Representation of directed GM

Probabilistic Graphical Models (10-708)

Lecture 1, Sep 12, 2007

Eric Xing

Reading: MJ-Chap 2, KF-Chap. 3

- Recitation?
- Exam dates, poster dates, etc.
- Mailing list
- Questions?
Representing Multivariate Distribution

- Representation: what is the joint probability dist. on multiple variables?
 \[P(X_1, X_2, X_3, X_4, X_5, X_6, X_7, X_8) \]
 - How many state configurations in total? \(2^8 \)
 - Are they all needed to be represented?
 - Do we get any scientific/medical insight?

- Factored representation: the chain-rule
 \[P(X_2, X_3, X_4, X_5, X_6, X_7, X_8) = P(X_2)P(X_3|X_2)P(X_4|X_3, X_2)P(X_5|X_4, X_3, X_2)P(X_6|X_5, X_4, X_3, X_2)P(X_7|X_6, X_5, X_4, X_3, X_2)P(X_8|X_7, X_6, X_5, X_4, X_3, X_2) \]
 - This factorization is true for any distribution and any variable ordering
 - Do we save any parameterization cost?

- If \(X_i \)'s are independent: \(P(X_i|\cdot) = P(X_i) \)
 \[P(X_1, X_2, X_3, X_4, X_5, X_6, X_7, X_8) = P(X_1)P(X_2)P(X_3)P(X_4)P(X_5)P(X_6)P(X_7)P(X_8) = \prod_i P(X_i) \]
 - What do we gain?
 - What do we lose?

- Even in the simplest case where these variables are binary-valued, a joint distribution requires the specification of \(2^n \) numbers — the probabilities of the \(2^n \) different assignments of values \(x_1, \ldots, x_n \)

- Today's lecture is about …
 - how independence properties in the distribution can be used to represent such high-dimensional distributions much more compactly.
 - how a combinatorial data structure — a directed acyclic graph — can provide us with a general-purpose modeling language for exploiting this type of structure in our representation.
Two types of GMs

- Directed edges give causality relationships (Bayesian Network or Directed Graphical Model):

\[P(X_1, X_2, X_3, X_4, X_5, X_6, X_7, X_8) = P(X_1) P(X_2) P(X_3 | X_2) P(X_4 | X_2) P(X_5 | X_2) P(X_6 | X_5, X_2) P(X_7 | X_6) P(X_8 | X_5, X_6) \]

- Undirected edges simply give correlations between variables (Markov Random Field or Undirected Graphical model):

\[P(X_1, X_2, X_3, X_4, X_5, X_6, X_7, X_8) = \frac{1}{Z} \exp \left\{ E(X_1) + E(X_2) + E(X_3, X_1) + E(X_4, X_2) + E(X_5, X_2) + E(X_6, X_3, X_4) + E(X_7, X_6) + E(X_8, X_5, X_6) \right\} \]

Specification of a directed GM

- There are two components to any GM:
 - the qualitative specification
 - the quantitative specification

![Diagram of directed GM with nodes A, B, C, D, E, F, G, H and edges showing relationships and probabilities]
Bayesian Network:

- A BN is a directed graph whose nodes represent the random variables and whose edges represent direct influence of one variable on another.

- It is a data structure that provides the skeleton for representing a joint distribution compactly in a factorized way;

- It offers a compact representation for a set of conditional independence assumptions about a distribution;

- We can view the graph as encoding a generative sampling process executed by nature, where the value for each variable is selected by nature using a distribution that depends only on its parents. In other words, each variable is a stochastic function of its parents.

Bayesian Network: Factorization Theorem

- Theorem:
 Given a DAG, the most general form of the probability distribution that is consistent with the graph factors according to "node given its parents":

 \[P(X) = \prod_{i=1}^{d} P(X_i \mid X_{pa_i}) \]

 where \(X_{pa_i} \) is the set of parents of \(X_i \), \(d \) is the number of nodes (variables) in the graph.
Qualitative Specification

Where does the qualitative specification come from?

- Prior knowledge of causal relationships
- Prior knowledge of modular relationships
- Assessment from experts
- Learning from data
- We simply link a certain architecture (e.g. a layered graph)
- ...

Local Structures & Independencies

- Common parent
 - Fixing B decouples A and C
 "given the level of gene B, the levels of A and C are independent"

- Cascade
 - Knowing B decouples A and C
 "given the level of gene B, the level gene A provides no
 extra prediction value for the level of gene C"

- V-structure
 - Knowing C couples A and B
 because A can "explain away" B w.r.t. C
 "If A correlates to C, then chance for B to also correlate to B will decrease"

- The language is compact, the concepts are rich!
A simple justification

Defn (3.2.2): Let P be a distribution over X. We define $I(P)$ to be the set of independence assertions of the form $(X \perp Y \mid Z)$ that hold in P (however how we set the parameter-values).

Defn (3.2.3): Let K be any graph object associated with a set of independencies $I(K)$. We say that K is an I-map for a set of independencies I, $I(K) \subseteq I$.

We now say that G is an I-map for P if G is an I-map for $I(P)$, where we use $I(G)$ as the set of independencies associated.
Facts about I-map

- For G to be an I-map of P, it is necessary that G does not mislead us regarding independencies in P:

 any independence that G asserts must also hold in P. Conversely, P may have additional dependencies that are not reflected in G.

- Example:

 ![Diagram of two networks P1 and P2 with nodes X, Y, and Z and their relationships.]

<table>
<thead>
<tr>
<th>X</th>
<th>Y</th>
<th>P(X, Y)</th>
</tr>
</thead>
<tbody>
<tr>
<td>x0</td>
<td>y0</td>
<td>0.15</td>
</tr>
<tr>
<td>x0</td>
<td>y1</td>
<td>0.32</td>
</tr>
<tr>
<td>x1</td>
<td>y0</td>
<td>0.12</td>
</tr>
<tr>
<td>x1</td>
<td>y1</td>
<td>0.45</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>X</th>
<th>Y</th>
<th>P(X, Y)</th>
</tr>
</thead>
<tbody>
<tr>
<td>x0</td>
<td>y0</td>
<td>0.4</td>
</tr>
<tr>
<td>x0</td>
<td>y1</td>
<td>0.3</td>
</tr>
<tr>
<td>x1</td>
<td>y0</td>
<td>0.2</td>
</tr>
<tr>
<td>x1</td>
<td>y1</td>
<td>0.1</td>
</tr>
</tbody>
</table>

What is in I(G) ---
local Markov assumptions of BN

- A Bayesian network structure G is a directed acyclic graph whose nodes represent random variables X_1, \ldots, X_n.

- **local Markov assumptions**

- **Defn (3.2.1):**

 Let Pa_x denote the parents of X_i in G, and $NonDescendants_x$ denote the variables in the graph that are not descendants of X_i. Then G encodes the following set of conditional independence assumptions $I(G)$:

 $$I(G): \{X_i \perp NonDescendants_x \mid Pa_x: \forall i\},$$

 In other words, each node X_i is independent of its nondescendants given its parents.
Graph separation criterion

- D-separation criterion for Bayesian networks (D for Directed edges):

Defn: variables x and y are *D-separated* (conditionally independent) given z if they are separated in the *moralized* ancestral graph

- Example:

 original graph \Rightarrow ancestral \Rightarrow moral ancestral
Active trail

- **Causal trail** $X \rightarrow Z \rightarrow Y$: active if and only if Z is not observed.
- **Evidential trail** $X \leftarrow Z \leftarrow Y$: active if and only if Z is not observed.
- **Common cause** $X \leftarrow Z \rightarrow Y$: active if and only if Z is not observed.
- **Common effect** $X \rightarrow Z \leftarrow Y$: active if and only if either Z or one of Z's descendants is observed.

Definition (3.3.2): Let X, Y, Z be three sets of nodes in G. We say that X and Y are **d-separated** given Z, denoted d-$\text{sep}_G(X; Y | Z)$, if there is no active trail between any node $X \in X$ and $Y \in Y$ given Z.

What is in $I(G)$ ---

Global Markov properties of BN

- X is **d-separated** (directed-separated) from Z given Y if we can't send a ball from any node in X to any node in Z using the "Bayes-ball" algorithm illustrated below (and plus some boundary conditions):

 - Defn: $I(G)$=all independence properties that correspond to d-separation:

 $$ I(G) = \{X \perp Z | Y : dsepa(X; Z | Y)\} $$

 - D-separation is sound and complete (more details later)
Example:

Complete the I(G) of this graph:

\[\begin{align*}
 &x_1 \\
 &x_2 \\
 &x_3 \\
 &x_4
\end{align*} \]

Summary: Conditional Independence Semantics in an BN

Structure: \textit{DAG}

- Meaning: a node is \textit{conditionally independent} of every other node in the network outside its Markov blanket.
- Local conditional distributions (CPD) and the DAG completely determine the joint dist.
- Give causality relationships, and facilitate a \textit{generative} process.
Toward quantitative specification of probability distribution

- Separation properties in the graph imply independence properties about the associated variables

- The Equivalence Theorem
 For a graph G,
 Let \mathcal{D}_1 denote the family of all distributions that satisfy $I(G)$,
 Let \mathcal{D}_2 denote the family of all distributions that factor according to G,

 $$P(X) = \prod_{i=1}^{n} P(X_i | X_{\neg i})$$

 Then $\mathcal{D}_1 \equiv \mathcal{D}_2$.

- For the graph to be useful, any conditional independence properties we can derive from the graph should hold for the probability distribution that the graph represents

Conditional probability tables (CPTs)

| | P(a,b,c,d) = | P(a)P(b|c,a,b)P(d|c) |
|---|-------------|------------------------|
| | $P(a,b,c,d)$ = $P(a)P(b|c,a,b)P(d|c)$ |

<table>
<thead>
<tr>
<th>a^0</th>
<th>0.75</th>
<th>b^0</th>
<th>0.33</th>
<th>c^0</th>
<th>0.55</th>
</tr>
</thead>
<tbody>
<tr>
<td>a^1</td>
<td>0.25</td>
<td>b^1</td>
<td>0.67</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>a^0b^0</th>
<th>a^0b^1</th>
<th>a^1b^0</th>
<th>a^1b^1</th>
</tr>
</thead>
<tbody>
<tr>
<td>c^0</td>
<td>0.45</td>
<td>1.0</td>
<td>0.9</td>
</tr>
<tr>
<td>c^1</td>
<td>0.55</td>
<td>0.0</td>
<td>0.1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>c^0</th>
<th>c^1</th>
</tr>
</thead>
<tbody>
<tr>
<td>d^0</td>
<td>0.3</td>
</tr>
<tr>
<td>d^1</td>
<td>0.07</td>
</tr>
</tbody>
</table>
Conditional probability density func. (CPDs)

\[P(a,b,c,d) = P(a)P(b)P(c|a, b)P(d|c) \]

Summary of BN semantics

- **Defn (3.2.5):** A Bayesian network is a pair \((G, P)\) where \(P\) factorizes over \(G\), and where \(P\) is specified as set of CPDs associated with \(G\)’s nodes.
 - Conditional independencies imply factorization
 - Factorization according to \(G\) implies the associated conditional independencies.
 - Are there other independences that hold for every distribution \(P\) that factorizes over \(G\)?
Soundness and completeness

D-separation is sound and "complete" w.r.t. BN factorization law

Soundness:
Theorem: If a distribution P factorizes according to G, then $I(G) \subseteq I(P)$.

"Completeness":
"Claim": For any distribution P that factorizes over G, if $(X \perp Y | Z) \in I(P)$ then d-$\text{sep}_G(X; Y | Z)$.

Contrapositive of the completeness statement

- "If X and Y are not d-separated given Z in G, then X and Y are dependent in all distributions P that factorize over $G."$
- Is this true?

Soundness and completeness

- Contrapositive of the completeness statement
 - "If X and Y are not d-separated given Z in G, then X and Y are dependent in all distributions P that factorize over $G."$
 - Is this true?

- No. Even if a distribution factorizes over G, it can still contain additional independencies that are not reflected in the structure

- Example: graph $A \rightarrow B$, for actually independent A and B (the independence can be captured by some subtle way of parameterization)

- **Thm:** Let G be a BN graph. If X and Y are not d-separated given Z in G, then X and Y are dependent in some distribution P that factorizes over $G.$
Theorem 3.3.6: For almost all distributions P that factorize over G, i.e., for all distributions except for a set of "measure zero" in the space of CPD parameterizations, we have that $I(P) = I(G)$.

Uniqueness of BN

Very different BN graphs can actually be equivalent, in that they encode precisely the same set of conditional independence assertions.

$(X \perp Y | Z)$.
I-equivalence

- **Defn (3.3.9):** Two BN graphs G_1 and G_2 over X are *I-equivalent* if $I(G_1) = I(G_2)$.

 - The set of all graphs over X is partitioned into a set of mutually exclusive and exhaustive *I-equivalence classes*, which are the set of equivalence classes induced by the I-equivalence relation.

 - Any distribution P that can be factorized over one of these graphs can be factorized over the other.
 - Furthermore, there is no intrinsic property of P that would allow us associate it with one graph rather than an equivalent one.
 - This observation has important implications with respect to our ability to determine the directionality of influence.

Detecting I-equivalence

- **Defn (3.3.10):** The *skeleton* of a Bayesian network graph G over V is an undirected graph over V that contains an edge $\{X, Y\}$ for every edge (X, Y) in G.

- **Thm (3.3.11):** Let G_1 and G_2 be two graphs over V. If G_1 and G_2 have the same skeleton and the same set of v-structures then they are I-equivalent.

 - graph equivalence
 - Same trail
 - But not necessarily active
Minimum I-MAP

- Complete graph is a (trivial) I-map for any distribution, yet it does not reveal any of the independence structure in the distribution.
 - Meaning that the graph dependence is arbitrary, thus by careful parameterization an dependencies can be captured
 - We want a graph that has the maximum possible $I(G)$, yet still $\subseteq I(P)$

- **Defn 3.4.1**: A graph object G is a *minimal I-map* for a set of independencies I if it is an I-map for I, and if the removal of even a single edge from G renders it not an I-map.

Minimum I-MAP is not unique
Defn (3.4.3): We say that a graph object G is a perfect map (P-map) for a set of independencies I if we have that $I(G) = I$. We say that G is a perfect map for P if $I(G) = I(P)$.

- The fact that G is a minimal I-map for P is far from a guarantee that G captures the independence structure in P.

- Not all P has a perfect map as DAG!

- The P-map of a distribution is unique up to I-equivalence between networks. That is, a distribution P can have many P-maps, but all of them are I-equivalent.

Conditionally Independent Observations

- Model parameters
- Data
“Plate” Notation

Data = \{y_1, \ldots y_n\}

Plate = rectangle in graphical model
variables within a plate are replicated
in a conditionally independent manner

Example: Gaussian Model

Generative model:
\[p(y_1, \ldots y_n \mid \mu, \sigma) = \prod_i p(y_i \mid \mu, \sigma) = p(\text{data} \mid \text{parameters}) = p(D \mid \theta) \]

where \(\theta = \{\mu, \sigma\} \)

- Likelihood = \(p(\text{data} \mid \text{parameters}) = p(D \mid \theta) = L(\theta) \)
- Likelihood tells us how likely the observed data are conditioned on a particular setting of the parameters
 - Often easier to work with \(\log L(\theta) \)
Example: Bayesian Gaussian Model

\[
y_i = \alpha \beta \mu \sigma \]

\[i = 1:n\]

Note: priors and parameters are assumed independent here

Example

- Speech recognition

\[Y_1 \rightarrow Y_2 \rightarrow Y_3 \rightarrow \ldots \rightarrow Y_T\]

\[X_1 \rightarrow X_2 \rightarrow X_3 \rightarrow \ldots \rightarrow X_T\]

Hidden Markov Model
Hidden Markov Model: from static to dynamic mixture models

The underlying source:
Speech signal, dice,

The sequence:
Phonemes, sequence of rolls,
The Dishonest Casino

A casino has two dice:

- **Fair die**
 \[P(1) = P(2) = P(3) = P(5) = P(6) = \frac{1}{6} \]

- **Loaded die**
 \[P(1) = P(2) = P(3) = P(5) = \frac{1}{10} \]
 \[P(6) = \frac{1}{2} \]

Casino player switches back-&-forth between fair and loaded die once every 20 turns

Game:
1. You bet $1
2. You roll (always with a fair die)
3. Casino player rolls (maybe with fair die, maybe with loaded die)
4. Highest number wins $2

A stochastic generative model

- **Observed sequence:**
 ![Observed sequence]

- **Hidden sequence (a parse or segmentation):**
 ![Hidden sequence]
Definition (of HMM)

- **Observation space**
 - Alphabetic set: $C = \{c_1, c_2, \ldots, c_K\}$
 - Euclidean space: \mathbb{R}^d

- **Index set of hidden states**
 - $I = \{1, 2, \ldots, M\}$

- **Transition probabilities** between any two states
 - $p(y_i^t | y_i^{t-1} = 1) = a_{i,j}$
 - or $p(y_i | y_i^{t-1} = 1) \sim \text{Multinomial}(a_{i,1}, a_{i,2}, \ldots, a_{i,M}) \forall i \in I.$

- **Start probabilities**
 - $p(y_i) \sim \text{Multinomial}(\pi_1, \pi_2, \ldots, \pi_M)$

- **Emission probabilities** associated with each state
 - $p(x_i | y_i^t = 1) \sim \text{Multinomial}(b_{i,1}, b_{i,2}, \ldots, b_{i,K}) \forall i \in I.$
 - or in general:
 - $p(x_i | y_i^t = 1) \sim \mathcal{N}(\theta_i) \forall i \in I.$

Puzzles regarding the dishonest casino

GIVEN: A sequence of rolls by the casino player

1245266214614636616666616515615115146123562344

QUESTION

- How likely is this sequence, given our model of how the casino works?
 - This is the **EVALUATION** problem in HMMs

- What portion of the sequence was generated with the fair die, and what portion with the loaded die?
 - This is the **DECODING** question in HMMs

- How “loaded” is the loaded die? How “fair” is the fair die? How often does the casino player change from fair to loaded, and back?
 - This is the **LEARNING** question in HMMs
Probability of a parse

- Given a sequence \(x = x_1 \ldots x_T \) and a parse \(y = y_1 \ldots y_T \),
- To find how likely is the parse:
 (given our HMM and the sequence)

\[
p(x, y) = p(x_1 \ldots x_T, y_1 \ldots y_T) \quad \text{(Joint probability)}
\]

\[
= p(y_1) p(x_1 | y_1) p(x_2 | y_1) \ldots p(x_T | y_T) \]

\[
= p(y_1) p(y_2 | y_1) \ldots p(y_T | y_{T-1}) \bigtimes p(x_1 | y_1) p(x_2 | y_2) \ldots p(x_T | y_T)
\]

\[
= p(y_1, \ldots, y_T) p(x_1, \ldots, x_T | y_1, \ldots, y_T)
\]

Marginal probability:

\[
p(x) = \sum p(x, y) = \sum_{y_1} \sum_{y_2} \ldots \sum_{y_T} p(y_1) \prod_{i=1}^{T} p(x_i | y_i)
\]

Posterior probability:

\[
p(y | x) = \frac{p(x, y)}{p(x)}
\]

Example, con’d

- Evolution

\[\text{Tree Model}\]
Example, con'd

- Genetic Pedigree

Summary of BN semantics

- Defn (3.2.5): A Bayesian network is a pair (G, P) where P factorizes over G, and where P is specified as set of CPDs associated with G’s nodes.
Knowledge Engineering

- Picking variables
 - Observed
 - Hidden

- Picking structure
 - CAUSAL
 - Generative

- Picking Probabilities
 - Zero probabilities
 - Orders of magnitudes
 - Relative values