MLE for general BNs

- If we assume the parameters for each CPD are globally independent, and all nodes are fully observed, then the log-likelihood function decomposes into a sum of local terms, one per node:

\[
\ell(\theta; D) = \log p(D | \theta) = \log \prod \prod p(x_{n,j} | x_{n-1}, \theta_i) = \sum \sum \log p(x_{n,j} | x_{n,n-1}, \theta_j)
\]

How to define parameter prior?

Factorization: \(p(X = x) = \prod_{i=1}^{M} p(x_i | x_{\pi_i}) \)

Local Distributions defined by, e.g., multinomial parameters:

\[
p(x_i^k | x_{\pi_i}) = \theta_{x_i^k | x_{\pi_i}}
\]

\[
p(\theta | G) \text{ ?}
\]
Global & Local Parameter Independence

- **Global Parameter Independence**

 For every DAG model:
 \[
 p(\theta \mid G) = \prod_{i=1}^{M} p(\theta_i \mid G)
 \]

- **Local Parameter Independence**

 For every node:
 \[
 p(\theta_i \mid G) = \prod_{j=1}^{q_i} p(\theta_{x_{i,j}} \mid G)
 \]

- **The Bayesian posterior**

 \[
 P(\theta \mid D, G) = \frac{P(D \mid \theta) P(\theta \mid G)}{\sum_{\theta} P(D \mid \theta) P(\theta \mid G)}
 = \prod_{i,j} p(x_i \mid x_{i,j}, \theta_{i,j}) P(\theta_{i,j} \mid G)
 \]

Example: decomposable likelihood of a directed model

- Consider the distribution defined by the directed acyclic GM:
 \[
 p(x \mid \theta) = p(x_1 \mid \theta_1) p(x_2 \mid x_1, \theta_1) p(x_3 \mid x_1, \theta_1) p(x_4 \mid x_2, x_3, \theta_1)
 \]

- \(\theta_1^* = \text{argmax} \ p(x \mid \theta) = \text{argmax} \ p(x \mid \theta_1, G) \)

- This is exactly like learning four separate small BNs, each of which consists of a node and its parents.
MLE for BNs with tabular CPDs

- Assume each CPD is represented as a table (multinomial) where
 \[\theta_{ik} \overset{\text{def}}{=} p(X_j = j \mid X_{-j} = k) \]
 - Note that in case of multiple parents, \(X_{-j} \) will have a composite state, and the CPD will be a high-dimensional table.
 - The sufficient statistics are counts of family configurations.
 \[n_{ijk} \overset{\text{def}}{=} \sum x_{ij}^k \]
- The log-likelihood is
 \[\ell(\theta, D) = \log \prod_{t,j,k} \theta_{ijk}^{n_{ijk}} = \sum_{t,j,k} n_{ijk} \log \theta_{ijk} \]
- Using a Lagrange multiplier to enforce \(\sum_j \theta_{ijk} = 1 \), we get:
 \[\theta_{ijk}^{\text{ML}} = \frac{n_{ijk}}{\sum_j n_{ijk}} \]

Parameter sharing

- Consider a time-invariant (stationary) 1st-order Markov model
 - Initial state probability vector: \(\pi_1 \overset{\text{def}}{=} p(X_1 = 1) \)
 - State transition probability matrix: \(A_t \overset{\text{def}}{=} p(X_t = 1 \mid X_{t-1} = 1) \)
- The joint:
 \[p(X_{1:T} \mid \theta) = p(x_1 \mid \pi) \prod_{t=2}^T p(X_t \mid X_{t-1}) \]
- The log-likelihood:
 \[\ell(\theta, D) = \sum_n \log p(x_n \mid \pi) + \sum_{t=2}^T \sum_n \log p(x_n \mid x_{n-1}, A) \]
- Again, we optimize each parameter separately
 - \(\pi \) is a multinomial frequency vector, and we’ve seen it before
 - What about \(A \)?
Learning a Markov chain transition matrix

- A is a stochastic matrix: $\sum_i A_{ij} = 1$
- Each row of A is a multinomial distribution.
- So MLE of A_{ij} is the fraction of transitions from i to j

$$A_{ij}^{ML} = \frac{\#(i \to j)}{\#(i \to \bullet)} = \frac{\sum_{t=2}^{T} x_{i,j,t-1} x_{i,j,t}}{\sum_{t=1}^{T} x_{i,j,t-1}}$$

- Application:
 - if the states X_t represent words, this is called a bigram language model
- Sparse data problem:
 - If $i \to j$ did not occur in data, we will have $A_{ij} = 0$, then any further sequence with word pair $i \to j$ will have zero probability.
 - A standard hack: backoff smoothing or deleted interpolation

$$\tilde{A}_{j \to \bullet} = \lambda \eta_j + (1 - \lambda) A_{j \to \bullet}^{ML}$$

Bayesian language model

- Global and local parameter independence
- The posterior of $A_{i \to}$ and $A_{i' \to}$ is factorized despite v-structure on X_t, because X_{t-1} acts like a multiplexer
- Assign a Dirichlet prior β_i to each row of the transition matrix:

$$A_{ij}^{Bayes} \overset{def}{=} p(j | i, D, \beta) = \frac{\#(i \to j) + \beta_{ij} \lambda}{\#(i \to \bullet) + |D\beta|} = \lambda \beta_{ij} + (1 - \lambda) A_{ij}^{ML}, \text{ where } \lambda = \frac{|\beta|}{|\beta| + \#(i \to \bullet)}$$

- We could consider more realistic priors, e.g., mixtures of Dirichlets to account for types of words (adjectives, verbs, etc.)
Recall definition of HMM

- Transition probabilities between any two states

\[p(y'_i = 1 | y'_{i-1} = 1) = a_{i,j}, \]

or

\[p(y_i | y'_{i-1} = 1) \sim \text{Multinomial}(a_{i,1}, a_{i,2}, \ldots, a_{i,U}) \forall i \in 1. \]

- Start probabilities

\[p(y_1) \sim \text{Multinomial}(\pi_1, \pi_2, \ldots, \pi_U) \]

- Emission probabilities associated with each state

\[p(x_i | y'_i = 1) \sim \text{Multinomial}(h_{i,1}, h_{i,2}, \ldots, h_{i,K}) \forall i \in 1. \]

or in general:

\[p(x_i | y'_i = 1) \sim \text{f}(\cdot | \theta), \forall i \in 1. \]

Example: HMM: two scenarios

- **Supervised learning**: estimation when the “right answer” is known

 - Examples:

 GIVEN: a genomic region \(x = x_1 \ldots x_{1,000,000} \) where we have good (experimental) annotations of the CpG islands

 GIVEN: the casino player allows us to observe him one evening, as he changes dice and produces 10,000 rolls

- **Unsupervised learning**: estimation when the “right answer” is unknown

 - Examples:

 GIVEN: the porcupine genome; we don’t know how frequent are the CpG islands there, neither do we know their composition

 GIVEN: 10,000 rolls of the casino player, but we don’t see when he changes dice

- **QUESTION**: Update the parameters \(\theta \) of the model to maximize \(P(x | \theta) \) - Maximal likelihood (ML) estimation
Supervised ML estimation

- Given \(x = x_1 \ldots x_N \) for which the true state path \(y = y_1 \ldots y_N \) is known,

- Define:
 \[A_{ij} = \# \text{times state transition } i \rightarrow j \text{ occurs in } y \]
 \[B_{ik} = \# \text{times state } i \text{ in } y \text{ emits } k \text{ in } x \]

- We can show that the maximum likelihood parameters \(\theta \) are:

 \[a_{ij}^M = \frac{\#(i \rightarrow j)}{\#(i \rightarrow \bullet)} = \frac{\sum_{t=1}^{T} y_{t}^i y_{t+1}^j}{\sum_{t=1}^{T} y_{t}^i} \quad A_{ij} \]
 \[b_{ik}^M = \frac{\#(i \rightarrow k)}{\#(i \rightarrow \bullet)} = \frac{\sum_{t=1}^{T} y_{t}^i x_{t}^k}{\sum_{t=1}^{T} y_{t}^i} \quad B_{ik} \]

- What if \(x \) is continuous? We can treat \(\{x_{t_1}, y_{n_1} ; t=1:T, n=1:N\} \) as \(N \times T \) observations of, e.g., a Gaussian, and apply learning rules for Gaussian ...

Learning BN Structure

Probabilistic Graphical Models (10-708)
Lecture 10, Oct 17, 2007

Reading: KF-Chap. 16
ML Structural Learning for completely observed GMs

Where are we now on the map?

- Graphical models
 - Bayesian networks
 - Undirected models
 - Conditional independence statements + factorization law of joint dist.
- Exact inference in GMs
 - Variable elimination <=> Graph elimination
 - Sum-product on tree, factor tree, clique tree
 - Very fast for models with low tree-width
- Learning GMs
 - Given structure, estimate parameters
 - Maximum likelihood estimation (just counts for BNs)
 - Bayesian learning
 - MAP for Bayesian learning
- What about learning structure?
Learning the structure of a BN

- **Data**
 - \((x_1^{(1)}, ..., x_n^{(1)})\)
 - \((x_1^{(2)}, ..., x_n^{(2)})\)
 - ...
 - \((x_1^{(M)}, ..., x_n^{(M)})\)

Possible structures → **Learn parameters**

- Maximum likelihood
- Bayesian
- Conditional likelihood
- Margin

Score struc/param
- \(10^{-5}\)
- \(10^{-3}\)
- \(10^{-15}\)
- ...

Constraints
- \(I(G_j) \in I(P)\)
- \(I(G_k) \in I(P)\)
- ...

Learning the structure of a BN

- **Constraint-based approach**
 - BN encodes conditional independencies
 - Test conditional independencies in data
 - Find an I-map

- **Score-based approach**
 - Finding a structure and parameters is a density estimation task
 - Evaluate model as we evaluated parameters
 - Maximum likelihood
 - Bayesian
 - etc.
Recall P-Map

- **Defn (3.4.3):** We say that a graph object G is a perfect map (P-map) for a set of independencies I if we have that I(G) = I. We say that G is a perfect map for P if I(G) = I(P).
 - Not all P has a perfect map as DAG!
 - The P-map of a distribution is unique up to I-equivalence between networks. That is, a distribution P can have many P-maps, but all of them are I-equivalent.
 - The P-DAG algorithm

- **Constraint-based approach:**
 - Key question: Independence test

Constraint-based approach: Independence tests

- Statistically difficult task!
- Intuitive approach:
 - Mutual information
 \[I(X_i, X_j) = \sum_{x_i, x_j} \log P(x_i, x_j) \frac{P(x_i, x_j)}{P(x_i)P(x_j)} \]
 - Mutual information and independence:
 - \(X_i \) and \(X_j \) are independent if and only if \(I(X_i, X_j) = 0 \)
 - **Conditional mutual information:**
 \[I(X_i, X_j | Z) \]
Empirical independence tests

- Using the data D
 - Empirical distribution:
 $$\hat{P}(x_i, x_j) = \frac{\text{count}(x_i, x_j)}{M}$$
 - Mutual information:
 $$\hat{I}(X_i, X_j) = \sum_{i,j} \log \frac{\hat{P}(x_i, x_j)}{\hat{P}(x_i)\hat{P}(x_j)}$$
 - Similarly for conditional MI

- More generally, use learning PDAG algorithm:
 - When algorithm asks: $(X, Y | U)$?
 - Must check if statistically-significant
 - Choosing t
 - See reading...

Score-based approach:

- Desirable properties of a scoring function
 - **Consistency:** i.e., if the data is generated by G^*, then G and all I-equivalent models maximize the score.
 - Decomposability:
 $$\text{Score}(G \mid D) = \sum_i \text{FamScore}(D(X_i \mid X_{-i}))$$
 which makes it cheap to compare score of G and G' if they only differ in a small number of families.

- Bayesian score (evidence), likelihood, and penalized likelihood (BIC) are all decomposable and consistent.
Maximizing the score

- Consider the family of DAGs G_d with maximum fan-in (number of parents) equal to d.

- **Thm**: It is NP-hard to find
 \[
 G^* = \arg \max_{G \in G_d} \text{Score}(G | D)
 \]
 for any $d \geq 2$.

- In general, we need to use heuristic local search

 - For $d \leq 1$ (i.e., trees), we can solve the problem in $O(n^2)$ time using max spanning tree (forthcoming)
 - If we know the ordering of the nodes, we can solve the problem in $O(d^\frac{n}{d})$ time

Information Theoretic Interpretation of ML

\[
\ell(\theta_G, G; D) = \log p(D | \theta_G, G)
\]
\[
= \log \prod_x \left(\prod_x p(x_{i|x(G)}, \theta_{G(i)}) \right)
\]
\[
= \sum_x \left(\sum_{x_{i|x(G)}} \log p(x_{i|x(G)}, \theta_{G(i)}) \right)
\]
\[
= M \sum_i \left(\sum_{x_{i|x(G)}} \frac{\text{count}(x_i, x_{i|x(G)})}{M} \log p(x_i | x_{i|x(G)}, \theta_{G(i)}) \right)
\]
\[
= M \sum_i \left(\sum_{x_{i|x(G)}} \hat{p}(x_i, x_{i|x(G)}) \log p(x_i | x_{i|x(G)}, \theta_{G(i)}) \right)
\]

From sum over data points to sum over count of variable states
Information Theoretic Interpretation of ML (con'd)

\[\ell(\theta_{\phi}, G; D) = \log \hat{p}(D | \theta_{\phi}, G) \]

\[= M \sum \left(\sum \hat{p}(x_i, x_{\pi(x_i)}) \log \hat{p}(x_i | x_{\pi(x_i)}, \theta_{\pi(x_i)}) \right) \]

Decomposable score and a function of the graph structure

Decomposable Score

- Log data likelihood
 \[\ell(\theta_{\phi}, G; D) = \log \hat{p}(D | \theta_{\phi}, G) \]
 \[= M \sum \hat{I}(x_i, x_{\pi(x_i)}) - M \sum \hat{H}(x_i) \]

- Decomposable score:
 - Decomposes over families in BN (node and its parents)
 - Will lead to significant computational efficiency!!!
 - The score function:
 \[\text{Score}(G | D) = \sum \text{FamScore}(D(X_i | X_{\pi_i})) \]

- Search space:
Structural Search

- How many graphs over \(n \) nodes? \(O(2^n) \)
- How many trees over \(n \) nodes? \(\mathcal{O}(2^{n\log n}) \)
- But it turns out that we can find exact solution of an optimal tree (under MLE)!
 - Trick: in a tree each node has only one parent!
 - Chow-liu algorithm

Scoring a tree 1: equivalent trees

\[
\ell(\theta; G; D) = M \sum_i \hat{I}(x_i; x_{x_i(G)}) - M \sum_i \hat{H}(x_i)
\]
Scoring a tree 2: similar trees

\[\ell(\theta_i, G; D) = M \sum_i \hat{I}(x_i, x_{x_i(0)}) - M \sum_i \hat{H}(x_i) \]

Chow-Liu tree learning algorithm

- **Objection function:**
 \[\ell(\theta_i, G; D) = \log \hat{p}(D | \theta_i, G) = M \sum_i \hat{I}(x_i, x_{x_i(0)}) - M \sum_i \hat{H}(x_i) \]
 \[\Rightarrow C(G) = M \sum_i \hat{I}(x_i, x_{x_i(0)}) \]

- **Chow-Liu:**
 - For each pair of variable \(x_i \) and \(x_j \)
 - Compute empirical distribution:
 \[\hat{p}(X_i, X_j) = \frac{\text{count}(x_i, x_j)}{M} \]
 - Compute mutual information:
 \[\hat{I}(X_i, X_j) = \sum_{x_i, x_j} \hat{p}(x_i, x_j) \log \frac{\hat{p}(x_i, x_j)}{\hat{p}(x_i) \hat{p}(x_j)} \]
 - Define a graph with node \(x_1, \ldots, x_n \)
 - Edge (i,j) gets weight \(\hat{I}(X_i, X_j) \)
Chow-Liu algorithm (con'd)

- Objection function:
 \[
 \ell(\theta_0, G; D) = \log \hat{p}(D \mid \theta_0, G) = M \sum_i \hat{I}(x_i, x_{x_0(G_i)}) - M \sum_i \hat{H}(x_i) \Rightarrow C(G) = M \sum_i \hat{I}(x_i, x_{x_0(G_i)})
 \]

- Chow-Liu:

 Optimal tree BN
 - Compute maximum weight spanning tree
 - Direction in BN: pick any node as root, do breadth-first-search to define directions
 - I-equivalence:

\[
C(G) = I(A, B) + I(A, C) + I(C, D) + I(C, E)
\]

Extensions of Chow-Liu

- Tree augmented naïve Bayes(TAN) [Friedman et al. ’97]
 - Naïve Bayes model overcounts, because correlation between features not considered
 - Tree-augmented feature list

- Same as Chow-Liu, but score edges w

\[
\hat{p}(X_i, X_j \mid C) = \frac{\text{count}(x_i, x_j \mid C)}{M} \quad \hat{I}(X_i, X_j) = \sum_{i, j} \hat{p}(x_i, x_j \mid C) \log \frac{\hat{p}(x_i, x_j \mid C)}{\hat{p}(x_i \mid C) \hat{p}(x_j \mid C)}
\]
Structure Learning for general graphs

- **Theorem:**
 - The problem of learning a BN structure with at most d parents is NP-hard for any (fixed) $d \geq 2$

- **Most structure learning approaches use heuristics**
 - Exploit score decomposition
 - Two heuristics that exploit decomposition in different ways
 - Greedy search through space of node-orders
 - Local search of graph structures
Known order (K2 algorithm)

- Suppose we have a total ordering of the nodes $X_1 < X_2 < \cdots < X_n$ and want to find a DAG consistent with this with maximum score.
 - The choice of parents for X_i from $\text{Pa}(X_i, \ldots, X_{i-1})$, is independent of the choice for X_j since we obey the ordering, we cannot create a cycle.
 - Hence we can pick the best set of parents for each node independently.
 - For X_i, we need to search all $\binom{d-1}{d}$ subsets of size up to d for the set which maximizes FamScore.
 - We can use greedy techniques for this, c.f., learning a decision tree.

- What if order isn’t known
 - Search in the space of orderings, then conditioned on , pick best graph using K2
 - Search in the space of DAGs.

Learn BN structure using local search

Starting from Chow-Liu tree \rightarrow Local search \rightarrow Select using favorite score

Possible moves:
- Add edge
- Delete edge
- Invert edge

Only if acyclic!!!

10^5
10^3
10^{-15}
\cdots
Exploit score decomposition in local search

- Add edge and delete edge
 - Only rescore one family

- Reverse edge
 - Rescore only two families

- Simplest search algorithm: greedy hill climbing.

\[I(J, S) \Rightarrow I(J, S, I) \]

Local maxima

- Greedy hill climbing will stop when it reaches a local maximum or a plateau (a set of neighboring networks that have the same score).

- Unfortunately, plateaus are common, since equivalence classes form contiguous regions of search space (thm 14.4.4), and such classes can be exponentially large.

- Solutions:
 - Random restarts
 - TABU search (prevent the algorithm from undoing an operator applied in the last L steps, thereby forcing it to explore new terrain).
 - Data perturbation (dynamic local search): reweight the data and take step.
 - Simulated annealing: if \(x(o) > 0 \), take move, else accept with probability \(e^{x(o)/t} \), where \(t \) is the temperature. Slow!
Order search versus graph search

- **Order search advantages**
 - For fixed order, optimal BN – more “global” optimization
 - Space of orders much smaller than space of graphs

- **Graph search advantages**
 - Not restricted to k parents
 - Especially if exploiting CPD structure, such as CSI
 - Cheaper per iteration
 - Finer moves within a graph

Scoring a tree 1: equivalent trees

\[
\ell(\theta_c, G; D) = M \sum_i \hat{I}(x_i, x_{\pi(i)}) - M \sum_i \hat{H}(x_i)
\]

- $X \rightarrow Z \rightarrow Y$
- $I(X, Z) + I(Z, Y)$

- $X \leftarrow Z \rightarrow Y$
- $I(Z, X) + I(Z, Y)$

- $X \leftarrow Z \leftarrow Y$
- \ldots
Scoring a tree 2: similar trees

\[L(\theta_G, G; D) = M \sum_i \hat{I}(x_i, x_{(G)}) - M \sum_i \hat{I}(x_i) \]

Identifiability

- DAGs are I-equivalent if they encode the same set of conditional independencies
 - e.g., \(X \rightarrow Y \rightarrow Z \) and \(X \leftarrow Y \leftarrow Z \) are indistinguishable given just observational data.

- However, \(X \rightarrow Y \leftarrow Z \) has a v-structure, which has a unique statistical signature. Hence some arc directions can be inferred from passive observation.

- The set of I-equivalent DAGs can be represented by a PDAG (partially directed acyclic graph).

- Distinguishing between members of an equivalence class requires interventions/ experiments.
ML score overfits!

\[\ell(\theta, G; D) = \log p(D | \theta, G) = M \sum_i I(x_i, x_{i(G)}) - M \sum_i \hat{H}(x_i) \]

- Information never hurts

\[I(X, X_F) = H(X) - H(X | X_F) \]

\[H(X|A) \geq H(X|A|Y) \]

- Adding a parent always increases your score!

Occam’s Razor

\[\rho(\theta_m|m) \]

True distribution

Simple model

Just right

Complicated model

All possible datasets

Eric Xing
Model selection

- Three hypotheses

- As we increase ϵ, we increase the dependence of Y on X
- $X \leftarrow Y$ and $X \rightarrow Y$ are I-equivalent (have the same likelihood)

- Suppose we use a uniform Dirichlet prior for each node in each graph, with equivalent pseudo-counts (K2-prior): $P(\theta_i | H_i) = \text{Dir}(\alpha_i, \alpha_i)$
- In H_1, the equivalent sample size for X is 2, but in H_2 it is 4 (since two conditioning contexts). Hence the posterior probabilities are different.

- Under which H the $P(H|D)$ is higher?
Bayesian model selection

- Why is $P(H_0|D)$ higher when then dependence on X and Y is weak (small)?
 - It is not because the prior $P(H)$ explicitly favors simpler models (although this is possible).
 - It because the evidence $P(D)=\int d\theta P(D|\theta)P(\theta)$ automatically penalizes complex models.

- "Occam’s razor" says “If two models are equally predictive, prefer the simpler one”.
 - This is an automatic consequence of using Bayesian model selection.
 - Maximum likelihood would always pick the most complex model, since it has more parameters, and hence can fit the training data better.

- Good test for a learning algorithm: feed it random noise, see if it “discovers” structure!

Global & Local Parameter Independence

- Global Parameter Independence
 For every DAG model:
 \[
p(\theta | G) = \prod_{i=1}^{M} p(\theta_i | G)
 \]

- Local Parameter Independence
 For every node:
 \[
p(\theta_i | G) = \prod_{j=1}^{q_i} p(\theta_{x_i^j|x_i^j} | G)
 \]

- The Bayesian score
 \[
 \log P(G|D) = \log P(G) + \log \int \log P(D|\theta)P(\theta | G)d\theta + C
 = \log P(G) + \sum_{i,j} \int p(x_i^j|x_i^j, \theta_i)P(\theta_i | G)d\theta_i + C
 = \log P(G) + C + \sum \text{score}(x_i, x_i^j)
 \]
Selection criteria

- BIC (Bayesian Information Criterion):
 \[
 \log P(D) \approx \log P(D | \hat{\theta}_{ML}) - \frac{N}{2} \log n
 \]
 - Quiz: How many boxes behind the tree?

- Other criteria:
 - AIC (Akaike Information Criterion):
 - Minimum description length

Consistency of BIC and Bayesian scores

- A scoring function is **consistent** if, for true model \(G^* \), as \(m \to \infty \), with probability 1
 - \(G^* \) maximizes the score
 - All structures **not I-equivalent** to \(G^* \) have strictly lower score

- **Theorem**: BIC score is consistent
- **Corollary**: the Bayesian score is consistent

- What about maximum likelihood score?
Choice of Priors

- For finite datasets, prior is important!
 - Prior over structure satisfying prior modularity

 $d = \mathbb{P}(\text{structure}) \propto \prod_{i=1}^{L} \mathcal{C}(\alpha)$

- What about prior over parameters, how do we represent it?
 - K2 prior: fix an α, $P(\theta|\text{Pa}_x) = \text{Dirichlet}(\alpha, \ldots, \alpha)$
 - K2 is “inconsistent”

BDe prior

- Dirichlet parameters analogous to “fictitious samples”
- Pick a fictitious sample size m'
 - For each possible family, define a prior distribution $P(x_i, \text{Pa}_x)$
 - Represent with a BN
 - Usually independent (product of marginals)

- BDe prior (Bayesian Dirichlet likelihood equivalent):
 - Has “consistency property”