Dynamic models 2
Switching KFs continued,
Assumed density filters,
DBNs, BK, extensions

Probabilistic Graphical Models – 10708
Carlos Guestrin
Carnegie Mellon University

November 21st, 2005
Announcement

- Special recitation lectures
 - Pradeep will give two special lectures
 - Nov. 22 & Dec. 1: 5-6pm, during recitation
 - Covering: variational methods, loopy BP and their relationship
 - Don’t miss them!!!

- It’s FCE time!!!
 - Fill the forms online by Dec. 11
 - www.cmu.edu/fce
 - It will only take a few minutes
 - Please, please, please help us improve the course by providing feedback
Last week in “Your BN Hero”

- Gaussian distributions reviewed
 - Linearity of Gaussians
 - Conditional Linear Gaussian (CLG)

- Kalman filter
 - HMMs with CLG distributions
 - Linearization of non-linear transitions and observations using numerical integration

- Switching Kalman filter
 - Discrete variable selects transition model depends
 - Mixture of Gaussians represents belief state
 - Number of mixture components grows exponentially in time
The moonwalk
Last week in “Your BN Hero”

- Gaussian distributions reviewed
 - Linearity of Gaussians
 - Conditional Linear Gaussian (CLG)

- Kalman filter
 - HMMs with CLG distributions
 - Linearization of non-linear transitions and observations using numerical integration

- Switching Kalman filter
 - Discrete variable selects transition model depends
 - Mixture of Gaussians represents belief state
 - Number of mixture components grows exponentially in time
Switching Kalman filter

- At each time step, choose one of k motion models:
 - You never know which one!
- $p(X_{i+1}|X_i, Z_{i+1})$
 - CLG indexed by Z_i
 - $p(X_{i+1}|X_i, Z_{i+1}=j) \sim N(\beta^j_0 + B^j X_i; \Sigma^j_{X_{i+1}|X_i})$
Inference in switching KF – one step

- Suppose
 - p(X₀) is Gaussian
 - Z₁ takes one of two values
 - p(X₁|X₀,Z₁) is CLG

- Marginalize X₀
 \[p(x₁|z₁) = \int_{x₀} p(x₀) \cdot p(x₁|x₀, z₁) \, dx₀ \]

- Marginalize Z₁
 \[p(x₁) = \sum_j p(x₁|z₁=j) \cdot p(z₁=j) \]

- Obtain mixture of two Gaussians!
Multi-step inference

- Suppose
 - $p(X_i)$ is a mixture of m Gaussians
 - Z_{i+1} takes one of two values
 - $p(X_{i+1}|X_i, Z_{i+1})$ is CLG

- Marginalize X_i

- Marginalize Z_i

- Obtain mixture of $2m$ Gaussians!

- Number of Gaussians grows exponentially!!

$$p(x_i) = \sum_{k=1}^{m} w_k \mathcal{N}(\mu_k, \Sigma_k)$$

$$p(x_{i+1}|z_{i+1} = j) = \int_{x_i} p(x_{i+1}|x_i, z_{i+1} = j) \cdot p(x_i) \, dx_i$$

$$= \sum_{k=1}^{m} w_k \int_{x_i} p(x_{i+1}|x_i, z_{i+1} = j) \mathcal{N}(\mu_k, \Sigma_k) \, dx_i$$

$$p(x_{i+1}) = \sum_{j} p(z_{i+1} = j) \cdot p(x_{i+1}|z_{i+1} = j)$$
Visualizing growth in number of Gaussians
Computational complexity of inference in switching Kalman filters

- Switching Kalman Filter with (only) 2 motion models

- Query: $p(x_n)$

- Problem is NP-hard!!! [Lerner & Parr `01]
 - Why “!!!”? Graphical model is a tree:
 - Inference efficient if all are discrete
 - Inference efficient if all are Gaussian
 - But not with hybrid model (combination of discrete and continuous)
Bounding number of Gaussians

- $P(X_i)$ has 2^m Gaussians, but...
- usually, most are bumps have low probability and overlap:

Intuitive approximate inference:
- Generate $k.m$ Gaussians
- Approximate with m' Gaussians
Collapsing Gaussians – Single Gaussian from a mixture

- Given mixture $P \sim \mathcal{N}(\mu, \Sigma)$
- Obtain approximation $Q \approx \mathcal{N}(\mu, \Sigma)$ as:

 $$
 \mu = \sum_i w_i \mu_i \quad \text{weighted sum of } \mu_i \\
 \Sigma = \sum_i w_i \Sigma_i + \sum_i w_i (\mu_i - \mu)(\mu_i - \mu)^T \\
 \text{approximate weighted sum of } \Sigma_i
 $$

- Theorem:
 - P and Q have same first and second moments
 - KL projection: Q is single Gaussian with lowest KL divergence from P

$$
Q = \arg\min_{Q \sim \mathcal{N}} \text{KL}(P \parallel Q)
$$
Collapsing mixture of Gaussians into smaller mixture of Gaussians

- Hard problem!
 - Akin to clustering problem…
 - Similar to fitting mixture of K-Gaussians to data

- Several heuristics exist
 - c.f., Uri Lerner’s Ph.D. thesis
Operations in non-linear switching
Kalman filter

- Compute mixture of Gaussians for $p(X_t \mid O_1:t = o_1:t)$
- Start with $p(X_0)$
- At each time step t:
 - For each of the m Gaussians in $p(X_{0:t})$:
 - **Condition** on observation (use numerical integration)
 - **Prediction** (Multiply transition model, use numerical integration)
 - Obtain k Gaussians
 - **Roll-up** (marginalize previous time step)
 - **Project** $k.m$ Gaussians into m' Gaussians $p(X_{0:t+1})$
Assumed density filtering

Examples of very important assumed density filtering:

- Non-linear KF
- Approximate inference in switching KF

General picture:

- Select an assumed density
 - e.g., single Gaussian, mixture of m Gaussians, ...
- After conditioning, prediction, or roll-up, distribution no-longer representable with assumed density
 - e.g., non-linear, mixture of $k.m$ Gaussians,…
- Project back into assumed density
 - e.g., numerical integration, collapsing,…
When non-linear KF is not good enough

- Sometimes, distribution in non-linear KF is not approximated well as a single Gaussian
 - e.g., a banana-like distribution

- Assumed density filtering:
 - Solution 1: **reparameterize problem** and solve as a **single Gaussian**
 - Solution 2: more typically, **approximate as a mixture of Gaussians**
Distributed Simultaneous Localization and Tracking

- Place cameras around an environment, don’t know where they are
- Could measure all locations, but requires lots of grad. student time
- Intuition:
 - A person walks around
 - If camera 1 sees person, then camera 2 sees person, learn about relative positions of cameras
Donut and Banana distributions

- Observe person at distance d
- Camera could be anywhere in a ring
Gaussians represent “balls”

- Gaussian approximation leads to poor results
- Can’t apply standard Kalman filter 😞
- Or can we… 😊
Reparameterized KF for SLAT
Example of KF – SLAT
Simultaneous Localization and Tracking
When a single Gaussian ain’t good enough

- Sometimes, smart parameterization is not enough
 - Distribution has multiple hypothesis

- Possible solutions
 - Sampling – particle filtering
 - Mixture of Gaussians
 - …

- Quick overview of one such solution…

[Fox et al.]
Approximating non-linear KF with mixture of Gaussians

- Robot example:
 - P(X_i) is a Gaussian, P(X_{i+1}) is a banana
 - Approximate P(X_{i+1}) as a mixture of m Gaussians
 - e.g., using discretization, sampling,…
 - Problem:
 - P(X_{i+1}) as a mixture of m Gaussians
 - P(X_{i+2}) is m bananas
 - One solution:
 - Apply collapsing algorithm to project m bananas in m’ Gaussians
What you need to know about switching Kalman filters

- **Kalman filter**
 - Probably most used BN
 - Assumes Gaussian distributions
 - Equivalent to linear system
 - Simple matrix operations for computations

- **Non-linear Kalman filter**
 - Usually, observation or motion model not CLG
 - Use numerical integration to find Gaussian approximation

- **Switching Kalman filter**
 - Hybrid model – discrete and continuous vars.
 - Represent belief as mixture of Gaussians
 - Number of mixture components grows exponentially in time
 - Approximate each time step with fewer components

- **Assumed density filtering**
 - Fundamental abstraction of most algorithms for dynamical systems
 - Assume representation for density
 - Every time density not representable, project into representation
More than just a switching KF

- Switching KF selects among \(k \) motion models
- Discrete variable can depend on past
 - Markov model over hidden variable

What if \(k \) is really large?
 - Generalize HMMs to large number of variables
Dynamic Bayesian network (DBN)

HMM defined by
- Transition model $P(X_{t+1}|X_t)$
- Observation model $P(O_t|X_t)$
- Starting state distribution $P(X_0)$

DBN – Use Bayes net to represent each of these compactly
- Starting state distribution $P(X_0)$ is a BN
- (silly) e.g., performance in grad. school DBN
 - Vars: Happiness, Productivity, Hirability, Fame
 - Observations: Paper, Schmooze

$P(X_0)$: $H_0 \quad P_0 \quad B_0 \quad F_0$

$P(X_{t+1}|X_t)$ $P(O_{t+1}|X_{t+1})$
Transition Model: Two Time-slice Bayes Net (2-TBN)

- Process over vars. X

- 2-TBN: represents transition and observation models $P(X_{t+1}, O_{t+1} | X_t)$
 - X_t are *interface variables* (don’t represent distribution over these variables)
 - As with BN, exponential reduction in representation complexity

![Diagram](attachment:diagram.png)
Unrolled DBN

- Start with $P(X_0)$
- For each time step, add vars as defined by 2-TBN
“Sparse” DBN and fast inference
Almost!
BK Algorithm for approximate DBN inference
[Boyen, Koller ’98]

- Assumed density filtering:
 - Choose a factored representation \hat{b} for the belief state
 - Every time step, belief not representable with \hat{b}, project into representation

Time $\rightarrow t \rightarrow t+1 \rightarrow t+2 \rightarrow t+3$

Diagrams showing the belief state transitions and projected beliefs.
Computing factored belief state in the next time step

- Introduce observations in current time step
 - Use J-tree to calibrate time t beliefs

- Compute $t+1$ belief, project into approximate belief state
 - marginalize into desired factors
 - corresponds to KL projection

- Equivalent to computing marginals over factors directly
 - For each factor in $t+1$ step belief
 - Use variable elimination
Error accumulation

- Each time step, projection introduces error
- Will error add up?
 - causing unbounded approximation error as $t \to \infty$
Contraction in Markov process

At time t

p:diff. high

Δt

diffusion after transition

mixing rate $\gamma < 1$

$t+1$

$d(p_t,q_t) > d(p_{t+1},q_{t+1})$

overlap
BK Theorem

- Error does not grow unboundedly!

\[
d(p_2; q_2) = d(Tp_1, Tq_1) + d(Tq_1, q_2) \leq \gamma d(p_1, q_1)
\]
Example – BAT network [Forbes et al.]
BK results [Boyen, Koller ’98]

Typical evolution of error

Comparing partitions
Thin Junction Tree Filters [Paskin ‘03]

- BK assumes fixed approximation clusters
- TJTF adapts clusters over time
 - attempt to minimize projection error
Hybrid DBN (many continuous and discrete variables)

- DBN with large number of discrete and continuous variables
- # of mixture of Gaussian components blows up in one time step!
- Need many smart tricks…
 - e.g., see Lerner Thesis

Reverse Water Gas Shift System (RWGS) [Lerner et al. ’02]
DBN summary

- **DBNs**
 - factored representation of HMMs/Kalman filters
 - sparse representation does not lead to efficient inference

- **Assumed density filtering**
 - BK – factored belief state representation is assumed density
 - Contraction guarantees that error does blow up (but could still be large)
 - Thin junction tree filter adapts assumed density over time
 - Extensions for hybrid DBNs