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Propositional Logic

e Ontological commitment: the world consists of propositions, or
facts, or atomic events, which are either true or false
e e.g., Paper_X_HighPaperRating

e Set of 2" possible worlds — one for each truth assignment to
the n propositions

e Propositional logic allows us to compactly represent
restrictions on possible worlds:

e |If Auther_A_ HighPublicationRating then Paper_X_ HighPaperRating

e Means that we have eliminated the possible worlds where
Auther_A HighPublicationRating is true but
Paper_X_HighPaperRating is false.

Propositional Uncertainty

\
e To model uncertainty we would like to represent a probability

distribution over all possible worlds.

e To represent the full joint distribution we would need 2"-1
parameters (infeasible)

e Insight: the value of most propositions isn't affected by the
value of most other propositions!

e More formally, some propositions are conditionally
independent of each other given the value of other
propositions
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Bayesian Networks 5
e A BN uses a directed acyclic graph to encode these
independence assumptions
Authorlnstitution ) Rl JournalRating PUR=high)
0.01 0.3
JR P(PR=high | Al, JR)
Al P(AR=high | Al) high 0.6
Stanf. 0.1 AuthorRating PaperRating ow o1
other 0.001 other high 0.2
other low 0.01
PR P(PC=true | PR)
PaperCited high 05
low 0.01
e This model encodes the assumption that each variable is
independent of its non-descendents given its parents
e The full joint over these five binary variables would need 25-1=31
parameters, but this factored representation only needs 10!
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Plates and beyond :

Authorlnstitution JournalRating

AuthorRating PaperRating

PaperCited

N

e Graphical model applies to any paper - already “universally
quantified”
e a Plate stands for N IID replicates of the enclosed model (Buntine 1994)
e Can we reason across objects?

e e.g., the rating of a paper authored by F. Crick given the ratings of some
papers authored by J. Watson




Shortcomings of Bayes Net

e BNs lack the concept of an object

e Cannot represent general rules about the relations between multiple
similar objects

e For example, if we wanted to represent the probabilities over multiple
papers, authors, and journals:

We would need an explicit random variable for each paper/author/journal

The distributions would be separate, so knowledge about one wouldn't
impart any knowledge about the others

e BNs assume domain closure, unigue name, and relational
invariance
e Can not represent open possible world with unknown number of objects
e Can not accommodate objects possibly with multiple names
e Can not succinctly represent uncertainty in data association

Statistical Relational Learning

e In general, SRL combines logic and probabilities
e Historically, there are two general threads of research

1. Frame-based Probabilistic Models
Probabilistic Relational Models (PRMs),
Probabilistic Entity Relation Models (PERS),
Object Oriented Bayesian Networks (OOBNSs)

This thread takes graphical models or hierarchical Bayesian models and
adds in some form of relational/logical representation

2. First Order Probabilistic Logic (FOPL)
BLOGs
Relational Markov Logic (RML)

This thread takes a logical representation (first-order logic, horn clauses,
etc) and adds in some form of probabilities
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(PRMs) &2
e Combine advantages of relational logic & Bayesian networks:
e natural domain modeling: objects, properties, relations;
e generalization over a variety of situations;
e compact, natural probability models.
e Integrate uncertainty with relational model:
e properties of domain entities can depend on properties of related
entities;
e uncertainty over relational structure of domain.
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From relational database to PRM
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e Describes the types of objects and relations in the database




Probabilistic Relational Model

Patient
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Simple function

Complex function

e Complex functions specifies complex relations among objects
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e Uncertainty over assignment of values to attributes (AU)

o PRM defines distribution over instantiations of attributes




A Portion of the BN

P1.POB
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C1.Contact-Type
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¢ A PRM w/ AU and fixed, valid relations is equivalent to an unrolled BN
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PRM: Aggregate Dependencies
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Semantics of PRM with AU
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= probability distribution over completions I:
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Objects Attributes

Structural Uncertainty

\
e Motivation: relational structure provides useful information for

density estimation and prediction

e PRM w/ AU applicable only in domains where we have full
knowledge of the relational structure

e Construct probabilistic models of relational structure that
capture structural uncertainty
e Applicable in cases where we do not have full knowledge of relational structure

e Incorporating uncertainty over relational structure into probabilistic model can
improve predictive accuracy

e Two new mechanisms:

e Reference uncertainty (RU)
e Existence uncertainty (EU)
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e Dependency model for foreign keys (i.e., complex functions)
e Define semantics for uncertainty over foreign-key values
e Naive Approach: multinomial over primary key

e noncompact

e limits ability to generalize
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Semantics of PRMs w/ RU
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PRM RU entity skeleton o

PRM-RU + entity skeleton o
= probability distribution over full instantiations |
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Existence Uncertainty o
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PRM w/ Exists Uncertainty o
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Dependency model for existence of relationship
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Exists Uncertainty Example o
Paper = Paper
Topic —| i . :_ 1 Topic
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Semantics of PRMs w/ EU H
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PRM-EU + object skeleton o

= probability distribution over full instantiations |
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More extensions g
e In PRM, all instances of the same class must use the same
dependency mode, it cannot distinguish:
e documentaries and sitcoms
e PRM cannot have dependencies that are “cyclic”
e ranking for Frasier depends on ranking for Friends
e PRMs w/ Class Hierarchies
e Refine a “heterogenous” class into more coherent subclasses
e Refine probabilistic model along class hierarchy
Can specialize/inherit CPDs
Construct new dependencies that were originally “acyclic”
Provides bridge from class-based to instance-based model
e Undirected relational models
o000
o000
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Inference in Unrolled BN :

e Prediction requires inference in “unrolled” network
e |Infeasible for large networks
e Use approximate inference for E-step

e Loopy belief propagation (Pearl, 88; McEliece, 98)
e Scales linearly with size of network
e Guaranteed to converge only for polytrees
e Empirically, often converges in general nets (Murphy,99)

e Local message passing
e Belief messages transferred between related instances

e Induces a natural “influence” propagation behavior
Instances give information about related instances

e MCMC (Russell group)
e Instantiate structures and models by sampling

15
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Learning PRMs o
e Training set consists of a fully specified instance: a set of
objects, the relations between them, and the values of all
attributes
e In other words, a database!
e As in BNs, we split into two problems:
e Given a dependency structure S, estimate the the conditional probability
distribution at each node (parameter estimation)
e Select the best dependency structure (structure learning)
legal models (e.qg., acyclic)
scoring models (e.g., Bayesian ...)
searching model space (e.qg., hill climbing or heuristic search with special
operators)
e0o0
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General Relational Models

\
e The most general relational model: the world consists of

objects and relations over them

e First order logic is perhaps the most basic relational setting:
e Syntax
Constants and quantified variables (representing objects)

Predicates (representing relations), stated in terms of constants and
variables, composed with logical connectives

Functions specifies relations hold among objects/observations
e Semantics:
Set of possible worlds, one for each possible extent of each relation

16



Limitations of PRMs

e PRMs as currently defined cannot represent uncertainty in
general FOL
e The basic model cannot represent uncertainty about whether or not a
relation exists between a given tuple of objects
e Even when we add “structural uncertainty” as proposed PRMs
are too specialized

e The probability of a relation between objects would conditioned on the
values of some of their attributes, not on their participation in other
relations

BLOG Approach

\
e BLOG model defines probability distribution over model

structures of a typed first-order language
[Gaifman 1964; Halpern 1990]

e Unique distribution, not just constraints on the distribution

17



Basic Task

e Given observations, make inferences about underlying objects

e Difficulties:
e Don'’t know list of objects in advance
e Don't know when same object observed twice

(identity uncertainty / data association / record linkage)

Handling Unknown Objects

\
e Standard practice: special-purpose algorithms to resolve

identity uncertainty

e E.g., in PRM, we can remunerate all possible identity of an object and
model their associations as "uncertain relations"

e This is very cumbersome and inflexible

e Goal: Resolve identity uncertainty by inference in probabilistic
model

e Bayesian LOGic (BLOG): representation language for models
with
e Unknown set of objects
e Unknown map from observations to objects




Simple Example:
Balls in an Urn

Draws
(with replacement)

Possible Worlds

3.00 x 103 7.61 x 104

1.19 x 105 |
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BLOG Model for Urn and Balls ot

type Color; type Ball; type Draw;

random Color TrueColor(Ball);
random Ball BallDrawn(Draw);
random Color ObsColor(Draw);

guaranteed Color Blue, Green;
guaranteed Draw Drawl, Draw2, Draw3, Draw4;

#Ball ~ Poisson[6]();
TrueColor(b) ~ TabularCPD[[0.5, 0.5]10:;
BallDrawn(d) ~ UniformChoice({Ball b});

ObsColor(d)
if (BallDrawn(d) != null) then
~ NoisyCopy(TrueColor(BallDrawn(d)));

20



BLOG Model for Urn and Balls

type Color; type Ball; type Draw; ™

random Color TrueColor(Ball);
random Ball BallDrawn(Draw); >> header
random Color ObsColor(Draw);

guaranteed Color Blue, Green;
guaranteed Draw Drawl, Draw2, Draw3, Draw4; _J

#Ball ~ Poisson[6](); < number statement
TrueColor(b) ~ TabularCPD[[0.5, 0.5]1Q); ~—
BallDrawn(d) ~ UniformChoice({Ball b}); «__ dependency

statements
ObsColor(d)
it (BallDrawn(d) != null) then
~ NoisyCopy(TrueColor(BallDrawn(d)));

BLOG Model for Urn and Balls

?
Identity uncertainty: BallDrawn(Draw1) = BallDrawn(Draw?2)

BalIDrawn(d) ~ UniformChoice({Ball b}); .//’;>

21



BLOG Model for Urn and Balls

Arbitrary conditional
probability distributions

#Ball ~ Poisson[6]Q); ‘////////////

TrueColor(b) ~ TabularCPD[[0.5, 0.5]110);
BallDrawn(d) ~ UniformChoice({Ball b});

1\
ObsColor(d) CPD arguments
if (BallDrawn(d) != null) then —
~ NoisyCopy(TrueColor(BallDrawn(d)));

BLOG Model for Urn and Balls

Context-specific

ObsColor(d) dependence

if (BallDrawn(d) !'= null) then —
~ NoisyCopy(TrueColor(BallDrawn(d)));

22



BLOG Model for Urn and Balls

type Color; type Ball; type Draw;

random Color TrueColor(Ball);
random Ball BallDrawn(Draw);
random Color ObsColor(Draw);

guaranteed Color Blue, Green;
guaranteed Draw Drawl, Draw2, Draw3, Draw4;

#Ball ~ Poisson[6]Q);
TrueColor(b) ~ TabularCPD[[0.5, 0.5]110);
BallDrawn(d) ~ UniformChoice({Ball b});

ObsColor(d)
it (BallDrawn(d) != null) then
~ NoisyCopy(TrueColor(BallDrawn(d)));

Declarative Semantics

e What is the set of possible worlds?
e What is the probability distribution over worlds?

23
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What Exactly Are the Objects? o
e Objects are tuples that encode generation history
e Aircraft: (Aircraft, 1), (Aircraft, 2), ...
e Blip from (Aircraft, 2) at time 8:
(Blip, (Source, (Aircraft, 2)), (Time, 8), 1)
(1.9, 9.0,2.1)
S (1.9, 6.1,2.2)
.......................... O7oL32 »<m 32)
(0.9,5.8,3.1) 7T N e
t=1 t=2 t=3
: : eoss
Graphical Representation of BLOG seco
Model '

TrueColor(b)
[e 0]

BallDrawn(d) = b\

#Ball

ObsColor(d)

BallDrawn(d)

K

Like a BN, but:

Edges are only active in
certain contexts

e Ignoring contexts,
ObsColor(d) has infinitely
many parents

e In other models, graph may
be cyclic if you ignore
contexts
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Basic Random Variables (RVS)

e For each number statement and tuple of generating objects,
have RV for number of objects generated

e For each function symbol and tuple of arguments, have RV for
function value

e Lemma: Full instantiation of these RVs uniquely identifies a
possible world

Probability Distribution

e BLOG model specifies:

e Conditional distributions for basic RVs

e Factorization properties for certain finite instantiations of basic RVs
e Theorem: Under certain conditions (analogous to BN

acyclicity), every BLOG model defines unique distribution over
possible worlds

25
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Inference °

e Does infinite set of basic RVs prevent inference?

e No: Sampling algorithm only needs to instantiate finite
set of relevant variables

e Algorithms:

e Rejection sampling [Milch et al., IJCAI 2005]
e Guided likelihood weighting [Milch et al., Al/Stats 2005]

e Theorem: For large class of BLOG models, sampling
algorithms converge to correct probability for any query,
using finite time per sampling step

T : esse
Summary: Distributions over First- sece
Order Structures '

\
e Idea goes back to Gaifman [1964]

e Halpern [1990] defines language for stating constraints on such
distributions
e But not specifying a distribution uniquely

e Logic programming approaches [Poole 1993; Sato & Kameya 2001; Kersting &

De Raedt 2001] define unique distributions, but assume unique names
and domain closure

e PRMs [Koller & Pfeffer 1998] have special constructs for number
uncertainty, existence uncertainty

e BLOG: Unified syntax for distributions over worlds with:
e Varying sets of objects
e Varying mappings from observations to objects

See also MEBN (Multi- Entity Bayesian Networks) [Laskey and da Costa, UAI
2005]
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