**: estimation when the “right answer” is known
 - **Examples**:
 - GIVEN: a genomic region \(x = x_1 \ldots x_{1,000,000} \) where we have good (experimental) annotations of the CpG islands
 - GIVEN: the casino player allows us to observe him one evening, as he changes dice and produces 10,000 rolls

- **Unsupervised learning**: estimation when the “right answer” is unknown
 - **Examples**:
 - GIVEN: the porcupine genome; we don’t know how frequent are the CpG islands there, neither do we know their composition
 - GIVEN: 10,000 rolls of the casino player, but we don’t see when he changes dice

- **QUESTION**: Update the parameters \(\theta \) of the model to maximize \(P(x|\theta) \) - Maximal likelihood (ML) estimation

Recall definition of HMM

- **Transition probabilities between any two states**
 \[
 p(y_{t-1} = 1 | y_t = 1) = a_{i,j},
 \]
 or
 \[
 p(y_t | y_{t-1} = 1) \sim \text{Multinomial}(a_{i,1}, a_{i,2}, \ldots, a_{i,M}) \quad \forall i \in I.
 \]

- **Start probabilities**
 \[
 p(y_1) \sim \text{Multinomial}(\pi_1, \pi_2, \ldots, \pi_M)
 \]

- **Emission probabilities associated with each state**
 \[
 p(x_t | y_t = 1) \sim \text{Multinomial}(b_{i,1}, b_{i,2}, \ldots, b_{i,K}) \quad \forall i \in I.
 \]
 or in general:
 \[
 p(x_t | y_t = 1) \sim f_i(\cdot | \theta), \forall i \in I.
 \]
Supervised ML estimation

- Given \(x = x_1 \ldots x_N \) for which the true state path \(y = y_1 \ldots y_N \) is known,

 Define:
 \[
 A_{ij} = \text{# times state transition } i \rightarrow j \text{ occurs in } y
 \]
 \[
 B_{ik} = \text{# times state } i \text{ in } y \text{ emits } k \text{ in } x
 \]

 We can show that the maximum likelihood parameters \(\theta \) are:
 \[
 a^{ML}_{ij} = \frac{\#(i \rightarrow j)}{\#(i \rightarrow \bullet)} = \frac{\sum_t \sum_{n=2}^T y_{n,i} y_{n+1,j}}{\sum_t \sum_{n=2}^T y_{n,i}}
 \]
 \[
 b^{ML}_{ik} = \frac{\#(i \rightarrow k)}{\#(i \rightarrow \bullet)} = \frac{\sum_t \sum_{n=1}^T y_{n+1,k} y_{n+2,i}}{\sum_t \sum_{n=1}^T y_{n+1,k}}
 \]

 What if \(x \) is continuous? We can treat \(\{x_{t,1}, \ldots, x_{t,n} : t = 1:T, n = 1:N\} \) as \(NxT \) observations of, e.g., a Gaussian, and apply learning rules for Gaussian …
ML Structural Learning for completely observed GMs

Data

Where are we now on the map?

- Graphical models
 - Bayesian networks
 - Undirected models
 - Conditional independence statements + factorization law of joint dist.
- Exact inference in GMs
 - Variable elimination \iff Graph elimination
 - Sum-product on tree, factor tree, clique tree
 - Very fast for models with low tree-width
- Learning GMs
 - Given structure, estimate parameters
 - Maximum likelihood estimation (just counts for BNs)
 - Bayesian learning
 - MAP for Bayesian learning
- What about learning structure?
Learning the structure of a BN

Data

\[(x_1^{(1)}, \ldots, x_n^{(1)}) \]
\[(x_1^{(2)}, \ldots, x_n^{(2)}) \]
\[\ldots \]
\[(x_1^{(M)}, \ldots, x_n^{(M)}) \]

Possible structures → Learn parameters

Score
struc/param

10^{-5}
10^{-3}
10^{-15}
\ldots

Constraints

\[I(G_e) \subset I(P) \]
\[I(G_e) \subset I(P) \]
\[I(G_e) \subset I(P) \]
\[\ldots \]

Learning the structure of a BN

- **Constraint-based approach**
 - BN encodes conditional independencies
 - Test conditional independencies in data
 - Find an I-map

- **Score-based approach**
 - Finding a structure and parameters is a density estimation task
 - Evaluate model as we evaluated parameters
 - Maximum likelihood
 - Bayesian
 - etc.
Recall P-Map

- **Defn (3.4.3):** We say that a graph object \(G \) is a *perfect map (P-map)* for a set of independencies \(I \) if we have that \(I(G) = I \). We say that \(G \) is a perfect map for \(P \) if \(I(G) = I(P) \).
 - Not all \(P \) has a perfect map as DAG!
 - The P-map of a distribution is unique up to I-equivalence between networks. That is, a distribution \(P \) can have many P-maps, but all of them are I-equivalent.
 - The P-DAG algorithm

- **Constraint-based approach:**
 - Key question: Independence test

Constraint-based approach: Independence tests

- Statistically difficult task!
- Intuitive approach:
 - Mutual information

 \[
 I(X_i, X_j) = \sum_{x_i, x_j} \log P(x_i, x_j) \frac{P(x_i, x_j)}{P(x_i)P(x_j)}
 \]
 - Mutual information and independence:
 - \(X_i \) and \(X_j \) are independent if and only if \(I(X_i, X_j) = 0 \)
 - Conditional mutual information:
Empirical independence tests

- Using the data D
 - Empirical distribution:
 \[\hat{P}(x_i, x_j) = \frac{\text{count}(x_i, x_j)}{M} \]
 - Mutual information:
 \[\hat{I}(X_i, X_j) = \sum_{x_i, x_j} \log \frac{\hat{P}(x_i, x_j)}{P(x_i)P(x_j)} \frac{\hat{P}(x_i, x_j)}{P(x_i)P(x_j)} \]
 - Similarly for conditional MI

- More generally, use learning PDAG algorithm:
 - When algorithm asks: $(X \perp Y|U)$?
 - Must check if statistically-significant
 - Choosing t
 - See reading…

Score-based approach:

- Desirable properties of a scoring function
 - Consistency: i.e., if the data is generated by G^*, then G and all I-equivalent models maximize the score.
 - Decomposability:
 \[\text{Score}(G \mid D) = \sum_i \text{FamScore}(D(X_i \mid X_{\neg i}) \]
 which makes it cheap to compare score of G and G' if they only differ in a small number of families.

- Bayesian score (evidence), likelihood, and penalized likelihood (BIC) are all decomposable and consistent.
Maximizing the score

- Consider the family of DAGs G_d with maximum fan-in (number of parents) equal to d.

- **Thm:** It is NP-hard to find
 \[G^* = \arg \max_{G \in G_d} \text{Score}(G | D) \]
 for any $d \geq 2$.

- In general, we need to use heuristic local search
 - For $d \leq 1$ (i.e., trees), we can solve the problem in $O(n^2)$ time using max spanning tree (forthcoming)
 - If we know the ordering of the nodes, we can solve the problem in $O\left(\binom{n}{d}\right)$ time

Information Theoretic Interpretation of ML

\[
\ell(\theta_G, G; D) = \log p(D | \theta_G, G)
\]
\[
= \log \prod_x \left(\prod_i p(x_{n,i,\pi,\theta_{\pi,\theta}}) \right)
\]
\[
= \sum_i \sum_x \log p(x_{n,i,\pi,\theta_{\pi,\theta}})
\]
\[
= M \sum_i \left(\frac{\text{count}(x_i, x_{\pi,\theta})}{M} \sum_{\pi,\theta} \log p(x_i | x_{\pi,\theta}) \right)
\]
\[
= M \sum_i \left(\sum_{\pi,\theta} \log p(x_i | x_{\pi,\theta}) \right)
\]

From sum over data points to sum over count of variable states
Information Theoretic Interpretation of ML (con'd)

\[\ell(\theta_G, G; D) = \log \hat{p}(D | \theta_G, G) \]

\[= M \sum_j \left(\sum_{x \in V(G)} \log \hat{p}(x_j | x_{par(x_j)}, \theta_{x_j(G)}) \right) \]

\[= M \sum_j \left(\sum_{x \in V(G)} \log \frac{\hat{p}(x_j, x_{par(x_j)}, \theta_{x_j(G)}) \hat{p}(x_j)}{\hat{p}(x_{par(x_j)})} \right) \]

\[= M \sum_j \left(\sum_{x \in V(G)} \log \frac{\hat{p}(x_j, x_{par(x_j)}, \theta_{x_j(G)}) \hat{p}(x_j)}{\hat{p}(x_{par(x_j)})} \right) - M \sum_j \sum_{x_j} \hat{H}(x_j) \]

Decomposable score and a function of the graph structure

Decomposable Score

- Log data likelihood

\[\ell(\theta_G, G; D) = \log \hat{p}(D | \theta_G, G) \]

\[= M \sum_j \hat{I}(x_j, x_{par(x_j)}) - M \sum_j \hat{H}(x_j) \]

- Decomposable score:
 - Decomposes over families in BN (node and its parents)
 - Will lead to significant computational efficiency!!!
 - The score function:

\[\text{Score}(G | D) = \sum_j \text{FamScore}(D(X_j | X_{par(x_j)})\]

- Search space:
Structural Search

- How many graphs over n nodes? $O(2^n)$
- How many trees over n nodes? $O(2^{n\log_2 n})$
- But it turns out that we can find exact solution of an optimal tree (under MLE)!
 - Trick: in a tree each node has only one parent!
 - Chow-liu algorithm

Scoring a tree 1: equivalent trees
Scoring a tree 2: similar trees

Chow-Liu tree learning algorithm

- Objection function:
 \[\ell(\theta_G, G; D) = \log \hat{p}(D | \theta_G, G) = M \sum_i \hat{I}(x_i, x_{(i)}^*) - M \sum_i \hat{H}(x_i) \]

 \[C(G) = M \sum_i \hat{I}(x_i, x_{(i)}^*) \]

- Chow-Liu:
 - For each pair of variable \(x_i, x_j\)
 - Compute empirical distribution: \(\hat{p}(x_i, x_j) = \frac{\text{count}(x_i, x_j)}{M} \)
 - Compute mutual information: \(\hat{I}(x_i, x_j) = \sum_{x_i, x_j} \hat{p}(x_i, x_j) \log \frac{\hat{p}(x_i, x_j)}{\hat{p}(x_i) \hat{p}(x_j)} \)
 - Define a graph with node \(x_1, \ldots, x_n\)
 - Edge \((i, j)\) gets weight \(\hat{I}(x_i, X_j) \)
Chow-Liu algorithm (con'd)

- Objection function:
 \[\ell(\theta_\alpha, G; D) = \log \hat{p}(D | \theta_\alpha, G) \]
 \[= M \sum_i \hat{I}(x_i, x_{x(i)}) - M \sum_i \hat{H}(x_i) \]
 \[\Rightarrow C(G) = M \sum_i \hat{I}(x_i, x_{x(i)}) \]

- Chow-Liu:
 Optimal tree BN
 - Compute maximum weight spanning tree
 - Direction in BN: pick any node as root, do breadth-first-search to define directions
 - I-equivalence:
 \[C(G) = I(A, B) + I(A, C) + I(C, D) + I(C, E) \]

Extensions of Chow-Liu

- Tree augmented naïve Bayes (TAN) [Friedman et al. '97]
 - Naïve Bayes model overcounts, because correlation between features not considered
 - Tree-augmented feature list

- Same as Chow-Liu, but score edges w
 \[\hat{p}(X_i, X_j | C) = \frac{\text{count}(x_i, x_j | C)}{M} \]
 \[\hat{I}(X_i, X_j) = \sum_{x_i, x_j} \hat{p}(x_i, x_j | C) \log \frac{\hat{p}(x_i, x_j | C)}{\hat{p}(x_i | C) \hat{p}(x_j | C)} \]

Structure Learning for general graphs

- **Theorem:**
 - The problem of learning a BN structure with at most d parents is NP-hard for any (fixed) $d \geq 2$

- **Most structure learning approaches use heuristics**
 - Exploit score decomposition
 - Two heuristics that exploit decomposition in different ways
 - Greedy search through space of node-orders
 - Local search of graph structures

Known order (K2 algorithm)

- Suppose we a total ordering of the nodes $X_1 < X_2 < \cdots < X_n$
 and want to find a DAG consistent with this with maximum score.
 - The choice of parents for X_i from $\mathcal{P}_a(X_i)$ is independent of the choice for X_j: since we obey the ordering, we cannot create a cycle.
 - Hence we can pick the best set of parents for each node independently.
 - For X_i, we need to search all $\binom{d-1}{d}$ subsets of size up to d for the set which maximizes FamScore.
 - We can use greedy techniques for this, c.f., learning a decision tree.

- **What if order isn’t known**
 - Search in the space of orderings, then conditioned on , pick best graph using K2
 - Search in the space of DAGs.
Learn BN structure using local search

Starting from Chow-Liu tree → Local search → Select using favorite score

Possible moves:
- Add edge
- Delete edge
- Invert edge

Data

\[(x_1^{(1)}, \ldots, x_n^{(1)})\]
\[(x_1^{(2)}, \ldots, x_n^{(2)})\]

\[\ldots\]
\[(x_1^{(M)}, \ldots, x_n^{(M)})\]

Exploit score decomposition in local search

- Add edge and delete edge
 - Only rescore one family

- Reverse edge
 - Rescore only two families

- Simplest search algorithm: greedy hill climbing.
Local maxima

- Greedy hill climbing will stop when it reaches a local maximum or a plateau (a set of neighboring networks that have the same score).

- Unfortunately, plateaus are common, since equivalence classes form contiguous regions of search space (thm 14.4.4), and such classes can be exponentially large.

- Solutions:
 - Random restarts
 - TABU search (prevent the algorithm from undoing an operator applied in the last L steps, thereby forcing it to explore new terrain).
 - Data perturbation (dynamic local search): reweight the data and take step.
 - Simulated annealing: if $\delta(o) > 0$, take move, else accept with probability $e^{\delta(o)/t}$, where t is the temperature. Slow!

Order search versus graph search

- Order search advantages
 - For fixed order, optimal BN—more "global"optimization
 - Space of orders much smaller than space of graphs

- Graph search advantages
 - Not restricted to k parents
 - Especially if exploiting CPD structure, such as CSI
 - Cheaper per iteration
 - Finer moves within a graph
Identifiability

- DAGs are I-equivalent if they encode the same set of conditional independencies
 - e.g., $X \rightarrow Y \rightarrow Z$ and $X \leftarrow Y \leftarrow Z$ are indistinguishable given just observational data.

- However, $X \rightarrow Y \leftarrow Z$ has a v-structure, which has a unique statistical signature. Hence some arc directions can be inferred from passive observation.

- The set of I-equivalent DAGs can be represented by a PDAG (partially directed acyclic graph).

- Distinguishing between members of an equivalence class requires interventions/ experiments.

ML score overfits!

\[
\ell(\theta_0, G; D) = \log \hat{p}(D | \theta_0, G) \\
= M \sum_i \hat{l}(x_i, x_{z(G)}) - M \sum_i \hat{H}(x_i)
\]

- Information never hurts

- Adding a parent always increases your score!
Occam’s Razor

Three hypotheses

- $P(X = 1) = 0.5$ and $P(Y = 1|X = 0) = 0.5 - \varepsilon$, $P(Y = 1|X = 1) = 0.5 + \varepsilon$
- As we increase ε, we increase the dependence of Y on X
- $X \leftarrow Y$ and $X \rightarrow Y$ are I-equivalent (have the same likelihood)

- Suppose we use a uniform Dirichlet prior for each node in each graph, with equivalent pseudo-counts (K2-prior):

 \[P(\theta_{\alpha_1} | H_1) = \text{Dir}(\alpha, \alpha) \quad P(\theta_{\alpha_2} | H_2) = \text{Dir}(\alpha, \alpha) \]

- In H_0, the equivalent sample size for X is 2, but in H_2 it is 4 (since two conditioning contexts). Hence the posterior probabilities are different.

- Under which H the $P(H|D)$ is higher?
Why is $P(H_0|D)$ higher when the dependence on X and Y is weak (small)?

- It is not because the prior $P(H_i)$ explicitly favors simpler models (although this is possible).
- It because the evidence $P(D) = \int dW P(D|W)P(W)$ automatically penalizes complex models.

“Occam’s razor” says “If two models are equally predictive, prefer the simpler one”.

- This is an automatic consequence of using Bayesian model selection.
- Maximum likelihood would always pick the most complex model, since it has more parameters, and hence can fit the training data better.

Good test for a learning algorithm: feed it random noise, see if it “discovers” structure!
Global & Local Parameter Independence

- **Global Parameter Independence**
 For every DAG model:
 \[
 p(\theta | G) = \prod_{i=1}^{M} p(\theta_i | G)
 \]

- **Local Parameter Independence**
 For every node:
 \[
 p(\theta_i | G) = \prod_{j=1}^{q_i} p(\theta_{s_j} | x_{s_j} | G)
 \]

- **The Bayesian score**
 \[
 \log P(G|D) = \log P(G) + \log \int \prod_{i} P(D_i | \theta_i) P(\theta_i | G) d\theta + C
 = \log P(G) + \sum_{i} \log p(x_i | x_{s_i}, \theta_{s_i}) P(\theta_{s_i} | G) d\theta_{s_i} + C
 = \log P(G) + C + \sum_{i} \text{score}(x_i, x_{s_i})
 \]

Selection criteria

- **BIC (Bayesian Information Criterion):**
 \[
 \log P(D) \approx \log P(D | \hat{\theta}_{ML}) - \frac{d}{2} \log N
 \]
 - Quiz: How many boxes behind the tree?

- **Other criteria:**
 - **AIC (Akaike Information Criterion):**
 - Minimum description length
Consistency of BIC and Bayesian scores

- A scoring function is **consistent** if, for true model G^*, as $m \to \infty$, with probability 1
 - G^* maximizes the score
 - All structures **not** I-equivalent to G^* have strictly lower score

- **Theorem**: BIC score is consistent
- **Corollary**: the Bayesian score is consistent

- What about maximum likelihood score?

Choice of Priors

- For finite datasets, prior is important!
 - Prior over structure satisfying prior modularity

- What about prior over parameters, how do we represent it?
 - **K2 prior**: fix an α, $P(\theta|\mathbf{Pa}_i) = \text{Dirichlet}(\alpha, \ldots, \alpha)$
 - K2 is “inconsistent”
BDe prior

- Dirichlet parameters analogous to “fictitious samples”

- Pick a fictitious sample size m'
 - For each possible family, define a prior distribution $P(X_i, Pa_{x_i})$
 - Represent with a BN
 - Usually independent (product of marginals)

- BDe prior:
 - Has “consistency property”