The need for multimodal belief states in dynamic models

- An LDS defines only unimodal belief states
 \[\hat{x}_{t+1|t} = \hat{x}_{t+1} + K_{t+1}(y_{t+1} - C\hat{x}_{t+1}) \]
 \[P_{t+1|t} = P_{t+1} - KCP_{t+1} \]

- (a) A Kalman filter will predict the location of the bird using a single Gaussian centered on the obstacle.
- (b) A more realistic model allows for the bird’s evasive action, predicting that it will fly to one side or the other.
A road map to more complex dynamic models

- Discrete variables:
 - Mixture model (e.g., mixture of multinomials)
 - HMM (for discrete sequential data, e.g., text)
 - Factorial HMM

- Continuous variables:
 - Mixture model (e.g., mixture of Gaussians)
 - HMM (for continuous sequential data, e.g., speech signal)
 - State space model
 - Factor analysis
 - Switching SSM

Factorial HMM

- The belief state at each time is $X_t = \{Q_t^{(1)}, \ldots, Q_t^{(k)}\}$
 and in the most general case has a state space $O(d^k)$ for k-nary chains.

- The common observed child Y_t couples all the parents (explaining away).

- But the parameterization cost for fHMM is $O(kd^k)$ for k chain-specific transition models $p(Q_t^{(i)} | Q_{t-1}^{(i-1)})$ rather than $O(d^k)$ for $p(X_t | X_{t-1})$.
Special case: switching HMM

- Different chains have different state space and different semantics
- The exact calculation is intractable and we must use approximate inference methods

Hidden Markov decision trees

- A combination of decision trees with factorial HMMs
- This gives a "command structure" to the factorial representation
- Appropriate for multi-resolution time series
- Again, the exact calculation is intractable and we must use approximate inference methods
Switching LDS

- Possible world:
 - multiple motion state

- Task:
 - Trajectory prediction

- Model:
 - Combination of HMM and LDS
 \[p(X_t = x_t \mid X_{t-1} = x_{t-1}, S_{t-1} = i) = N(x_t; A x_{t-1}, Q) \]
 \[p(Y_t = y_t \mid X_t = x_t) = N(x_t; C x_t, R) \]
 \[p(S_t = j \mid S_{t-1} = i) = M(i, j) \]
 - Belief state has \(O(k^t)\) Gaussian modes:

Data association (correspondence problem)

- Optimal belief state has \(O(k^t)\) modes.
- Common to use nearest neighbor approximation.
- For each time slice, can enforce that at most one source causes each observation.
- Correspondence problem also arises in shape matching and stereo vision.
Triangulating fHMM

- Is the following triangulation correct?
- Here is a triangulation
- We have created cliques of size $k+1$, and there are $O(kT)$ of them. The junction tree algorithm is not efficient for factorial HMMs.

Mixed Membership Model (M³)

- Mixture versus admixture

A Bayesian mixture model → A Bayesian admixture model: Mixed membership model
Population admixture: M³ in genetics

- The genetic materials of each modern individual are inherited from multiple ancestral populations, each DNA locus may have a different genetic origin …

- Ancestral labels may have (e.g., Markovian) dependencies

Latent Dirichlet Allocation: M³ in text mining

- A document is a bag of words each generated from a randomly selected topic
Inference in Mixed Membership Models

- Mixture versus admixture

\[p(D) = \sum_{\{z_{n,m}\}} \prod_{n} p(x_{n,m} | \phi_{z_{n,m}}) p(z_{n,m} | \pi_{z_{n,m}}) p(\pi_{z_{n,m}} | \alpha) \]
\[p(\pi_z | D) = \sum_{\{z_{n,m}\}} \prod_{n} p(x_{n,m} | \phi_{z_{n,m}}) p(z_{n,m} | \pi_{z_{n,m}}) p(\pi_{z_{n,m}} | \alpha) \]

Inference is very hard in M3, all hidden variables are coupled and not factorizable!

Approaches to inference

- Exact inference algorithms
 - The elimination algorithm
 - The junction tree algorithms

- Approximate inference techniques

 - Monte Carlo algorithms:
 - Stochastic simulation / sampling methods
 - Markov chain Monte Carlo methods

 - Variational algorithms:
 - Belief propagation
 - Assumed density filtering
 - Variational inference
Example: Particle filtering (sequential Monte Carlo)

- Represent belief state as weighted set of samples (non-parametric).
- Can handle nonlinear transition/emission and multi-modality.
- Easy to implement.
- Only works well in small dimensions.

Example: Structured Variational approximation

- Finds an optimal $q^*(\cdot)$ in a tractable family to approximate the original joint $p()$

$$q^*(\cdot) \in \arg \min_{q \in \mathcal{F}} F(q \| p)$$

- There can be many different choices of \mathcal{F} and $F()$.
Example: Assumed density filtering (ADF)

- ADF forces the belief state to live in some restricted family \mathcal{F}, e.g., product of histograms, Gaussian.
- Given a prior $\tilde{\alpha}_{t-1} \in \mathcal{F}$, do one step of exact Bayesian updating to get $\tilde{\alpha}_t \in \mathcal{F}$. Then do a projection step to find the closest approximation in the family:
 $$\tilde{\alpha}_t \in \arg \min_{q \in \mathcal{F}} \text{KL}(\tilde{\alpha}_t \parallel q)$$
- The Boyen-Koller (BK) algorithm is ADF applied to a DBN
 - e.g., let \mathcal{F} be a product of (singleton) marginals:
- This is also a variational method, and the updating step can still be intractable

Monte Carlo methods

- Draw random samples from the desired distribution
- Yield a stochastic representation of a complex distribution
 - marginals and other expectations can be approximated using sample-based averages
 $$E[f(x)] = \frac{1}{N} \sum_{i=1}^{N} f(x^{(i)})$$
- Asymptotically exact and easy to apply to arbitrary models
- Challenges:
 - how to draw samples from a given dist. (not all distributions can be trivially sampled)?
 - how to make better use of the samples (not all sample are useful, or equally useful, see an example later)?
 - how to know we’ve sampled enough?
Example: naive sampling

- Construct samples according to probabilities given in a BN.

Alarm example: (Choose the right sampling sequence)
1) Sampling \(P(B) = \{0.001, 0.999\} \) suppose it is false, \(B_0 \). Same for \(E_0 \). \(P(A|B_0, E_0) = \{0.001, 0.999\} \) suppose it is false...
2) Frequency counting: In the samples right, \(P(J|A_0) = P(J,A_0)/P(A_0) = \{1/9, 8/9\} \).

Example: naive sampling

- Construct samples according to probabilities given in a BN.

Alarm example: (Choose the right sampling sequence)
3) what if we want to compute \(P(J|A_1) \)? we have only one sample ... \(P(J|A_1) = P(J,A_1)/P(A_1) = \{0, 1\} \).
4) what if we want to compute \(P(J|B_1) \)? No such sample available! \(P(J|A_1) = P(J,B_1)/P(B_1) \) can not be defined.

For a model with hundreds or more variables, rare events will be very hard to garner enough samples even after a long time or sampling ...
Monte Carlo methods (cond.)

- **Direct Sampling**
 - We have seen it.
 - Very difficult to populate a high-dimensional state space

- **Rejection Sampling**
 - Create samples like direct sampling, only count samples which is consistent with given evidences.

- **Likelihood weighting, ...**
 - Sample variables and calculate evidence weight. Only create the samples which support the evidences.

- **Markov chain Monte Carlo (MCMC)**
 - Metropolis-Hasting
 - Gibbs

Rejection sampling

- Suppose we wish to sample from dist. $\Pi(X) = \Pi'(X)/Z$.
 - $\Pi(X)$ is difficult to sample, but $\Pi'(X)$ is easy to evaluate
 - Sample from a simpler dist $Q(X)$
 - Rejection sampling
 \[x^* \sim Q(X), \quad \text{accept } x^* \text{ w.p. } \frac{\Pi'(x^*)}{kQ(x^*)} \]

- Correctness:
 \[
p(x) = \frac{[\Pi'(x)/kQ(x)]Q(x)}{\int [\Pi'(x)/kQ(x)]Q(x)dx} \quad = \quad \frac{\Pi'(x)}{\Pi'(x)dx} = \Pi(x)
\]

- Pitfall …
Rejection sampling

- Pitfall:
 - Using $Q = \mathcal{N}(\mu, \sigma_q)$ to sample $P = \mathcal{N}(\mu, \sigma_p)$
 - If σ_q exceeds σ_p by 1%, and dimensional=1000,
 - The optimal acceptance rate $k = (\sigma_q/\sigma_p)^d \approx 1/20,000$
 - Big waste of samples!

- Adaptive rejection sampling
 - Using envelope functions to define Q

Unnormalized importance sampling

- Suppose sampling from $R(\cdot)$ is hard.
- Suppose we can sample from a "simpler" proposal distribution $Q(\cdot)$ instead.
- If Q dominates P (i.e., $Q(x) > 0$ whenever $R(x) > 0$), we can sample from Q and reweight:

\[
\langle f(X) \rangle = \int f(x)P(x)dx = \int f(x) \frac{P(x)}{Q(x)}Q(x)dx = \frac{1}{M} \sum_{n=1}^{M} f(x^n) \frac{P(x^n)}{Q(x^n)} \text{ where } x^n \sim Q(X) = \frac{1}{M} \sum_{n=1}^{M} f(x^n)w^n
\]
Normalized importance sampling

- Suppose we can only evaluate $P'(x) = \alpha P(x)$ (e.g. for an MRF).
- We can get around the nasty normalization constant α as follows:
 - Let $r(X) = \frac{P'(x)}{Q(x)} \Rightarrow \langle r(X) \rangle_Q = \int \frac{P(x)}{Q(x)} Q(x) dx = \int P(x) dx = \alpha$
 - Now

$$\langle f(X) \rangle_p = \left[f(x) \frac{P'(x)}{Q(x)} dx = \frac{1}{\alpha} \int f(x) \frac{P'(x)}{Q(x)} Q(x) dx \right]$$

$$= \left[\frac{f(x) r(x) Q(x)}{\alpha} dx \right]$$

$$= \sum_m f(x_m) w_m$$

where $x_m \sim Q(x)$

- Weighted resampling

Problem of importance sampling: depends on how well Q matches P

- If $P(x)f(x)$ is strongly varying and has a significant proportion of its mass concentrated in a small region, r_m will be dominated by a few samples

- Note that if the high-prob mass region of Q falls into the low-prob mass region of P, the variance of $r_m = \frac{P(x_m)}{Q(x_m)}$ can be small even if the samples come from low-prob region of P and potentially erroneous.

Solution

- Use heavy tail Q
- Weighted resampling $w_m = \frac{P(x_m)}{Q(x_m)/\sum r_m}$
Weighted resampling

- Sampling importance resampling (SIR):
 1. Draw N samples from Q: $X_1^* \ldots X_N^*$
 2. Constructing weights: $w_1 \ldots w_N$,
 $$w^n = \frac{p(x^n | y_t)}{\sum_{k=1}^{N} p(x^k | y_t)}$$
 3. Sub-sample x from $\{X_1^* \ldots X_N^*\}$ w.p. $(w_1 \ldots w_N)$

- Particular Filtering
 - A special weighted resampler
 - Yield samples from posterior $p(X_t | Y_{1:t})$

Sketch of Particle Filters

- The starting point
 $$p(X_t | Y_{1:t}) = \frac{p(X_t | Y_{1:t-1})p(Y_t | X_t)}{\int p(X_t | Y_{1:t-1})p(Y_t | X_t)dX_t}$$
 - Thus $p(X_t | Y_{1:t})$ is represented by
 $$X_t^* \sim p(X_t | Y_{1:t}), \quad w_t^* = \frac{p(Y_t | X_t^*)}{\sum_{k=1}^{N} p(Y_t | X_k^*)}$$

- A sequential weighted resampler
 - Time update
 $$p(X_{t+1} | Y_{1:t+1}) = p(X_{t+1} | Y_t)\frac{p(Y_t | X_{t+1})}{p(Y_t | X_t)}$$
 - Measurement update
 $$p(X_{t+1} | Y_{1:t+1}) = \frac{p(X_{t+1} | Y_t)\frac{p(Y_t | X_{t+1})}{p(Y_t | X_t)}dX_{t+1}}{\sum_{k=1}^{N} w_k^n}$$
 $$(sample \ from \ a \ mixture \ model)$$
 $$(reweight)$$
Rao-Blackwellised sampling

- Sampling in high dimensional spaces causes high variance in the estimate.
- RB idea: sample some variables X_p, and conditional on that, compute expected value of rest X_d analytically:

$$E_{\pi \mid \theta}(f(X)) = \int p(x_p \mid \theta) \left(\int p(x_d \mid x_p) f(x_p, x_d) \, dx_d \right) \, dx_p$$

$$= \int p(x_p \mid \theta) E_{\pi \mid \theta}(f(x_p, X_d) \mid x_p) \, dx_p$$

$$= \frac{1}{M} \sum_{m=1}^{M} E_{\pi \mid \theta}(f(x_p^m, X_d)) \quad x_p^m = p(x_p \mid \theta)$$

- This has lower variance, because of the identity:

$$\text{var}[\tau(X_p, X_d)] = \text{var}[E[\tau(X_p, X_d) \mid X_p]] + E[\text{var}[\tau(X_p, X_d) \mid X_p]]$$

- Hence $E[\tau(X_p, X_d) \mid X_p]$ is a lower variance estimator.

Markov chain Monte Carlo (MCMC)

- Importance sampling does not scale well to high dimensions.
- Rao-Blackwellisation not always possible.
- MCMC is an alternative.
- Construct a Markov chain whose stationary distribution is the target density $P(X \mid \theta)$.
- Run for T samples (burn-in time) until the chain converges/mixes/reaches stationary distribution.
- Then collect M (correlated) samples X_m.
- Key issues:
 - Designing proposals so that the chain mixes rapidly.
 - Diagnosing convergence.