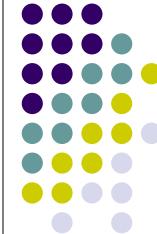


Probabilistic Graphical Models

10-708

Models with Higher-Level Structures: logic + probabilities

Eric Xing

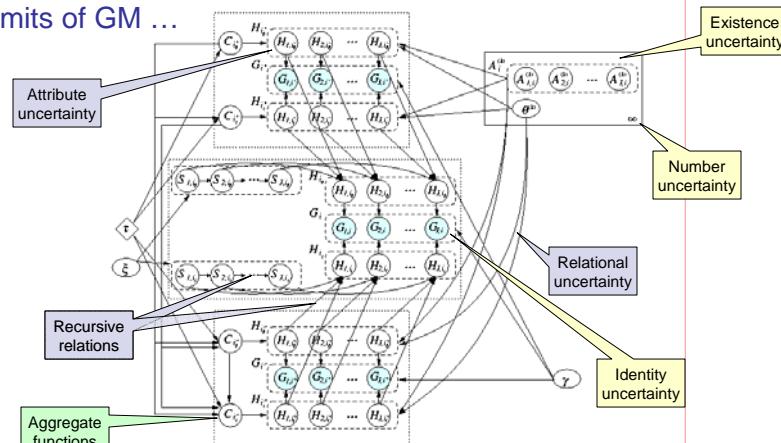


Lecture 21, Nov 28, 2005

Reading: Getoor et al 2001, Milch et al. 2005

Limitations of GM

- Applications are pushing the representation and modeling limits of GM ...



- Open domains with both structural and attribute uncertainty!

Propositional Logic

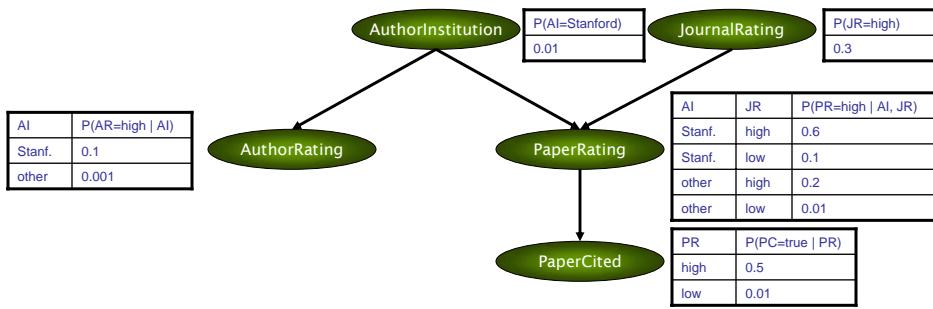
- Ontological commitment: the world consists of propositions, or facts, or atomic events, which are either true or false
 - e.g., *Paper_X_HighPaperRating*
- Set of 2^n possible worlds – one for each truth assignment to the n propositions
- **Propositional logic** allows us to compactly represent restrictions on possible worlds:
 - If *Author_A_HighPublicationRating* then *Paper_X_HighPaperRating*
- Means that we have eliminated the possible worlds where *Author_A_HighPublicationRating* is true but *Paper_X_HighPaperRating* is false.

Propositional Uncertainty

- To model uncertainty we would like to represent a probability distribution over all possible worlds.
- To represent the full joint distribution we would need 2^n-1 parameters (infeasible)
- Insight: the value of most propositions isn't affected by the value of most other propositions!
- More formally, some propositions are conditionally independent of each other given the value of other propositions

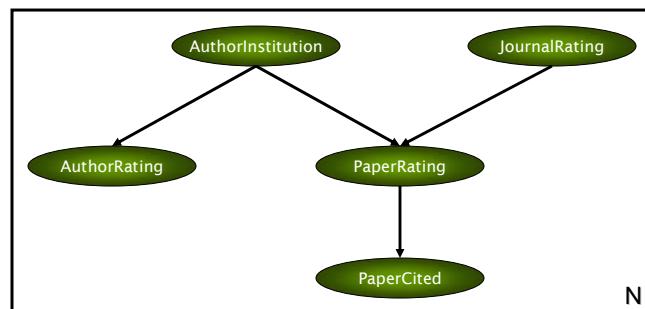
Bayesian Networks

- A BN uses a directed acyclic graph to encode these independence assumptions



- This model encodes the assumption that each variable is independent of its non-descendents given its parents
 - The full joint over these five binary variables would need $2^5 - 1 = 31$ parameters, but this factored representation only needs 10!

Plates and beyond



- Graphical model applies to any paper → already “universally quantified”
 - a *Plate* stands for N IID *replicates* of the enclosed model (Buntine 1994)
- Can we reason across objects?
 - e.g., the rating of a paper authored by **F. Crick** given the ratings of some papers authored by **J. Watson**

Shortcomings of Bayes Net

- BNs lack the concept of an object
 - Cannot represent general rules about the relations between multiple similar objects
 - For example, if we wanted to represent the probabilities over multiple papers, authors, and journals:
 - We would need an explicit random variable for each paper/author/journal
 - The distributions would be separate, so knowledge about one wouldn't impart any knowledge about the others
- BNs assume domain closure, unique name, and relational invariance
 - Can not represent open possible world with unknown number of objects
 - Can not accommodate objects possibly with multiple names
 - Can not succinctly represent uncertainty in data association
- ...

Statistical Relational Learning

- In general, SRL combines logic and probabilities
- Historically, there are two general threads of research
 1. Frame-based Probabilistic Models
 - Probabilistic Relational Models (PRMs),
 - Probabilistic Entity Relation Models (PERs),
 - Object Oriented Bayesian Networks (OOBNs)
 2. First Order Probabilistic Logic (FOPL)
 - BLOGs
 - Relational Markov Logic (RML)

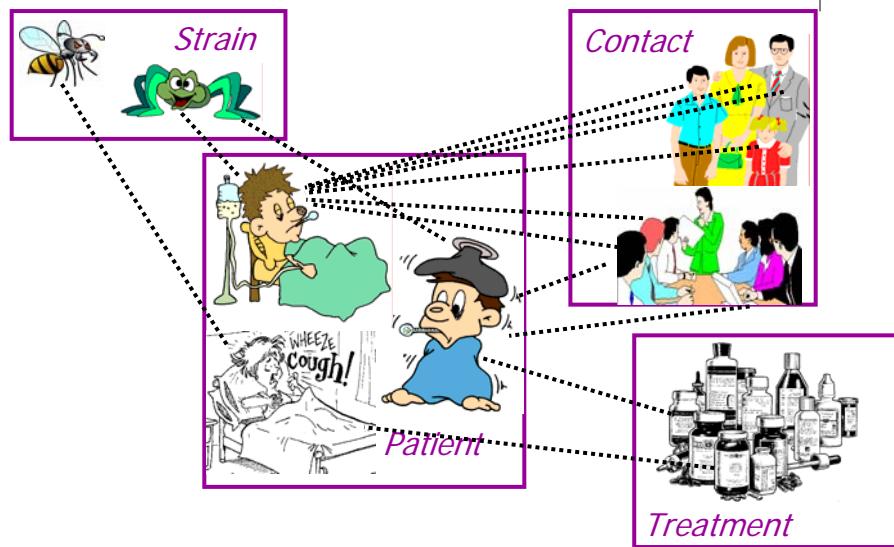
This thread takes graphical models or hierarchical Bayesian models and adds in some form of relational/logical representation

This thread takes a logical representation (first-order logic, horn clauses, etc) and adds in some form of probabilities

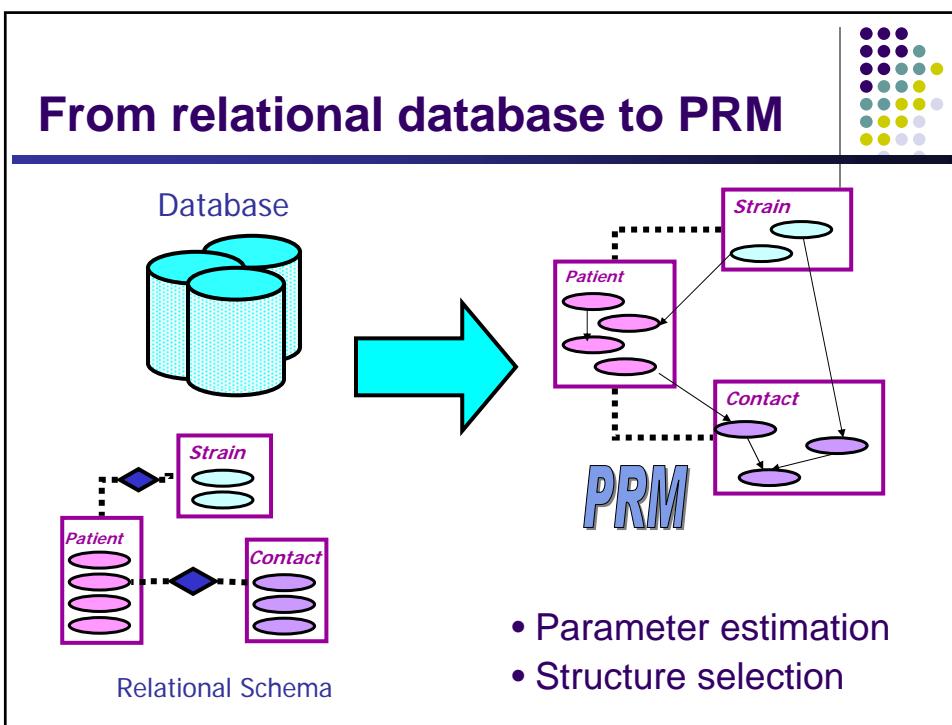
Probabilistic Relational Models (PRMs)

- Combine advantages of relational logic & Bayesian networks:
 - natural domain modeling: objects, properties, relations;
 - generalization over a variety of situations;
 - compact, natural probability models.
- Integrate uncertainty with relational model:
 - properties of domain entities can depend on properties of related entities;
 - uncertainty over relational structure of domain.

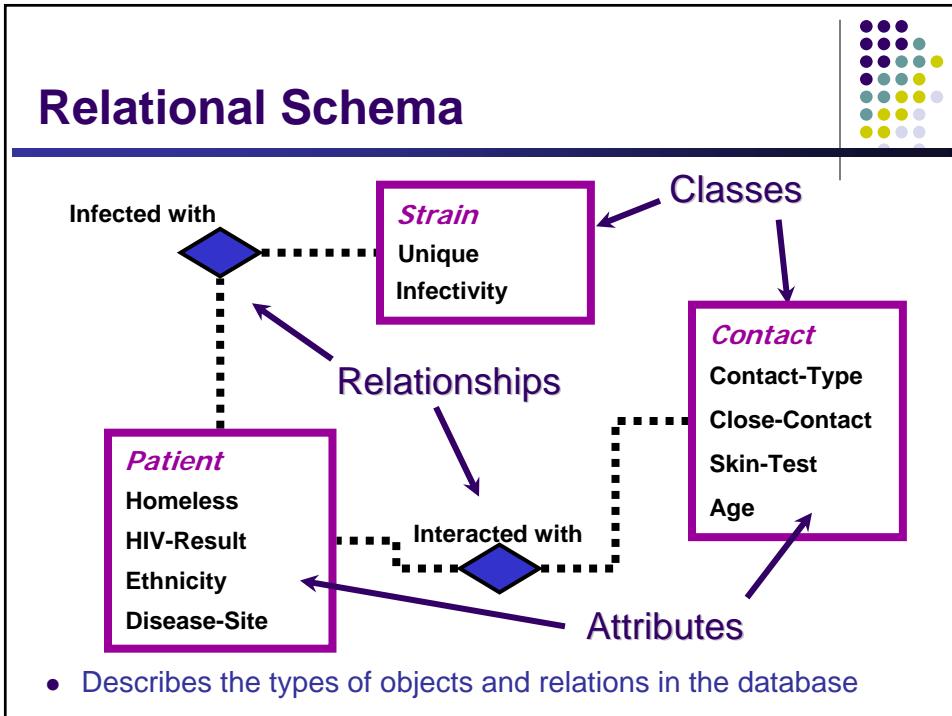
Motivation: Discovering Patterns in Structured Data



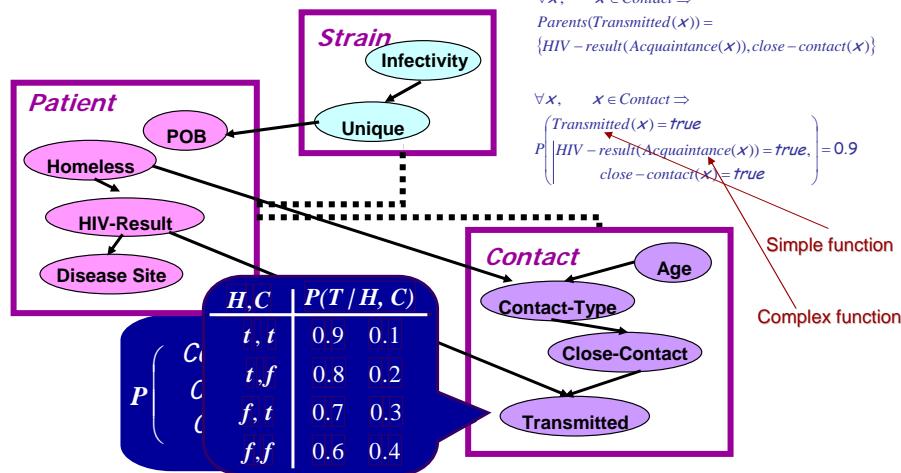
From relational database to PRM



Relational Schema

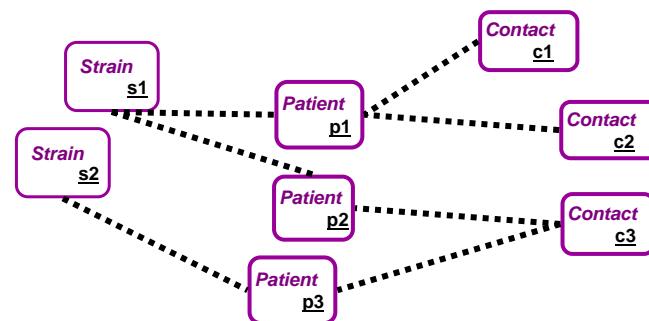


Probabilistic Relational Model



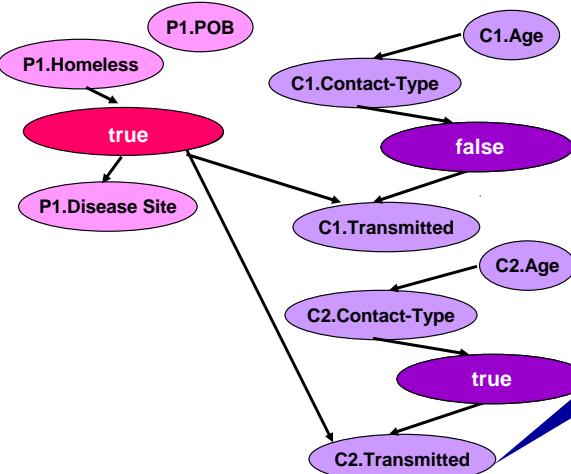
- Complex functions specifies complex relations among objects

Relational Skeleton



- Fixed relational skeleton σ
 - set of objects in each class
 - relations between them
- Uncertainty over assignment of values to attributes (AU)
- PRM defines distribution over instantiations of attributes

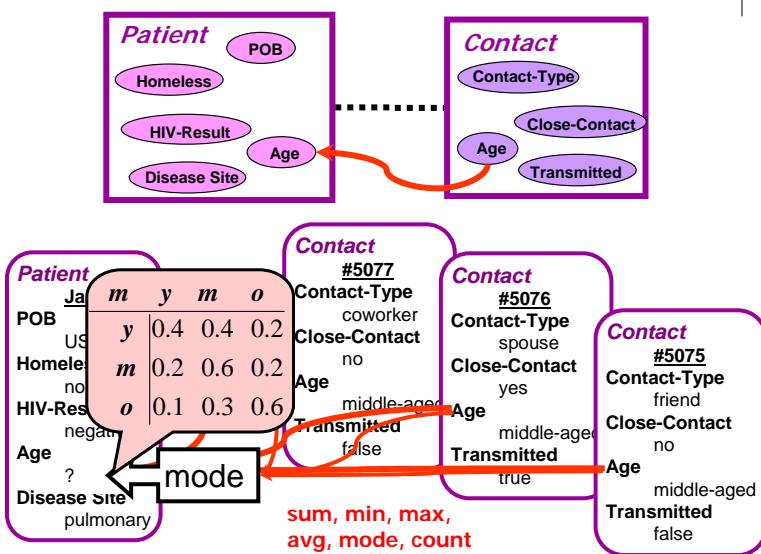
A Portion of the BN



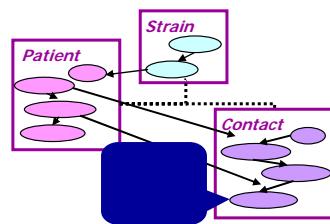
H, C	$P(T / H, C)$	
f, f	0.9	0.1
f, t	0.8	0.2
t, f	0.7	0.3
t, t	0.6	0.4

- A PRM w/ AU and fixed, valid relations is equivalent to an unrolled BN

PRM: Aggregate Dependencies

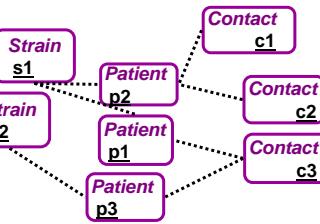


Semantics of PRM with AU



PRM

+



relational skeleton σ

= probability distribution over completions I:

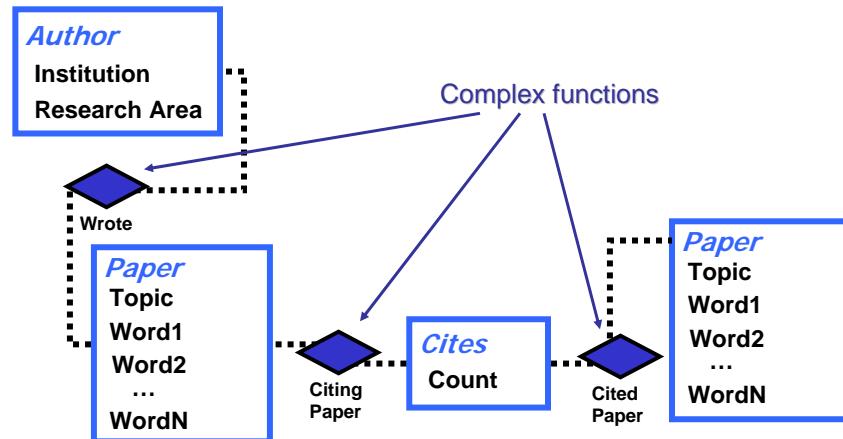
$$P(I \mid \sigma, S, \Theta) = \prod_{x \in \sigma} \prod_{x.A} P(x.A \mid \text{parents}_{S, \sigma}(x.A))$$

Objects Attributes

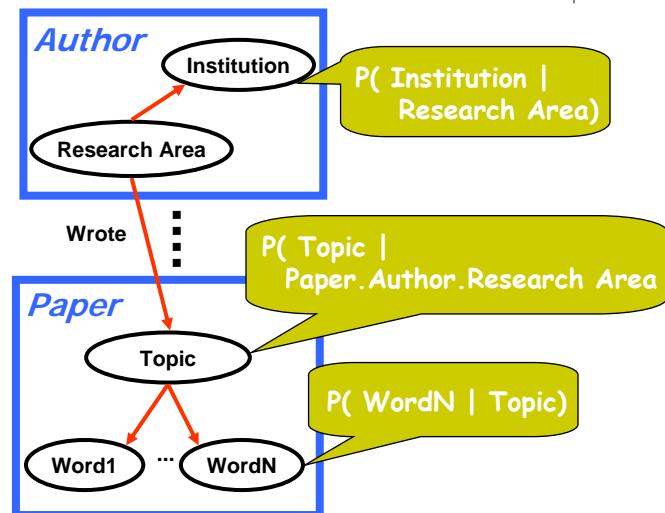
Structural Uncertainty

- Motivation: **relational structure** provides useful information for density estimation and prediction
- PRM w/ AU applicable only in domains where we have full knowledge of the relational structure
- Construct probabilistic models of relational structure that capture **structural uncertainty**
 - Applicable in cases where we do not have full knowledge of relational structure
 - Incorporating uncertainty over relational structure into probabilistic model can improve predictive accuracy
- Two new mechanisms:
 - Reference uncertainty (RU)
 - Existence uncertainty (EU)

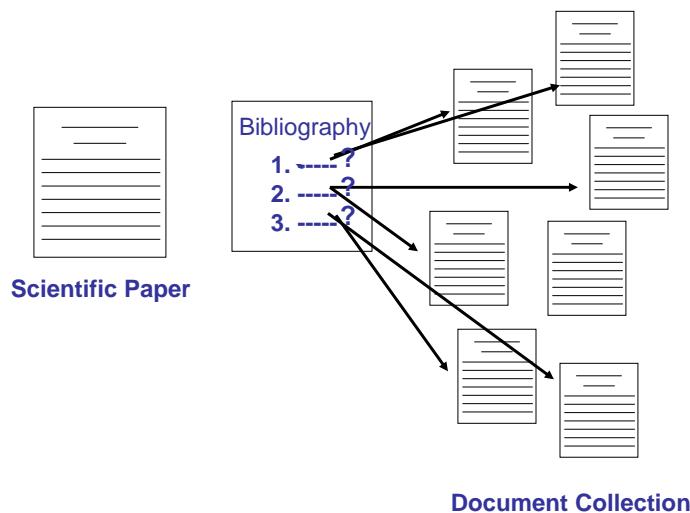
Citation Relational Schema



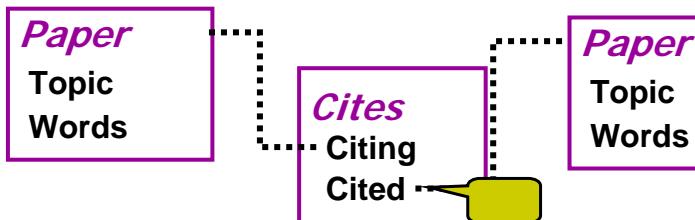
Attribute Uncertainty



Reference Uncertainty

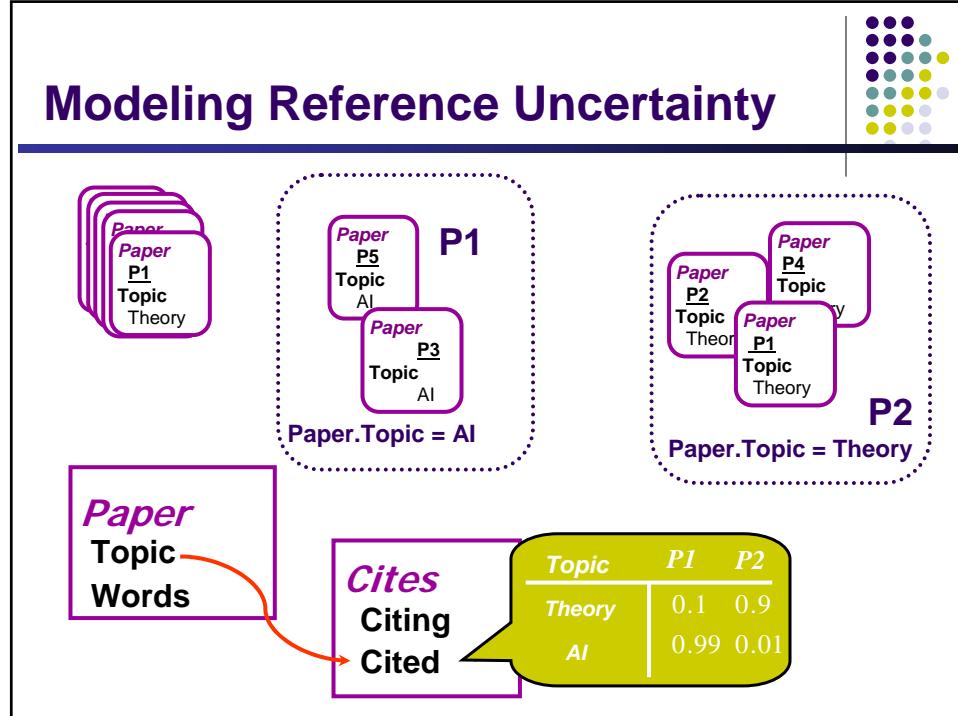


PRM w/ Reference Uncertainty

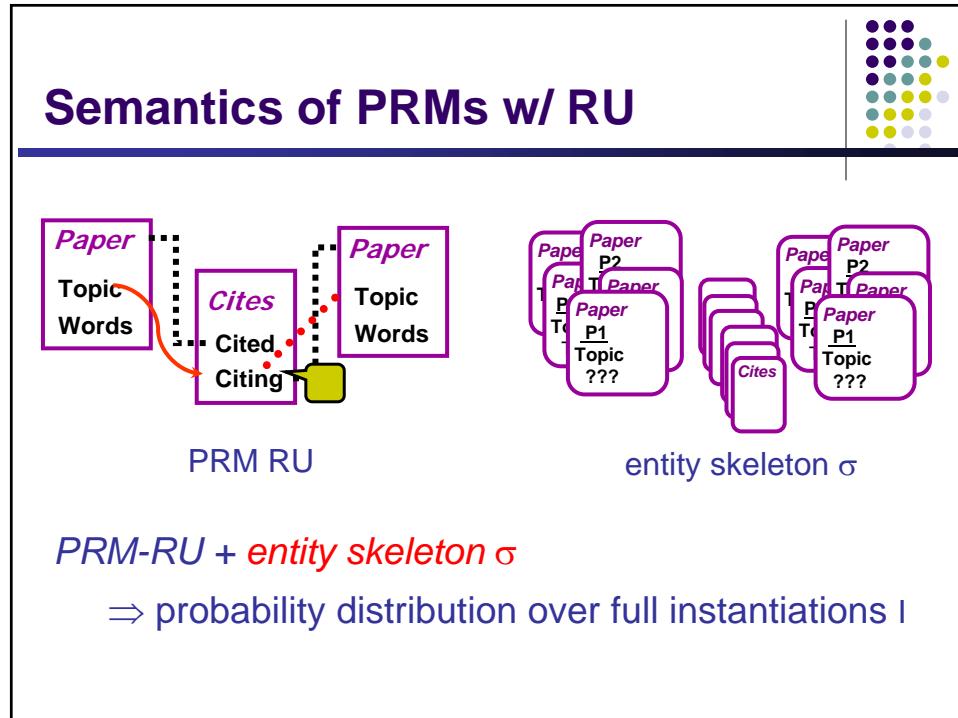


- *Dependency model for foreign keys* (i.e., complex functions)
- Define semantics for uncertainty over foreign-key values
- Naïve Approach: multinomial over primary key
 - noncompact
 - limits ability to generalize

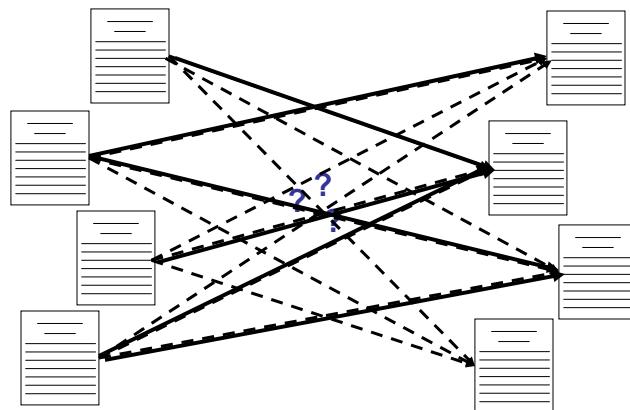
Modeling Reference Uncertainty



Semantics of PRMs w/ RU



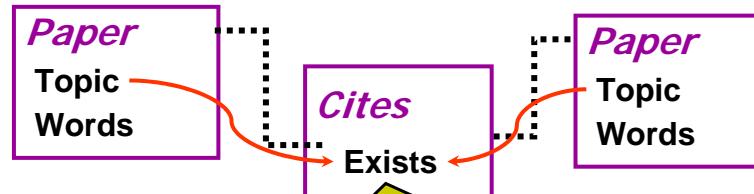
Existence Uncertainty



PRM w/ Exists Uncertainty

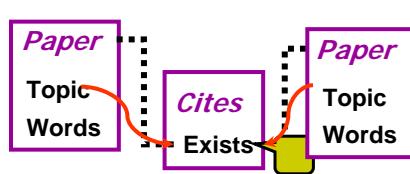
Dependency model for existence of relationship

Exists Uncertainty Example

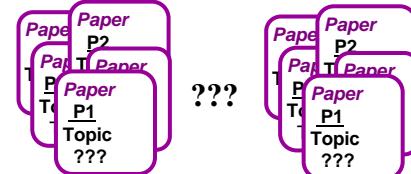


Citer.Topic	Cited.Topic	False	True
Theory	Theory	0.995	0005
Theory	AI	0.999	0001
AI	Theory	0.997	0003
AI	AI	0.993	0008

Semantics of PRMs w/ EU



PRM EU



object skeleton σ

PRM-EU + object skeleton σ

⇒ probability distribution over full instantiations !

More extensions

- In PRM, all instances of the same class must use the same dependency mode, it cannot distinguish:
 - documentaries and sitcoms
- PRM cannot have dependencies that are “cyclic”
 - ranking for Frasier depends on ranking for Friends
- PRMs w/ Class Hierarchies
 - Refine a “heterogenous” class into more coherent subclasses
 - Refine probabilistic model along class hierarchy
 - Can specialize/inherit CPDs
 - Construct new dependencies that were originally “acyclic”
 - *Provides bridge from class-based to instance-based model*
- Undirected relational models

Inference in Unrolled BN

- Prediction requires inference in “unrolled” network
 - Infeasible for large networks
 - Use approximate inference for E-step
- Loopy belief propagation (Pearl, 88; McEliece, 98)
 - Scales linearly with size of network
 - Guaranteed to converge only for polytrees
 - Empirically, often converges in general nets (Murphy,99)
- Local message passing
 - Belief messages transferred between related instances
 - Induces a natural “influence” propagation behavior
 - Instances give information about related instances
- MCMC (Russell group)
 - Instantiate structures and models by sampling

Learning PRMs

- Training set consists of a fully specified instance: a set of objects, the relations between them, and the values of all attributes
 - In other words, a database!
- As in BNs, we split into two problems:
 - Given a dependency structure S , estimate the conditional probability distribution at each node (*parameter estimation*)
 - Select the best dependency structure (*structure learning*)
 - legal models (e.g., acyclic)
 - scoring models (e.g., Bayesian ...)
 - searching model space (e.g., hill climbing or heuristic search with special operators)

General Relational Models

- The most general relational model: the world consists of objects and relations over them
- **First order logic** is perhaps the most basic relational setting:
 - **Syntax**
 - Constants and quantified variables (representing objects)
 - Predicates (representing relations), stated in terms of constants and variables, composed with logical connectives
 - Functions specifies relations hold among objects/observations
 - **Semantics**:
 - Set of possible worlds, one for each possible extent of each relation

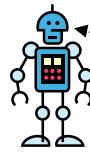
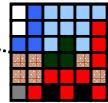
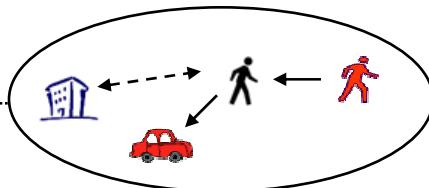
Limitations of PRMs

- PRMs as currently defined cannot represent uncertainty in general FOL
 - The basic model cannot represent uncertainty about whether or not a relation exists between a given tuple of objects
- Even when we add “structural uncertainty” as proposed PRMs are too specialized
 - The probability of a relation between objects would be conditioned on the values of some of their attributes, not on their participation in other relations

BLOG Approach

- BLOG model defines probability distribution over model structures of a typed first-order language [Gaifman 1964; Halpern 1990]
- Unique distribution, not just constraints on the distribution

Basic Task



- Given observations, make inferences about underlying objects
- Difficulties:
 - Don't know list of objects in advance
 - Don't know when same object observed twice

(identity uncertainty / data association / record linkage)

Handling Unknown Objects

- Standard practice: special-purpose algorithms to resolve identity uncertainty
 - E.g., in PRM, we can enumerate all possible identity of an object and model their associations as "uncertain relations"
 - This is very cumbersome and inflexible
- Goal: Resolve identity uncertainty by inference in probabilistic model
- Bayesian LOGic (BLOG): representation language for models with
 - Unknown set of objects
 - Unknown map from observations to objects

Simple Example: Balls in an Urn

$P(n \text{ balls in urn})$

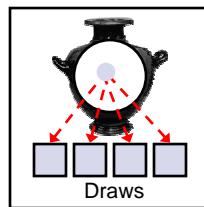
$P(n \text{ balls in urn} | \text{draws})$

Draws
(with replacement)

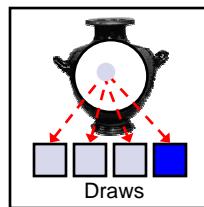
1 2 3 4

Possible Worlds

3.00×10^{-3}



7.61×10^{-4}



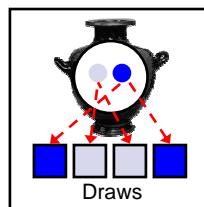
1.19×10^{-5}



...

...

2.86×10^{-4}



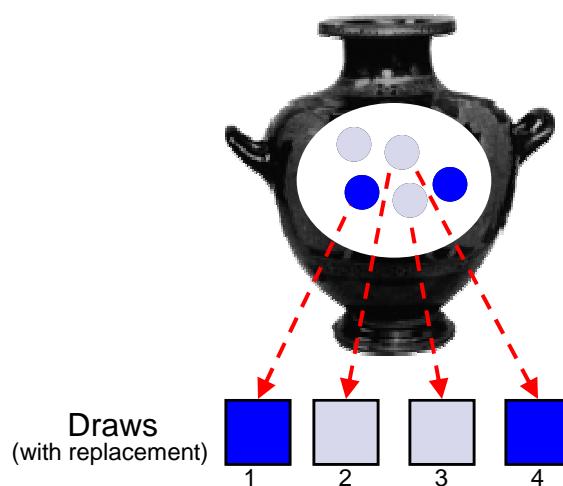
1.14×10^{-12}



...

...

Generative Process for Possible Worlds



BLOG Model for Urn and Balls

```
type Color;  type Ball;  type Draw;
random Color TrueColor(Ball);
random Ball BallDrawn(Draw);
random Color ObsColor(Draw);

guaranteed Color Blue, Green;
guaranteed Draw Draw1, Draw2, Draw3, Draw4;

#Ball ~ Poisson[6]();
TrueColor(b) ~ TabularCPD[[0.5, 0.5]]();
BallDrawn(d) ~ UniformChoice({Ball b});
ObsColor(d)
  if (BallDrawn(d) != null) then
    ~ NoisyCopy(TrueColor(BallDrawn(d)));
```

BLOG Model for Urn and Balls

```
type Color;  type Ball;  type Draw;  
random Color TrueColor(Ball);  
random Ball BallDrawn(Draw);  
random Color ObsColor(Draw);  
guaranteed Color Blue, Green;  
guaranteed Draw Draw1, Draw2, Draw3, Draw4;  
  
#Ball ~ Poisson[6](); ← number statement  
TrueColor(b) ~ TabularCPD[[0.5, 0.5]](); ←  
BallDrawn(d) ~ UniformChoice({Ball b}); ← dependency  
ObsColor(d) ← statements  
if (BallDrawn(d) != null) then  
    ~ NoisyCopy(TrueColor(BallDrawn(d)));
```

BLOG Model for Urn and Balls

```
type Color;  type Ball;  type Draw;  
random Color TrueColor(Ball);  
random Ball BallDrawn(Draw);  
random Color ObsColor(Draw);  
guaranteed Color Blue, Green;  
  
Identity uncertainty: BallDrawn(Draw1) = BallDrawn(Draw2) ?  
  
TrueColor(b) ~ TabularCPD[[0.5, 0.5]]();  
BallDrawn(d) ~ UniformChoice({Ball b}); ←  
ObsColor(d)  
if (BallDrawn(d) != null) then  
    ~ NoisyCopy(TrueColor(BallDrawn(d)));
```

BLOG Model for Urn and Balls

```
type Color;  type Ball;  type Draw;  
random Color TrueColor(Ball);      Arbitrary conditional  
random Ball BallDrawn(Draw);  
random Color ObsColor(Draw);  
guaranteed Color Blue, Green;  
guaranteed Draw Draw1, Draw2, Draw3, Draw4;  
#Ball ~ Poisson[6];  
TrueColor(b) ~ TabularCPD[[0.5, 0.5]]();  
BallDrawn(d) ~ UniformChoice({Ball b});  
ObsColor(d)  
  if (BallDrawn(d) != null) then    CPD arguments  
    ~ NoisyCopy(TrueColor(BallDrawn(d)));
```

BLOG Model for Urn and Balls

```
type Color;  type Ball;  type Draw;  
random Color TrueColor(Ball);  
random Ball BallDrawn(Draw);  
random Color ObsColor(Draw);  
guaranteed Color Blue, Green;  
guaranteed Draw Draw1, Draw2, Draw3, Draw4;  
#Ball ~ Poisson[6];  
TrueColor(b) ~ TabularCPD[[0.5, 0.5]]();  
BallDrawn(d) ~ UniformChoice({Ball b});  
ObsColor(d)  
  if (BallDrawn(d) != null) then    Context-specific  
    ~ NoisyCopy(TrueColor(BallDrawn(d)));  
  dependence
```

BLOG Model for Urn and Balls

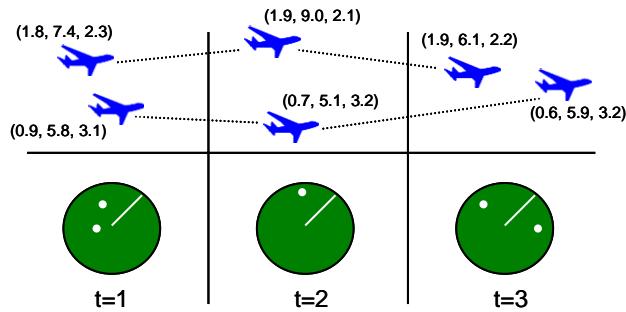
```
type Color;  type Ball;  type Draw;  
random Color TrueColor(Ball);  
random Ball BallDrawn(Draw);  
random Color ObsColor(Draw);  
  
guaranteed Color Blue, Green;  
guaranteed Draw Draw1, Draw2, Draw3, Draw4;  
  
#Ball ~ Poisson[6]();  
TrueColor(b) ~ TabularCPD[[0.5, 0.5]]();  
BallDrawn(d) ~ UniformChoice({Ball b});  
  
ObsColor(d)  
  if (BallDrawn(d) != null) then  
    ~ NoisyCopy(TrueColor(BallDrawn(d)));
```

Declarative Semantics

- What is the set of possible worlds?
- What is the probability distribution over worlds?

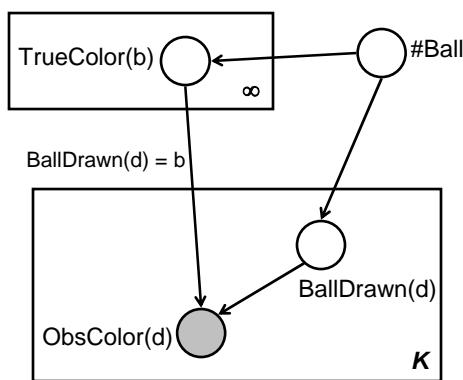
What Exactly Are the Objects?

- Objects are tuples that encode generation history
- Aircraft: $(\text{Aircraft}, 1), (\text{Aircraft}, 2), \dots$
- Blip from $(\text{Aircraft}, 2)$ at time 8:
 $(\text{Blip}, (\text{Source}, (\text{Aircraft}, 2)), (\text{Time}, 8), 1)$



Graphical Representation of BLOG Model

- Like a BN, but:
 - Edges are only active in certain contexts
 - Ignoring contexts, $\text{ObsColor}(d)$ has infinitely many parents
 - In other models, graph may be cyclic if you ignore contexts



Basic Random Variables (RVs)

- For each number statement and tuple of generating objects, have RV for number of objects generated
- For each function symbol and tuple of arguments, have RV for function value
- Lemma: Full instantiation of these RVs uniquely identifies a possible world

Probability Distribution

- BLOG model specifies:
 - Conditional distributions for basic RVs
 - Factorization properties for certain finite instantiations of basic RVs
- Theorem: Under certain conditions (analogous to BN acyclicity), every BLOG model defines unique distribution over possible worlds

Inference

- Does infinite set of basic RVs prevent inference?
- No: Sampling algorithm only needs to instantiate finite set of **relevant** variables
- Algorithms:
 - Rejection sampling [Milch *et al.*, IJCAI 2005]
 - Guided likelihood weighting [Milch *et al.*, AI/Stats 2005]
- **Theorem:** For large class of BLOG models, sampling algorithms converge to correct probability for any query, using **finite** time per sampling step

Summary: Distributions over First-Order Structures

- Idea goes back to Gaifman [1964]
- Halpern [1990] defines language for stating constraints on such distributions
 - But not specifying a distribution uniquely
- Logic programming approaches [Poole 1993; Sato & Kameya 2001; Kersting & De Raedt 2001] define unique distributions, but assume **unique names** and **domain closure**
- PRMs [Koller & Pfeffer 1998] have special constructs for number uncertainty, existence uncertainty
- BLOG: **Unified syntax** for distributions over worlds with:
 - Varying sets of objects
 - Varying mappings from observations to objects

See also MEBN (Multi- Entity Bayesian Networks) [Laskey and da Costa, UAI 2005]