New reading: Chapter 7 of Koller&Friedman

Variable elimination 2 Clique trees

Graphical Models – 10708

Carlos Guestrin

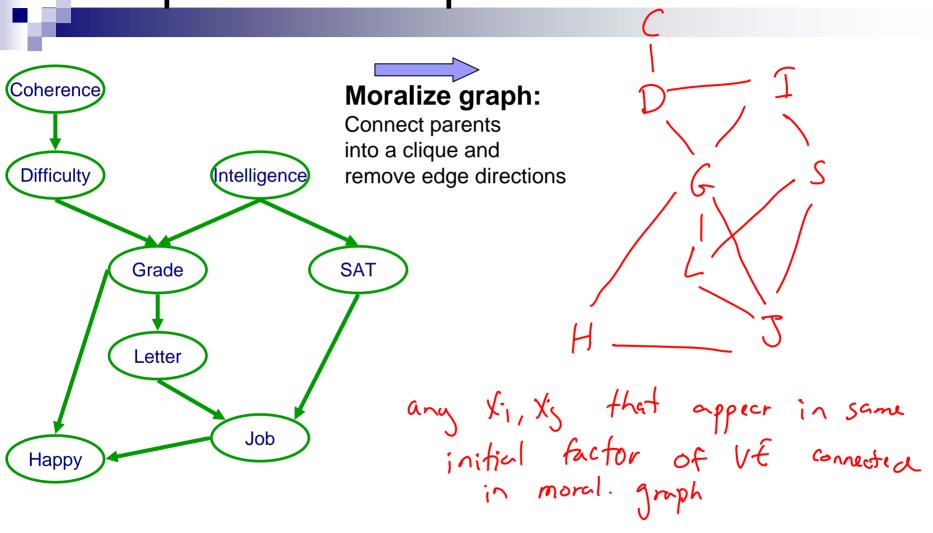
Carnegie Mellon University

September 28th, 2005

Announcements

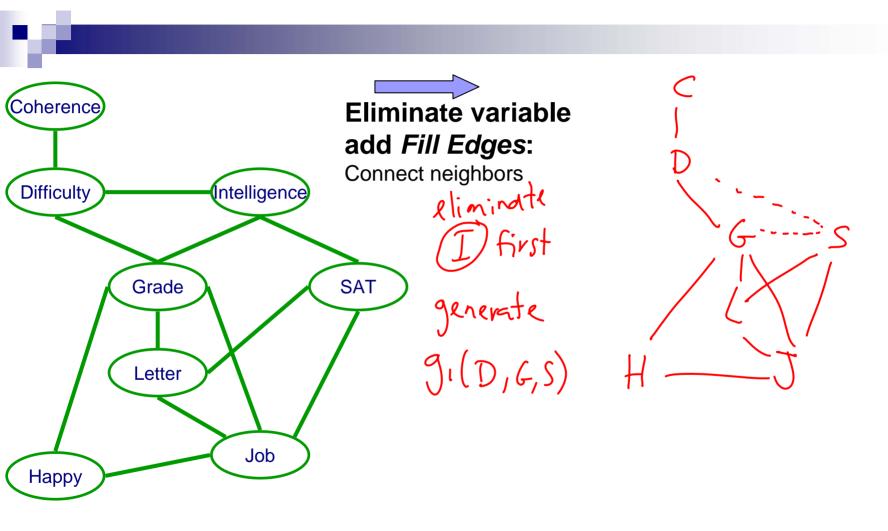
- Recitation room change!!!
 - □ Wean Hall 4615A (Thursdays 5-6pm)
- Waiting List
 - □ Anyone still wants to be registered?

Complexity of variable elimination – Graphs with loops



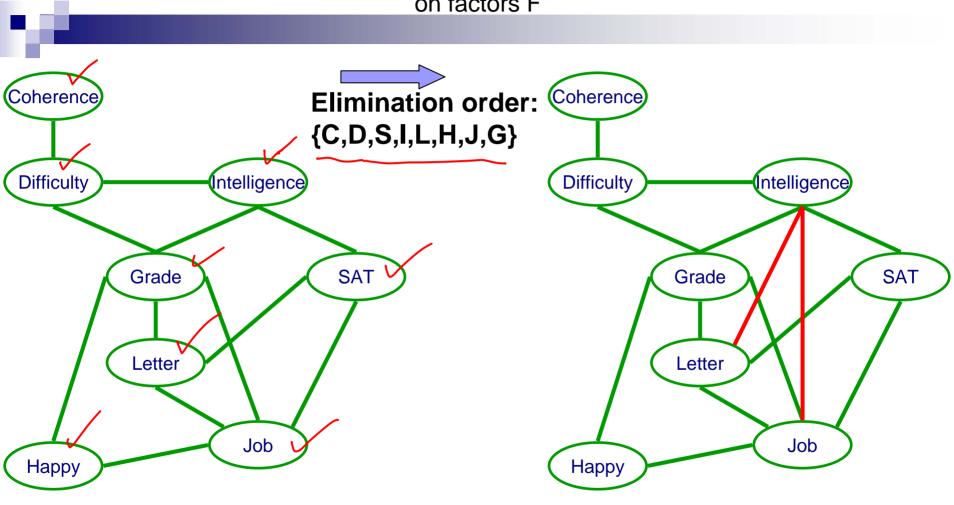
Connect nodes that appear together in an initial factor

Eliminating a node – Fill edges



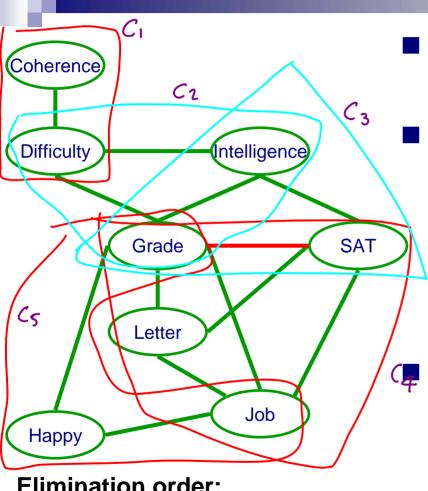
Induced graph

The **induced graph** $I_{F\prec}$ for elimination order \prec has an edge $X_i - X_j$ if X_i and X_j appear together in a factor generated by VE for elimination order \prec on factors F



Induced graph and complexity of VE

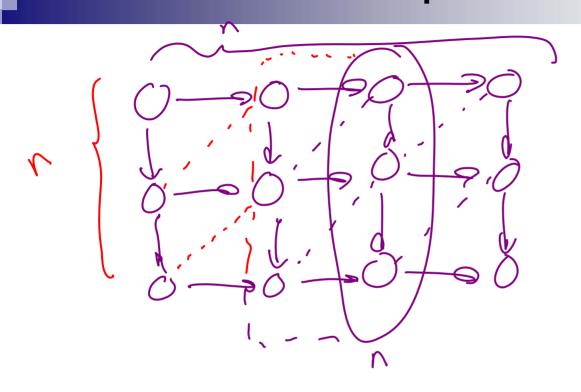
Read complexity from cliques in induced graph



Elimination order: {C,D,I,S,L,H,J,G}

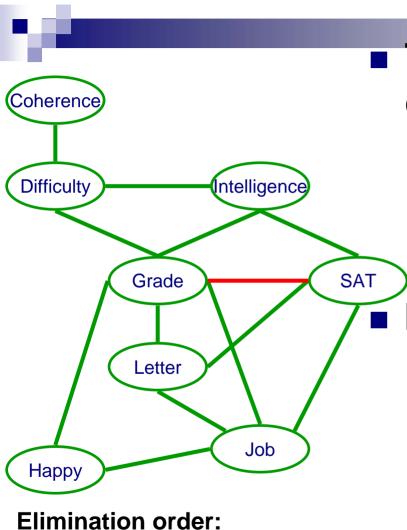
- Structure of induced graph encodes complexity of VE!!!
- Theorem:
 - □ Every factor generated by VE subset of a maximal clique in I_F
 - □ For every maximal clique in I_F corresponds to a factor generated by VE
 - Induced width (or treewidth)
 - □ Size of largest clique in I_{F≺}
 minus 1
 - □ Minimal induced width –
 induced width of best order ≺

Example: Large induced-width with small number of parents



induced width O(n)

Finding optimal elimination order



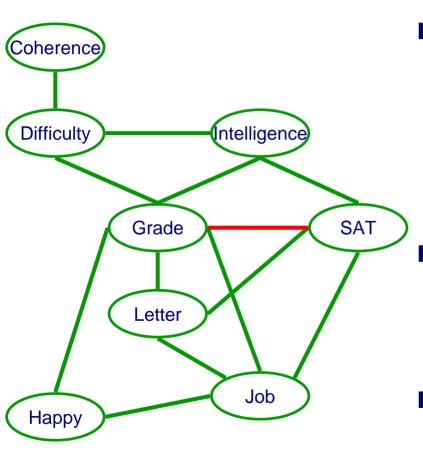
{C,D,I,S,L,H,J,G}

- Theorem: Finding best elimination order is NP-complete:
 - □ Decision problem: Given a graph, determine if there exists an elimination order that achieves induced width ≤ K

Interpretation:

- Hardness of elimination order "orthogonal" to hardness of inference
- Actually, can find elimination order in time exponential in size of largest clique – same complexity as inference (next week)

Induced graphs and chordal graphs



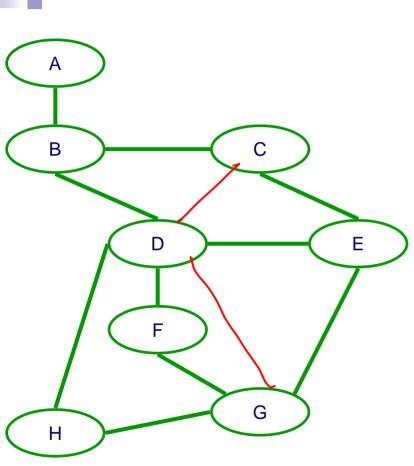
Chordal graph:

- □ Every cycle $X_1 X_2 ... X_k X_1$ with $k \ge 3$ has a chord
- □ Edge X_i − X_j for non-consecutive
 i & j

Theorem:

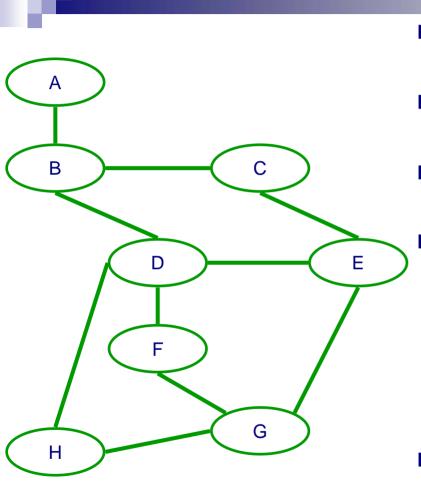
- □ Every induced graph is chordal
- "Optimal" elimination order easily obtained for chordal graph

Chordal graphs and triangulation



- Triangulation: turning graph into chordal graph
- Max Cardinality Search:
 - □ Simple heuristic
- Initialize unobserved nodes X as unmarked
- For k = |X| to 1
 - □ X ← unmarked var with most marked neighbors
 - $\square \prec (X) \leftarrow k$
 - □ Mark X
- **Theorem**: Obtains optimal order for chordal graphs
- Often, not so good in other graphs!

Minimum fill/size/weight heuristics



- Many more effective heuristics
 - □ page 262 of K&F
- Min (weighted) fill heuristic
 - □ Often very effective
- Initialize unobserved nodes X as unmarked
- For k = 1 to |X|
 - □ X ← unmarked var whose elimination adds fewest edges
 - $\square \prec (X) \leftarrow k$
 - Mark X
 - Add fill edges introduced by eliminating X
- Weighted version:
 - Consider size of factor rather than number of edges

Choosing an elimination order

- Choosing best order is NP-complete
 - □ Reduction from MAX-Clique
- Many good heuristics (some with guarantees)
- Ultimately, can't beat NP-hardness of inference
 - □ Even optimal order can lead to exponential variable elimination computation
- In practice
 - □ Variable elimination often very effective
 - Many (many many) approximate inference approaches available when variable elimination too expensive
 - Most approximate inference approaches build on ideas from variable elimination

Most likely explanation (MLE)

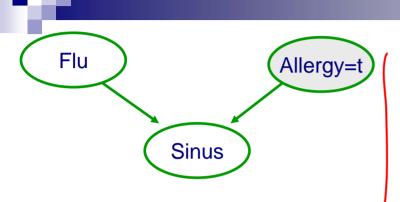
- Query: $\underset{x_1,...,x_n}{\operatorname{argmax}} P(x_1,\ldots,x_n \mid e)$ Sinus Nose
- Using Bayes rule:

$$\underset{x_1,...,x_n}{\operatorname{argmax}} P(x_1,\ldots,x_n \mid e) = \underset{x_1,...,x_n}{\operatorname{argmax}} \frac{P(x_1,\ldots,x_n,e)}{P(e)}$$

Normalization irrelevant:

$$\underset{x_1,...,x_n}{\operatorname{argmax}} P(x_1,\ldots,x_n \mid e) = \underset{x_1,...,x_n}{\operatorname{argmax}} P(x_1,\ldots,x_n,e)$$

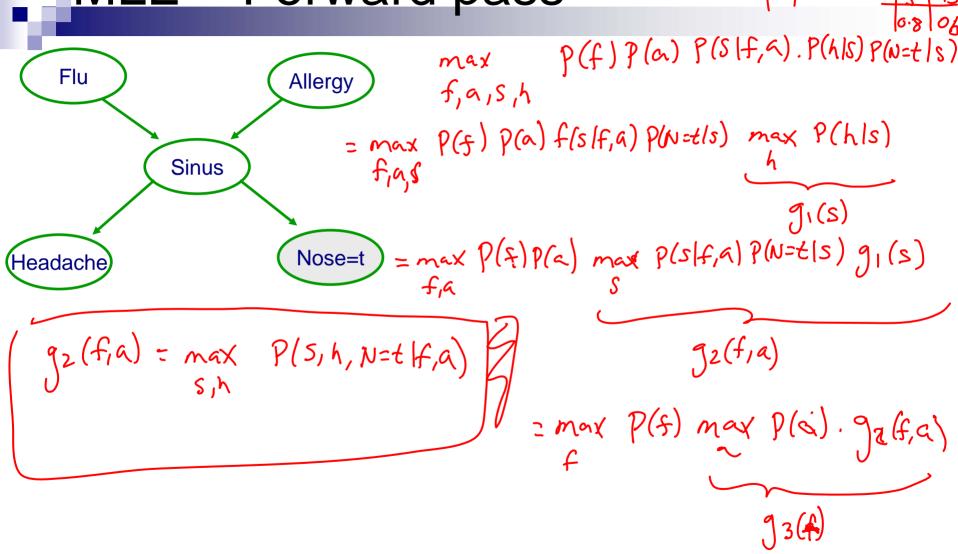
Max-marginalization



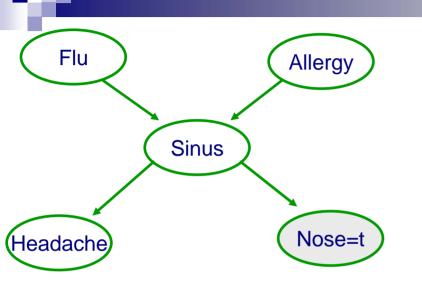
max
$$P(f, s, A=t) = f, s$$

 $m = x$ $P(f)$. $P(A=t)$. $P(s|f, A=t) = f, s$
 $m = x$ $P(A=t)$. $P(f)$. $m = x$ $P(s|f, A=t)$
 f
 $= m = x$ $P(A=t)$. $P(f)$. $g_1(f, A=t)$
 f
 $= g^*$

Example of variable elimination for MLE – Forward pass



Example of variable elimination for MLE – Backward pass



$$f^* = \underset{\text{arg max}}{\text{arg max}} P(f) g_3(f)$$
 f
 $a^* = \underset{\text{arg max}}{\text{arg max}} P(a) \cdot g_2(f^*, a)$
 \vdots

MLE Variable elimination algorithm

- Forward pass
- Given a BN and a MLE query $\max_{x_1,...,x_n} P(x_1,...,x_n,\mathbf{e})$
- Instantiate evidence **E**=**e**
- Choose an ordering on variables, e.g., X₁, ..., X_n
- For i = 1 to n, If $X_i \notin E$
 - \square Collect factors $f_1, ..., f_k$ that include X_i
 - ☐ Generate a new factor by eliminating X_i from these factors

$$g = \max_{x_i} \prod_{j=1}^k f_j$$

□ Variable X_i has been eliminated!

MLE Variable elimination algorithm

- Backward pass
- {x₁*,..., x_n*} will store maximizing assignment
- For i = n to 1, If $X_i \notin E$
 - \square Take factors $f_1, ..., f_k$ used when X_i was eliminated
 - □ Instantiate $f_1, ..., f_k$, with $\{x_{i+1}^*, ..., x_n^*\}$
 - Now each f_i depends only on X_i
 - ☐ Generate maximizing assignment for X_i:

$$x_i^* \in \underset{x_i}{\operatorname{argmax}} \prod_{j=1}^{\kappa} f_j$$

What you need to know

- Variable elimination algorithm
 - Eliminate a variable:
 - Combine factors that include this var into single factor
 - Marginalize var from new factor
 - Cliques in induced graph correspond to factors generated by algorithm
 - □ Efficient algorithm ("only" exponential in induced-width, not number of variables)
 - If you hear: "Exact inference only efficient in tree graphical models"

 - You say: "No!!! Any graph with low induced width"
 And then you say: "And even some with very large induced-width" (next week)
- Elimination order is important!
 - □ NP-complete problem
 - Many good heuristics
- Variable elimination for MLE
 - Only difference between probabilistic inference and MLE is "sum" versus "max"

What if I want to compute $P(X_i|x_0,x_{n+1})$ for each i?

$$(X_0) + (X_1) + (X_2) + (X_3) + (X_4) + (X_5)$$
Compute:
$$P(X_i \mid x_0, x_{n+1})$$

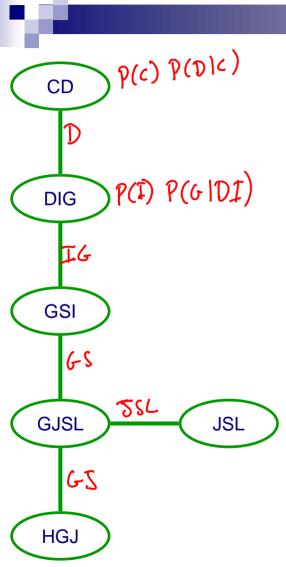
Variable elimination for each i? \bigcirc (n)

Variable elimination for each i, what's the complexity?

naive:
$$O(n^2)$$

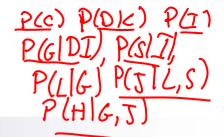
Reusing computation

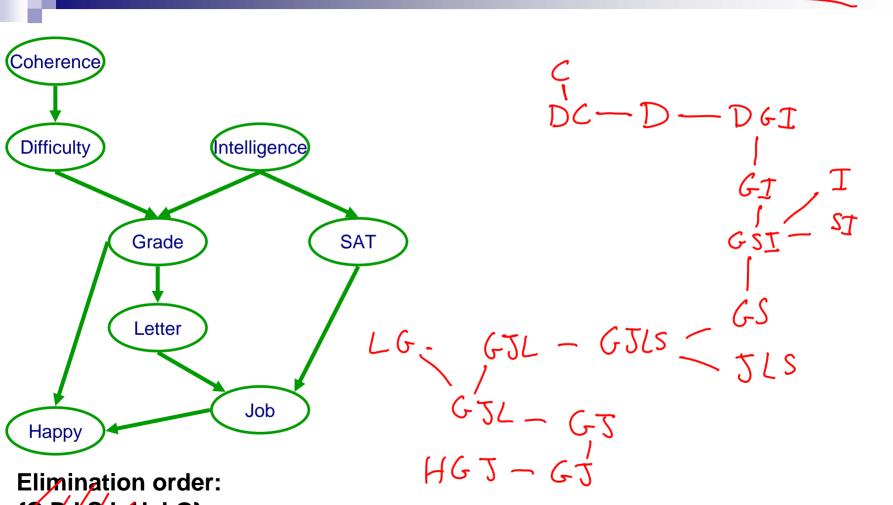
Cluster graph



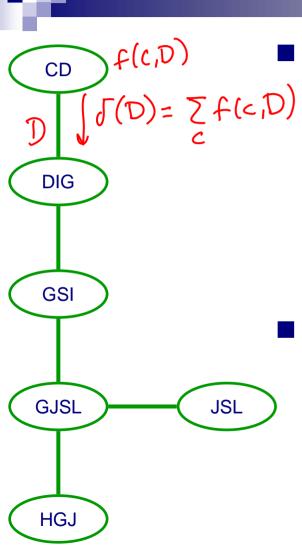
- Cluster graph: For set of factors F
 - Undirected graph
 - □ Each node i associated with a cluster C_i
 - □ Family preserving: for each factor $f_j \in F$, \exists node i such that scope[f_i] \subseteq \mathbf{C}_i
 - □ Each edge i j is associated with a separator S_{ij} = C_i ∩ C_j

Factors generated by VE PULL POLLS





Cluster graph for VE



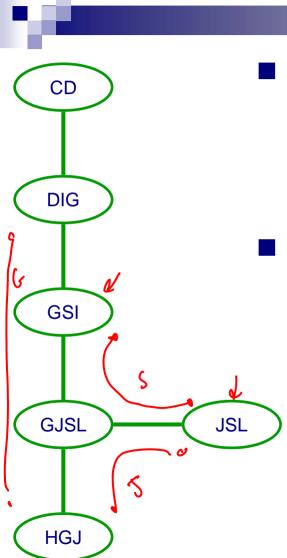
VE generates cluster tree!

- □ One clique for each factor used/generated
- \square Edge i j, if f_i used to generate f_i
- □ "Message" from i to j generated when marginalizing a variable from fi
- ☐ Tree because factors only used once

Proposition:

- $\begin{tabular}{l} \square "Message" δ_{ij} from i to j \\ \square Scope[δ_{ii}] $\subseteq \mathbf{S}_{ij} \\ \end{tabular}$

Running intersection property



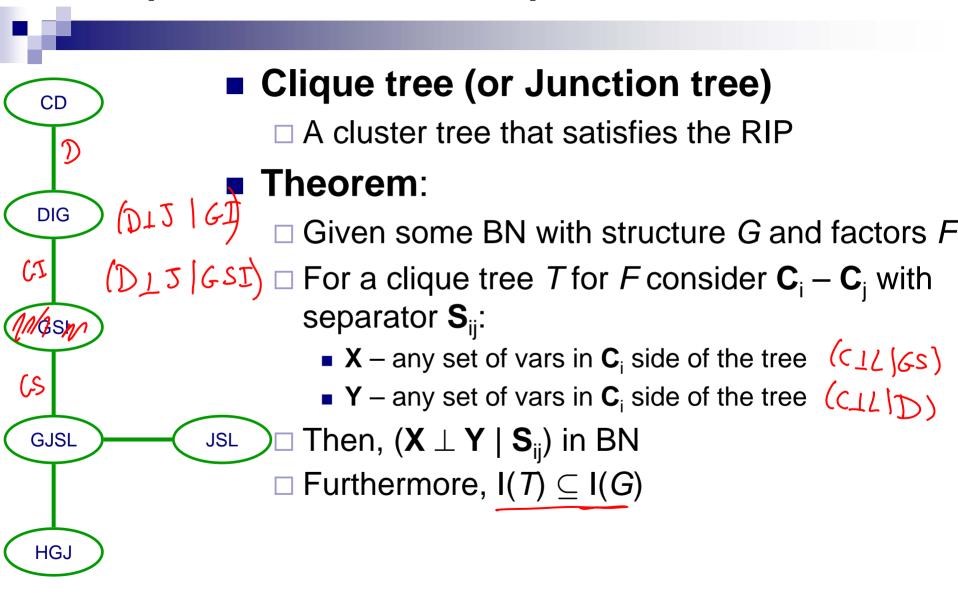
Running intersection property (RIP)

□ Cluster tree satisfies RIP if whenever $X \in \mathbf{C}_i$ and $X \in \mathbf{C}_j$ then X is in every cluster in the (unique) path from \mathbf{C}_i to \mathbf{C}_j

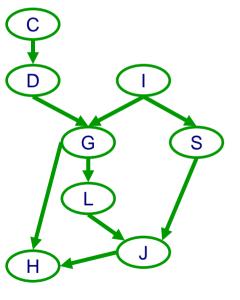
■ Theorem:

□ Cluster tree generated by VE satisfies RIP

Clique tree & Independencies



Variable elimination in a clique tree 1



Clique tree for a BN

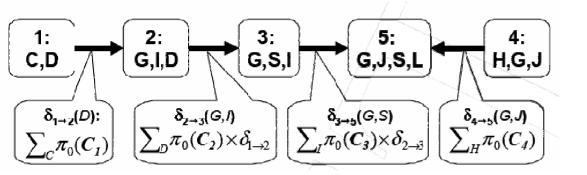
- Each CPT assigned to a clique
- \Box Initial potential $\pi_0(\mathbf{C}_i)$ is product of CPTs

Variable elimination in a clique tree 2

■ VE in clique tree to compute P(X_i)

- \square Pick a root (any node containing X_i)
- Send messages recursively from leaves to root
 - Multiply incoming messages with initial potential
 - Marginalize vars that are not in separator
- Clique ready if received messages from all neighbors

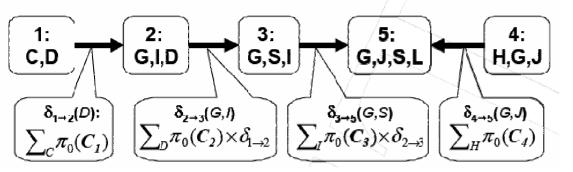
Belief from message



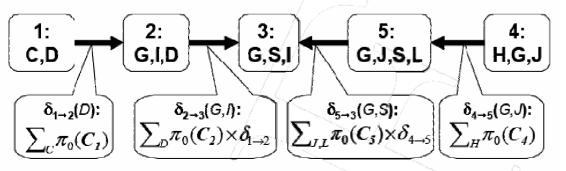
- Theorem: When clique C_i is ready
 - □ Receive messages from all neighbors
 - \square Belief $\pi_i(\mathbf{C}_i)$ is product of initial factor with messages:

Choice of root

Message does not depend on root!!!

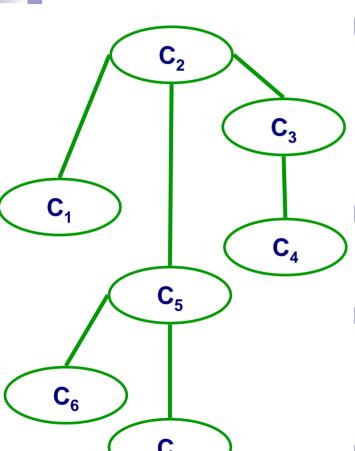


Root: node 3



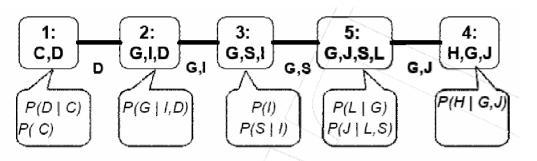
"Cache" computation: Obtain belief for all roots in linear time!!

Shafer-Shenoy Algorithm (a.k.a. VE in clique tree for all roots)



- Clique C_i ready to transmit to neighbor C_j if received messages from all neighbors but j
 - □ Leaves are always ready to transmit
- While ∃ C_i ready to transmit to C_i
 - \square Send message $\delta_{i \rightarrow i}$
- Complexity: Linear in # cliques
 - One message sent each direction in each edge
- Corollary: At convergence
 - □ Every clique has correct belief

Calibrated Clique tree



- Initially, neighboring nodes don't agree on "distribution" over separators
- Calibrated clique tree:
 - □ At convergence, tree is calibrated
 - □ Neighboring nodes agree on distribution over separator