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Reading: MJ-Chap. 5,10,11
Partially observed GMs o

e Speech recognition

Concepe: 1 xiggle word
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Fig. 1.2 Isolated Word Problem




Partially observed GM

e Biological Evolution

ancestor

T years

Unobserved Variables

e A variable can be unobserved (latent) because:

e itis an imaginary quantity meant to provide some simplified and
abstractive view of the data generation process

e.g., speech recognition models, mixture models ...

e itis a real-world object and/or phenomena, but difficult or impossible to
measure

e.g., the temperature of a star, causes of a disease, evolutionary
ancestors ...

e itis a real-world object and/or phenomena, but sometimes wasn’t
measured, because of faulty sensors, etc.
e Discrete latent variables can be used to partition/cluster data
into sub-groups.

e Continuous latent variables (factors) can be used for
dimensionality reduction (factor analysis, etc).
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Mixture models 5
\
e A density model p(x) may be multi-modal.
e We may be able to model it as a mixture of uni-modal
distributions (e.g., Gaussians).
e Each mode may correspond to a different sub-population
(e.g., male and female).
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Gaussian Mixture Models (GMMs) | 22
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e Consider a mixture of K Gaussian components:
o Zis alatent class indicator vector: p(2,) = multi(z, : z7) = [ [(z, )"
e Xis a conditional Gaussian variable with a class-specific men/covariance

1 -
plx, |Z,,k =1,u,%)= WEXD{'%(XH _/Jk)rzkl(’\/n '/lk)}
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e The likelihood of a sample:
px, \,u %) 72 p(zk *l\ﬂ)p(X |z/< =1,1,%) mixture proportion  mixture component
WA Z) =D, = ) =L u,

:za ]—[k((”k)I:N(Xn :/lkvzk)z:): ZkﬁkN(X1|/lk'zk)
()

i w! A W &
2 IVAN & _

P
-y
e/

e This model can be used for unsupeNised clustering.

e This model (fit by AutoClass) has been used to discover new kinds of stars in
astronomical data, etc.




Conditional mixture model:
Mixture of experts

X

Y.

N x% X
o We will model p( Y| X) using different experts, each responsible for
different regions of the input space.
e Latent variable Zchooses expert using softmax gating function:
P(z* =1x) = Softmax(&” x)
e Each expert can be a linear regression model: P(y‘x,z“ =1)= ./I/(y; fo,af)
e The posterior expert responsibilities are
P =1x)p,(ylx.6,,0%)
2P =Ux)p;(ylx.6;.07)

P(z¥ =1lx,y,0)=

Hierarchical mixture of experts

A twer level balanced Hierarducal Mixtures of Experty meodelr aw

. Bayesian Net

e This is like a soft version of a depth-2 classification/regression tree.

e AVY|X6,,6,) can be modeled as a GLIM, with parameters
dependent on the values of &, and &, (which specify a "conditional
path" to a given leaf in the tree).




Mixture of overlapping experts
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e By removing the X > Zarc, we can make the partitions
independent of the input, thus allowing overlap.

e This is a mixture of linear regressors; each subpopulation has
a different conditional mean.
p(z* fl)Pk(Y‘X’Hka/%)
2, P =Dp,1x.0,.07)

P(z" =1x.y.0)=

Why is Learning Harder?

e In fully observed iid settings, the log likelihood decomposes
into a sum of local terms (at least for directed models).

£.(6;0)=log p(x,z|0)=log p(z|6,)+log p(x|z,6,)

e With latent variables, all the parameters become coupled
together via marginalization

£0:0) =109y p(x.z16)=10g ¥ p(z6,)p(x|2.,6,)
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Gradient Learning for mixture
models

\
e We can learn mixture densities using gradient descent on the

log likelihood. The gradients are quite interesting:

£(6)=l0g p(x|6) =109 Y. 7, p,(X6,)
k

ot 1 5/0/(()(‘9/()
20 p(x|0) ;”* 00
alog p, (X6,)
- 9
(x| 6) P (X(6,) 20
~ Pe(X6;) 2log p(X6,) < . 94,
“Xm o) o6, 2o,
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e In other words, the gradient is the responsibility weighted sum
of the individual log likelihood gradients.

e Can pass this to a conjugate gradient routine.

Parameter Constraints

e Often we have constraints on the parameters, e.g. X,7, =1, £
being symmetric positive definite (hence ;> 0).

e We can use constrained optimization, or we can
reparameterize in terms of unconstrained values.

e For normalized weights, use the softmax transform: 77, = 5ot

=, exp(r;)

e For covariance matrices, use the Cholesky decomposition:
>T=ATA
where A is upper diagonal with positive diagonal:

A, =exp(4,)>0 Aj=n; (j>7) A;=0(j</)

the parameters y, 1, n; € R are unconstrained.

e Use chain rule to compute a—/ %
omr OA




ldentifiability

e A mixture model induces a multi-modal likelihood.
e Hence gradient ascent can only find a local maximum.

e Mixture models are unidentifiable, since we can always switch
the hidden labels without affecting the likelihood.

e Hence we should be careful in trying to interpret the
“‘meaning” of latent variables.

likelihood

/

pa rameter space

Expectation-Maximization (EM)
Algorithm H

e EM is an optimization strategy for objective functions that can
be interpreted as likelihoods in the presence of missing data.
e |tis much simpler than gradient methods:
e No need to choose step size.
e Enforces constraints automatically.
e Calls inference and fully observed learning as subroutines.

e EMis an lterative algorithm with two linked steps:
e E-step: fill-in hidden values using inference, p(zx, &).
e M-step: update parameters t+1 using standard MLE/MAP method
applied to completed data
o We will prove that this procedure monotonically improves (or
leaves it unchanged). Thus it always converges to a local
optimum of the likelihood.




Complete & Incomplete Log
Likelihoods

e Complete log likelihood
Let X denote the observable variable(s), and Z denote the latent variable(s).

If Zcould be observed, then ot

{(0,x,z)=logp(x,z|0)

e Usually, optimizing 4() given both zand xis straightforward (c.f. MLE for fully
observed models).

e Recalled that in this case the objective for, e.g., MLE, decomposes into a sum of
factors, the parameter for each factor can be estimated separately.

e Butgiven that Z is not observed, £() is a random quantity, cannot be
maximized directly.

e Incomplete log likelihood
With zunobserved, our objective becomes the log of a marginal probability:

£(0:x)=1og p(x10) <109 Y. p(x. 2 |0)

e This objective won't decouple

Expected Complete Log
Likelihood o

e For any distribution ¢(z), define expected complete log likelihood:

(6.(6:x.2)), = Y gz x.0)log plx, 2 |6)

A deterministic function of 4
Linear in £() --- inherit its factorizabiility

Does maximizing this surrogate yield a maximizer of the likelihood?

e Jensen’s inequality

(0, x)=log p(x|6)
:|ngp(X,Z|¢9) /
. px.z10) V
ong/(zlx) 710

plx.z16)
9(z1x)

*Zf](ZIX)log = L(0:x)2(4(0:x,2)),+H,




Lower Bounds and Free Energy

\
e For fixed data x, define a functional called the free energy:

Fg.02 Y gz | x)log PX 219

9(z|x)

e The EM algorithm is coordinate-ascent on F:

</4(6;x)

e E-step: g™ =argmax F(g,0")
g
e M-step: 0" =arg max F(g'.0")
&
Flae)
aef

E-step: maximization of expected
LW.rt. g o2

e Claim: qm —argmax F(g,0") = p(z| x,0")
7

e This is the posterior distribution over the latent variables given the data
and the parameters. Often we need this at test time anyway (e.g. to
perform classification).

e Proof (easy): this setting attains the bound 46,x)>F¢,0)

F '0f ’0f — ’0f | M
(p(2x,0).0) = E plz}x.0")log o(alx. 0
=Y g(z|x)log p(x|6")
=log p(x|0")=¢(6"; x)

e Can also show this result using variational calculus or the fact
that ¢(0;x)-F(g.0)=KL(g| p(z| x.0))




E-step = plug in posterior
expectation of latent variables

e Without loss of generality: assume that p(x,26) is a
generalized exponential family distribution:

1
p(x,z|0) = mh(x,z) exp{z H,ﬁ(x,z)}

e Special cases: if p(X]2) are GLIMs, then £ (x,z) =7 (2)&(x)
e The expected complete log likelihood under ¢’ = p(z | x,0")
t. _ t ty_
(4@x.2)) ., —gq(zw,e )log p(x, z|6") - A6)

= Y6/ (£ (x.2) A(0)

p~GLIM

= Y01 0(2)) e & (X) ~ AB)

glzixo)

M-step: maximization of expected
Lw.rt. 6 o

e Note that the free energy breaks into two terms:
p(x.z|6)

g(z|x)
=2.9(z|x)log p(x,z|60)~> g(z| x)logg(z | x)

F(g,0)=> g(z|x)log

=({4(0:x.2)),+H,
e The first term is the expected complete log likelihood (energy) and the
second term, which does not depend on §, is the entropy.
e Thus, in the M-step, maximizing with respect to & for fixed ¢
we only need to consider the first term:
F+1 . o
0" =arg mgx(!c @;x, z)>q,4 =arg maax;q(z | x)log p(x,z|6)

e Under optimal ¢’/ this is equivalent to solving a standard MLE of fully
observed model p(x,z| ), with the sufficient statistics involving z
replaced by their expectations w.r.t. p(z] x,6).
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EM Constructs Sequential sels
Convex Lower Bounds ot
e Consider the likelihood function and the function A ¢*", -)‘.
likelihood
;
e A hill-climbing algorithm
00
4
. [ X
Summary: EM Algorithm -

e A way of maximizing likelihood function for latent variable
models. Finds MLE of parameters when the original (hard)
problem can be broken up into two (easy) pieces:

1. Estimate some “missing” or “unobserved” data from observed data and
current parameters.

2. Using this “complete” data, find the maximum likelihood parameter
estimates.

e Alternate between filling in the latent variables using the best
guess (posterior) and updating the parameters based on this

guess:
e E-step: g™ =argmax F(g,0")
e M-step: 0" =arg m}xF(qM,@*)

e Inthe M-step we optimize a lower bound on the likelihood. In
the E-step we close the gap, making bound=likelihood.

11
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Example: Gaussian mixture seoe
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(X
model :
e A mixture of K Gaussians: GM:
e Zis alatent class indicator vector
p(z,) =multi(z, :7) = [ 1(z, )"
k
e Xis a conditional Gaussian variable with a class-specific mean/covariance N
1
plx, |z =1,5) = Wexp{-é(xn 1) (X 1))

e The likelihood of a sample:
plx | )=, p(z* =1|7)p(x,| 2" =1, 1,%)
-3 T Nex, i 207 )= 3 NG 20
e The expected complete log likelihood

(€0:x,2))= Zlog p(z, 7)) ., + 2log p(x, | 2, 1, %))

p(zlx)

- Zz<z”">log7rk—% ZHz,f>((xn—yk)rzkl(xﬂ—yk)+log\2k\+5)
n k n k

E-step

o We maximize</c (0)> iteratively using the following
iterative procedure:

-6

— Expectation step: computing the expected value of
the hidden variables (i.e., 2) given current est. of
the parameters (i.e., 7and ).

t 1) s
KO 2K\ = (k=1 x50 = 7PN, 1 27
n n [ g p n TH Zﬂ'mN(X |/u(7‘) 2(7))
/ nt vl
;

/

Here we are essentially doing inference
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M oo
-step :
e We maximize</€ (9)> iteratively using the following
iterative procudure:
— Maximization step: compute the parameters under N
current results of the expected value of the hidden variables
7, =argmax(/,(6)), = 2(1.(0))=0,Vk, st Xz, =1
k
2(zk) k(r)
- Moy By
Dtk
wy =argmax(/(6)), = ul = ﬁ Fact:
%, T alogla?| .
2 rk(”(X 7/1/((”1))(/\/ 7!1/(:71))7' AT =A
T margma(/®), = X =2 e
This is isomorphic to MLE except that the variables that are hidden are
replaced by their expectations (in general they will by replaced by their
corresponding "sufficient statistics")
o000
0000
o000
eo00
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EM for MOG >

. % & :' L=1 o L=4 .
i O =& ﬁ @
'-:-1 -..I‘ . : s L] 4 LY . J
'. _.'-:. O L o
(a) {c) (d) (e)
L=6 . L=8 L=10 . L=12 - .
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Compare: K-means

|
e The EM algorithm for mixtures of Gaussians is like a "soft

version" of the K-means algorithm.
e In the K-means “E-step” we do hard assignment:

(*) _ (FINT 5 -1(7) ()
z, = arg mkaX(Xn — Hyg ) Z/( (Xn — Hg

e In the K-means “M-step” we update the means as the
weighted sum of the data, but now the weights are 0 or 1:

e >0z k)x,
| > 5z k)

et 3 3 a2, B3 o
_ . s R . _
< L P e P
7Tt ; * ‘-':' e T ;‘:. * ? *
> o > > & >
@) @) ] [C)] (€] [}

EM for conditional mixture model

e Model: /K
Piylx) =2, p(z“ =1|x,&)plylz“ =1x,0,0) || O-
e The objective function \i

¥

(€O:x.y,2) = X0g p(z,1%,9), ..., + D100 p(y, X, 2,,0,0)

n n

p(zlx.y)

1 -0y X

= z})log(softmax(¢] x,) )-= KV 2Ln Tk Znl ol +
5 3 2 ogfsoftmax(& x,) Zzzw[% %) | 1og c)
n n o

o EM: ' ’ ‘
o Esstepr O =p(zf=1x,,y,.0)= P(Zﬂk%I\Xﬂ)pk(y”‘xﬂ,gk,gj)z

zp(zl;/ ZI‘XH)pj(yﬂ‘Xﬂ’gj'Uj)
J

o M-step:
using the normal equation for standard LR = (X7 X)"X"Y | but with the data
re-weighted by 7 (homework)

IRLS and/or weighted IRLS algorithm to update {&,, 6, o, based on data pair
(X Y,), with weights T:(f) (homework)

14
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EM for general BNs &
while not converged
% E-step
for each node /
£55,=0 % reset expected sufficient statistics
for each data sample »
do inference with X, ,
for each node /
ESS, += (55,(%,,.%,,))
' o P(Xn,/—llxﬂﬁ/—/)
% M-step
for each node /
0,:= MLE(£ESS,)
[ X X ]
0000
0000
- . ::O
Partially Hidden Data o

e Of course, we can learn when there are missing (hidden)
variables on some cases and not on others.

e In this case the cost function is:
4(0:0)= D logp(x,.y,|0)+ > 109> p(X,. ¥n|6)
neComplete meMissing Ym

Note that ¥;, do not have to be the same in each case --- the data can
have different missing values in each different sample

e Now you can think of this in a new way: in the E-step we
estimate the hidden variables on the incomplete cases only.

e The M-step optimizes the log likelihood on the complete data
plus the expected likelihood on the incomplete data using the
E-step.

15



EM Variants oo
e Sparse EM: |

Do not re-compute exactly the posterior probability on each
data point under all models, because it is almost zero. Instead
keep an “active list” which you update every once in a while.

e Generalized (Incomplete) EM:

It might be hard to find the ML parameters in the M-step, even
given the completed data. We can still make progress by
doing an M-step that improves the likelihood a bit (e.g.
gradient step). Recall the IRLS step in the mixture of experts
model

A Report Card for EM

e Some good things about EM:
e no learning rate (step-size) parameter
e automatically enforces parameter constraints
e very fast for low dimensions
e each iteration guaranteed to improve likelihood

e Some bad things about EM:
e can get stuck in local minima
e can be slower than conjugate gradient (especially near convergence)
e requires expensive inference step
e is a maximum likelihood/MAP method
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