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Lecture 21, Nov 28, 2005
Reading: Getoor et al 2001, Milch et al. 2005

Limitations of GM
Applications are pushing the representation and modeling 
limits of GM …

Open domains with both structural and attribute uncertainty!
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Propositional Logic
Ontological commitment: the world consists of propositions, or 
facts, or atomic events, which are either true or false

e.g., Paper_X_HighPaperRating

Set of 2n possible worlds – one for each truth assignment to 
the n propositions

Propositional logic allows us to compactly represent 
restrictions on possible worlds: 

If Auther_A_HighPublicationRating then Paper_X_HighPaperRating

Means that we have eliminated the possible worlds where 
Auther_A_HighPublicationRating is true but 
Paper_X_HighPaperRating is false.

Propositional Uncertainty
To model uncertainty we would like to represent a probability 
distribution over all possible worlds.
To represent the full joint distribution we would need 2n-1 
parameters (infeasible)
Insight: the value of most propositions isn't affected by the 
value of most other propositions!
More formally, some propositions are conditionally 
independent of each other given the value of other 
propositions
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Bayesian Networks
A BN uses a directed acyclic graph to encode these 
independence assumptions

This model encodes the assumption that each variable is 
independent of its non-descendents given its parents 

The full joint over these five binary variables would need 25-1=31 
parameters, but this factored representation only needs 10!

AuthorInstitution
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JournalRating

PaperCited
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Plates and beyond

Graphical model applies to any paper already “universally 
quantified”

a Plate stands for N IID replicates of the enclosed model (Buntine 1994)

Can we reason across objects?
e.g., the rating of a paper authored by F. Crick given the ratings of some 
papers authored by J. Watson

AuthorInstitution

PaperRatingAuthorRating

JournalRating

PaperCited
NN
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Shortcomings of Bayes Net 
BNs lack the concept of an object 

Cannot represent general rules about the relations between multiple 
similar objects
For example, if we wanted to represent the probabilities over multiple 
papers, authors, and journals:

We would need an explicit random variable for each paper/author/journal
The distributions would be separate, so knowledge about one wouldn't 
impart any knowledge about the others

BNs assume domain closure, unique name, and relational 
invariance

Can not represent open possible world with unknown number of objects
Can not accommodate objects possibly with multiple names
Can not succinctly represent uncertainty in data association

…

Statistical Relational Learning
In general, SRL combines logic and probabilities
Historically, there are two general threads of research

1. Frame-based Probabilistic Models
Probabilistic Relational Models (PRMs), 
Probabilistic Entity Relation Models (PERs), 
Object Oriented Bayesian Networks (OOBNs)

This thread takes graphical models or hierarchical Bayesian models and 
adds in some form of relational/logical representation

2. First Order Probabilistic Logic (FOPL)
BLOGs
Relational Markov Logic (RML)

This thread takes a logical representation (first-order logic, horn clauses, 
etc) and adds in some form of probabilities
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Probabilistic Relational Models 
(PRMs)

Combine advantages of relational logic & Bayesian networks: 
natural domain modeling: objects, properties, relations;
generalization over a variety of situations;
compact, natural probability models.

Integrate uncertainty with relational model:
properties of domain entities can depend on properties of related 
entities;
uncertainty over relational structure of domain.

Motivation:  Discovering Patterns 
in Structured Data

Patient

Treatment

Strain Contact 
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From relational database to PRM

Database

Patient

Strain

Contact

Relational Schema

Patient
Contact

Strain

• Parameter estimation
• Structure selection

Strain
Unique
Infectivity

Infected with

Interacted with

Describes the types of objects and relations in the database

ClassesClasses

RelationshipsRelationships
Contact

Close-Contact

Skin-Test

Age

Patient
Homeless
HIV-Result
Ethnicity
Disease-Site AttributesAttributes

Contact-Type

Relational Schema
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Simple functionSimple function

Complex functionComplex function

Complex functions specifies complex relations among objects

Fixed relational skeleton σ
set of objects in each class
relations between them

Uncertainty over assignment of values to attributes (AU)

PRM defines distribution over instantiations of attributes

Strain
s1

Patient
p2

Patient
p1

Contact
c3

Contact
c2

Contact
c1

Strain
s2

Patient
p3

Relational Skeleton 
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P1.Disease Site

P1.Homeless

P1.HIV-Result

P1.POB

C1.Close-Contact

C1.Transmitted

C1.Contact-Type

C1.Age

C2.Close-Contact

C2.Transmitted

C2.Contact-Type
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C2.Age

A Portion of the BN

A PRM w/ AU and fixed, valid relations is equivalent to an unrolled BN

sum, min, max, 
avg, mode, count

Disease Site

Patient

Homeless

HIV-Result

POB

Age

Close-Contact

Transmitted

Contact-Type

Contact

Age

.

.

Patient
Jane Doe

POB       
US

Homeless  
no

HIV-Result       
negative

Age  
???

Disease Site  
pulmonary

A

.

Contact
#5077

Contact-Type
coworker

Close-Contact  
no 

Age
middle-aged

Transmitted  
false

Contact
#5076

Contact-Type
spouse

Close-Contact  
yes 

Age
middle-aged

Transmitted  
true

Contact
#5075

Contact-Type
friend

Close-Contact  
no 

Age
middle-aged

Transmitted  
false

mode

6.03.01.0
2.06.02.0
2.04.04.0

o
m
y

omym

PRM: Aggregate Dependencies
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PRM relational skeleton σ+

Strain

Patient

Contact

Strain
s1

Patient
p1

Patient
p2

Contact
c3

Contact
c2

Contact
c1

Strain
s2

Patient
p3

Semantics of PRM with AU 

Structural Uncertainty

Motivation: relational structure provides useful information for 
density estimation and prediction 

PRM w/ AU applicable only in domains where we have full 
knowledge of the relational structure

Construct probabilistic models of relational structure that 
capture structural uncertainty

Applicable in cases where we do not have full knowledge of relational structure
Incorporating uncertainty over relational structure into probabilistic model can 
improve predictive accuracy

Two new mechanisms:
Reference uncertainty (RU)
Existence uncertainty (EU)
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Wrote

Paper
Topic
Word1

WordN
…

Word2

Paper
Topic
Word1

WordN
…

Word2Cites
CountCiting 

Paper
Cited 
Paper

Author
Institution
Research Area

Citation Relational Schema

Complex functionsComplex functions

Paper

Word1

Topic

WordN

Wrote

Author

...

Research Area

P( WordN | Topic)

P( Topic | 
Paper.Author.Research Area

Institution P( Institution | 
Research Area)

Attribute Uncertainty
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Bibliography

Scientific Paper

`1. -----
2. -----
3. -----

?
?
?

Document Collection

Reference Uncertainty

PRM w/ Reference Uncertainty

Dependency model for foreign keys (i.e., complex functions)
Define semantics for uncertainty over foreign-key values
Naïve Approach: multinomial over primary key

noncompact

limits ability to generalize

Cites
Citing
Cited

Paper
Topic
Words

Paper
Topic
Words
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Paper
P5

Topic     
AI

Paper
P4

Topic       
AI

Paper
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Topic       
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Paper.Topic = AI Paper.Topic = Theory

P1

P2

Paper
Topic
Words P1 P2

3.0 7.0

P1 P2

1.0 9.0
Topic

99.0 01.0
Theory

AI

Modeling Reference Uncertainty

PRM-RU + entity skeleton σ
⇒ probability distribution over full instantiations I

Cites
Cited
Citing

Paper

Topic
Words

Paper

Topic
Words

PRM RU

Paper
P5

Topic     
AI

Paper
P4
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Theory

Paper
P2
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Paper
P3

Topic    
AI

Paper
P1

Topic       
???

Paper
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Topic     
AI

Paper
P4

Topic       
Theory

Paper
P2

Topic       
Theory
Paper
P3

Topic    
AI

Paper
P1

Topic       
???

RegReg

RegRegCites

entity skeleton σ

Semantics of PRMs w/ RU
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Document CollectionDocument Collection

? ?
?

Existence Uncertainty

Cites

Dependency model for existence of relationship

Paper
Topic
Words

Paper
Topic
Words

Exists

PRM w/ Exists Uncertainty
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Exists Uncertainty Example

Cites

Paper
Topic
Words

Paper
Topic
Words

Exists

Citer.Topic Cited.Topic

0.995 0005Theory Theory

False True

AITheory 0.999 0001

AIAI 0.993 0008
AI Theory 0.997 0003

Semantics of PRMs w/ EU 

PRM-EU + object skeleton σ
⇒ probability distribution over full instantiations I
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Paper
P4

Topic       
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Paper
P2

Topic       
Theory
Paper
P3

Topic    
AI

Paper
P1

Topic       
???

Paper
P5

Topic     
AI

Paper
P4

Topic       
Theory

Paper
P2

Topic       
Theory
Paper
P3

Topic    
AI

Paper
P1

Topic       
???

object skeleton σ

???

PRM EU

Cites
Exists

Paper

Topic
Words

Paper

Topic
Words
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More extensions
In PRM, all instances of the same class must use the same 
dependency mode, it cannot distinguish:

documentaries and sitcoms 

PRM cannot have dependencies that are “cyclic”
ranking for Frasier depends on ranking for Friends

PRMs w/ Class Hierarchies
Refine a “heterogenous” class into more coherent subclasses
Refine probabilistic model along class hierarchy

Can specialize/inherit CPDs
Construct new dependencies that were originally “acyclic”
Provides bridge from class-based to instance-based model

Undirected relational models

Inference in Unrolled BN

Prediction requires inference in “unrolled” network
Infeasible for large networks
Use approximate inference for E-step

Loopy belief propagation (Pearl, 88; McEliece, 98)
Scales linearly with size of network
Guaranteed to converge only for polytrees
Empirically, often converges in general nets (Murphy,99)

Local message passing
Belief messages transferred between related instances
Induces a natural “influence” propagation behavior

Instances give information about related instances

MCMC (Russell group)
Instantiate structures and models by sampling
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Learning PRMs
Training set consists of a fully specified instance: a set of 
objects, the relations between them, and the values of all 
attributes

In other words, a database!

As in BNs, we split into two problems:
Given a dependency structure S, estimate the the conditional probability 
distribution at each node (parameter estimation)
Select the best dependency structure (structure learning)

legal models (e.g., acyclic)
scoring models (e.g., Bayesian …)
searching model space (e.g., hill climbing or heuristic search with special 
operators)

General Relational Models
The most general relational model: the world consists of 
objects and relations over them
First order logic is perhaps the most basic relational setting:

Syntax
Constants and quantified variables (representing objects)
Predicates (representing relations), stated in terms of constants and 
variables, composed with logical connectives
Functions specifies relations hold among objects/observations

Semantics:
Set of possible worlds, one for each possible extent of each relation
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Limitations of PRMs
PRMs as currently defined cannot represent uncertainty in 
general FOL

The basic model cannot represent uncertainty about whether or not a 
relation exists between a given tuple of objects

Even when we add “structural uncertainty” as proposed PRMs
are too specialized

The probability of a relation between objects would conditioned on the 
values of some of their attributes, not on their participation in other 
relations

BLOG Approach
BLOG model defines probability distribution over model 
structures of a typed first-order language 
[Gaifman 1964; Halpern 1990]

Unique distribution, not just constraints on the distribution
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Basic Task

Given observations, make inferences about underlying objects
Difficulties:

Don’t know list of objects in advance
Don’t know when same object observed twice

(identity uncertainty / data association / record linkage)

Handling Unknown Objects
Standard practice: special-purpose algorithms to resolve 
identity uncertainty

E.g., in PRM, we can remunerate all possible identity of an object and 
model their associations as "uncertain relations"
This is very cumbersome and inflexible 

Goal: Resolve identity uncertainty by inference in probabilistic 
model
Bayesian LOGic (BLOG): representation language for models 
with 

Unknown set of objects
Unknown map from observations to objects
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Simple Example: 
Balls in an Urn

Draws
(with replacement)

P(n balls in urn)

P(n balls in urn | draws)

1 2 3 4

Possible Worlds

……

… …

3.00 x 10-3 7.61 x 10-4 1.19 x 10-5

2.86 x 10-4 1.14 x 10-12

Draws Draws Draws

Draws Draws
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Generative Process for 
Possible Worlds

Draws
(with replacement)

1 2 3 4

BLOG Model for Urn and Balls
type Color;  type Ball;  type Draw;

random Color TrueColor(Ball);
random Ball BallDrawn(Draw);
random Color ObsColor(Draw);

guaranteed Color Blue, Green;
guaranteed Draw Draw1, Draw2, Draw3, Draw4;

#Ball ~ Poisson[6]();

TrueColor(b) ~ TabularCPD[[0.5, 0.5]]();

BallDrawn(d) ~ UniformChoice({Ball b});

ObsColor(d) 
if (BallDrawn(d) != null) then 

~ NoisyCopy(TrueColor(BallDrawn(d)));
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BLOG Model for Urn and Balls
type Color;  type Ball;  type Draw;

random Color TrueColor(Ball);
random Ball BallDrawn(Draw);
random Color ObsColor(Draw);

guaranteed Color Blue, Green;
guaranteed Draw Draw1, Draw2, Draw3, Draw4;

#Ball ~ Poisson[6]();

TrueColor(b) ~ TabularCPD[[0.5, 0.5]]();

BallDrawn(d) ~ UniformChoice({Ball b});

ObsColor(d) 
if (BallDrawn(d) != null) then 

~ NoisyCopy(TrueColor(BallDrawn(d)));

header

number statement

dependency
statements

BLOG Model for Urn and Balls
type Color;  type Ball;  type Draw;

random Color TrueColor(Ball);
random Ball BallDrawn(Draw);
random Color ObsColor(Draw);

guaranteed Color Blue, Green;
guaranteed Draw Draw1, Draw2, Draw3, Draw4;

#Ball ~ Poisson[6]();

TrueColor(b) ~ TabularCPD[[0.5, 0.5]]();

BallDrawn(d) ~ UniformChoice({Ball b});

ObsColor(d) 
if (BallDrawn(d) != null) then 

~ NoisyCopy(TrueColor(BallDrawn(d)));

Identity uncertainty: BallDrawn(Draw1) = BallDrawn(Draw2)
?
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BLOG Model for Urn and Balls
type Color;  type Ball;  type Draw;

random Color TrueColor(Ball);
random Ball BallDrawn(Draw);
random Color ObsColor(Draw);

guaranteed Color Blue, Green;
guaranteed Draw Draw1, Draw2, Draw3, Draw4;

#Ball ~ Poisson[6]();

TrueColor(b) ~ TabularCPD[[0.5, 0.5]]();

BallDrawn(d) ~ UniformChoice({Ball b});

ObsColor(d) 
if (BallDrawn(d) != null) then 

~ NoisyCopy(TrueColor(BallDrawn(d)));

Arbitrary conditional
probability distributions

CPD arguments

BLOG Model for Urn and Balls
type Color;  type Ball;  type Draw;

random Color TrueColor(Ball);
random Ball BallDrawn(Draw);
random Color ObsColor(Draw);

guaranteed Color Blue, Green;
guaranteed Draw Draw1, Draw2, Draw3, Draw4;

#Ball ~ Poisson[6]();

TrueColor(b) ~ TabularCPD[[0.5, 0.5]]();

BallDrawn(d) ~ UniformChoice({Ball b});

ObsColor(d) 
if (BallDrawn(d) != null) then 

~ NoisyCopy(TrueColor(BallDrawn(d)));

Context-specific
dependence



23

BLOG Model for Urn and Balls
type Color;  type Ball;  type Draw;

random Color TrueColor(Ball);
random Ball BallDrawn(Draw);
random Color ObsColor(Draw);

guaranteed Color Blue, Green;
guaranteed Draw Draw1, Draw2, Draw3, Draw4;

#Ball ~ Poisson[6]();

TrueColor(b) ~ TabularCPD[[0.5, 0.5]]();

BallDrawn(d) ~ UniformChoice({Ball b});

ObsColor(d) 
if (BallDrawn(d) != null) then 

~ NoisyCopy(TrueColor(BallDrawn(d)));

Declarative Semantics
What is the set of possible worlds?
What is the probability distribution over worlds? 
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What Exactly Are the Objects?
Objects are tuples that encode generation history
Aircraft: (Aircraft, 1), (Aircraft, 2), …
Blip from (Aircraft, 2) at time 8:

(Blip, (Source, (Aircraft, 2)), (Time, 8), 1)

t=1 t=2 t=3

(1.8, 7.4, 2.3)
(1.9, 9.0, 2.1)

(1.9, 6.1, 2.2)

(0.9, 5.8, 3.1)

(0.7, 5.1, 3.2)
(0.6, 5.9, 3.2)

t=1 t=2 t=3

(1.8, 7.4, 2.3)
(1.9, 9.0, 2.1)

(1.9, 6.1, 2.2)

(0.9, 5.8, 3.1)

(0.7, 5.1, 3.2)
(0.6, 5.9, 3.2)

(1.8, 7.4, 2.3)
(1.9, 9.0, 2.1)

(1.9, 6.1, 2.2)

(0.9, 5.8, 3.1)

(0.7, 5.1, 3.2)
(0.6, 5.9, 3.2)

Graphical Representation of BLOG 
Model

Like a BN, but:
Edges are only active in 
certain contexts
Ignoring contexts, 
ObsColor(d) has infinitely 
many parents
In other models, graph may 
be cyclic if you ignore 
contexts

TrueColor(b)

K

BallDrawn(d)

ObsColor(d)

#Ball

∞

BallDrawn(d) = b
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Basic Random Variables (RVs)

For each number statement and tuple of generating objects, 
have RV for number of objects generated
For each function symbol and tuple of arguments, have RV for 
function value
Lemma: Full instantiation of these RVs uniquely identifies a 
possible world

Probability Distribution

BLOG model specifies:
Conditional distributions for basic RVs
Factorization properties for certain finite instantiations of basic RVs

Theorem: Under certain conditions (analogous to BN 
acyclicity), every BLOG model defines unique distribution over 
possible worlds
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Inference

Does infinite set of basic RVs prevent inference?
No: Sampling algorithm only needs to instantiate finite 
set of relevant variables
Algorithms:

Rejection sampling [Milch et al., IJCAI 2005]

Guided likelihood weighting [Milch et al., AI/Stats 2005]

Theorem: For large class of BLOG models, sampling 
algorithms converge to correct probability for any query, 
using finite time per sampling step

Summary: Distributions over First-
Order Structures

Idea goes back to Gaifman [1964]
Halpern [1990] defines language for stating constraints on such 
distributions

But not specifying a distribution uniquely

Logic programming approaches [Poole 1993; Sato & Kameya 2001; Kersting & 
De Raedt 2001] define unique distributions, but assume unique names
and domain closure
PRMs [Koller & Pfeffer 1998] have special constructs for number 
uncertainty, existence uncertainty
BLOG: Unified syntax for distributions over worlds with:

Varying sets of objects
Varying mappings from observations to objects

See also MEBN (Multi- Entity Bayesian Networks) [Laskey and da Costa, UAI 
2005]


