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Reading: MJ-Chap. 2,4, and KF-chap5

Review: independence properties
of DAGs o

e Defn: let I,(6) be the set of local independence properties
encoded by DAG &, namely:

{ X, L. NonDescendants(.X) | Parents(X) }
e Defn: ADAG Gis an I-map (independence-map) of P
it (&)< A
e A fully connected DAG &is an I-map for any distribution,
since L(6)=Oc I(A) for any P.

e Defn: A DAG &is a minimal I-map for Pif it is an I-map for 2,
and if the removal of even a single edge from &renders it not
an I-map.

e A distribution may have several minimal I-maps
e Each corresponding to a specific node-ordering




Global Markov properties of
DAGs

\
e Xis d-separated (directed-separated) from Zgiven Yif we

can't send a ball from any node in X'to any node in Zusing
the "Bayes-ball" algorithm illustrated bellow:

X 4 £ £ X =z
( _';-:T.:; D ( ,_.‘_._... §
= ®  Defn: I{6)=all independence
‘ .’.\_ properties that correspond to d-
separation:
r B I6) = {x L Z|y): dsep,, (X: Z}Y))
h g £ X ]
"\ / + D-separation is sound and
@ O complete (Chap 3, Koller & Friedman)
[ X X ]
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P-maps o

e Defn: ADAG Gis a perfect map (P-map) for a distribution Pif
IA=L6).
e Thm: not every distribution has a perfect map as DAG.
e Pf by counterexample. Suppose we have a model where
ALC|{B D}, and BLD|{A,c}.
This cannot be represented by any Bayes net.

e e.g., BN1 wrongly says B1D| A, BN2 wrongly says B1D.




Undirected graphical models

e Pairwise (non-causal) relationships

e Can write down model, and score specific configurations of
the graph, but no explicit way to generate samples

e Contingency constrains on node configurations

Canonical examples

e The grid model

e Naturally arises in image processing, lattice physics, etc.

e Each node may represent a single "pixel", or an atom

e The states of adjacent or nearby nodes are "coupled" due to pattern continuity or
electro-magnetic force, etc.

e Most likely joint-configurations usually correspond to a "low-energy" state




Social networks :

The Social Structure of “Countryside™ School District

Poants Colored by Race i) O White
#® Black
® Mixed'Other

Ignoring the arrows, this is a "relational network" among people

Protein interaction networks .
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Modeling Go
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This is the middle position of a Go game.
Overlaid is the estimate for the probability of
becoming black or white for every intersection,
Large sguares mean the probability is higher.

Information

retrieval




Semantics of Undirected Graphs

e Let AHbe an undirected graph:
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e Bseparates Aand Cif every path frém a node in Ato a node
in Cpasses through a node in B sep,, (4;C|B)

e A probability distribution satisfies the global Markov property
if for any disjoint A4, B, ¢, such that Bseparates Aand ¢, Ais
independent of Cgiven B: I(H) = {ALC\B):sepH(A;C\B)}

Undirected Graphical Models

e Defn: an undirected graphical model represents a distribution
A X;,...,X,) defined by an undirected graph A, and a set of
positive potential functions y, associated with cliques of H,

s.t. 1
P(xy,... %)== [w.(x.)
Z ceC
where Zis known as the partition function:

Z= Jlv.x)

peon Xy CEC

e Also known as Markov Random Fields, Markov networks ...

e The potential function can be understood as an contingency
function of its arguments assigning "pre-probabilistic" score of
their joint configuration.




Cliques

\
e For &={V, £}, a complete subgraph (clique) is a subgraph

& ={V'cV,E'c£} such that nodes in V' are fully
interconnected

e A (maximal) clique is a complete subgraph s.t. any superset
V'S V'is not complete.

e A sub-clique is a not-necessarily-maximal clique.

(A)
o
()
e Example:

e max-cliques = {A4,8,0}, {B,¢ D},
e sub-cliques = {4, 8}, {¢,D}, ...~ all edges and singletons

Example UGM — using max §§:
cliques o

1
P(XI’XZ'X37X4):?WC(X124)XI/IC(X234)
Z= Z‘/’:(X124)X‘/’c(xz34) 'E,E:'

e For discrete nodes, we can represent AX,.,) as two 3D tables
instead of one 4D table




Example UGM — using subcliques 2o
|
(a)
o
1 (c)
P(XI,XZ,Xs,X4):EHl//g(X/J') JI:I:B;]

1
= Z Wiz (Xi2)W1a (K12 )W 23 (X23)W 24 (X24 )W 34 (X34)
Z= 2 Tlvs&x)
X1,X2,X3, X4 [f

e For discrete nodes, we can represent A X}.,) as 5 2D tables
instead of one 4D table

Interpretation of Clique Potentials

CO——3

e The model implies XLZ] Y. This independence statement
implies (by definition) that the joint must factorize as:

px.y.z)=py)pxly)p(z|y)
e We can write this as: ~ PXV:2)=px.y)p(zly)  pyt
px.y.z)=pxly)p(z,y)

e cannot have all potentials be marginals
e cannot have all potentials be conditionals

e The positive clique potentials can only be thought of as
general "compatibility”, "goodness" or "happiness" functions
over their variables, but not as probability distributions.




Exponential Form

e Constraining clique potentials to be positive could be inconvenient (e.g.,
the interactions between a pair of atoms can be either attractive or
repulsive). We represent a clique potential y(x.) in an unconstrained
form using a real-value "energy" function ¢,(x.):

l//C (XC) = exp{_ ¢{_‘ (X{_‘)}
For convenience, we will call ¢,(x.) a potential when no confusion arises from the context.
e This gives the joint a nice additive strcuture

p) —éexp{—zqﬁc(m}:;exp{—Hw}

ceC
where the sum in the exponent is called the "free energy":

HX) =2 4.(x.)

ceC
e In physics, this is called the "Boltzmann distribution”.

e In statistics, this is called a log-linear model.

Example: Boltzmann machines

e A fully connected graph with pairwise (edge) potentials on
binary-valued nodes (for x; e {~1,+1}or x, € {0,1}) is called a
Boltzmann machine

P(Xy, Xy, X5, X,) = éexp{z% (X/X/)}
iy

1ol |
- expllzj: 0,%,X; +Za,.x,. +C'I
e Hence the overall energy function has the form:
H(x)=2 (%= 1) (x; — 1) = (x = 1) O(x = 1)




Example: Ising (spin-glass)
models

\
e Nodes are arranged in a regular topology (often a regular

packing grid) and connected only to their geometric
neighbors.

e Same as sparse Boltzmann machine, where ©,#0 iff /j are
neighbors.

e e.g., nodes are pixels, potential function encourages nearby pixels to
have similar intensities.

e Potts model: multi-state Ising model.

Example: multivariate Gaussian
Distribution o2

e A Gaussian distribution can be represented by a fully
connected graph with pairwise (edge) potentials over
continuous nodes.

e The overall energy has the form
H(x) =2 (X =)0 (x; — 1) = (x = 1) O(x — 1)

where x is the mean and @is the inverse covariance (precision) matrix.

e Also known as Gaussian graphical model (GGM), same as
Boltzmann machine except x; eR
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Sparse precision vs. sparse
covariance in GGM

O~

1 6 000 010 015 -013 -0.08 015
6 27 00 015 -003 002 001 -003
x'=|0 7 3 80 r=/-013 002 010 007 -0.12
008 409 -0.08 001 007 -004 007
0 0095 015 -003 -012 0.07 0.08

=06 X 1 X
»
X LXs = %5=0

/\/nbrs(l) or nbrs(5)

Independence properties of UGM

e Let us return to the question of what kinds of distributions can
be represented by undirected graphs (ignoring the details of
the particular parameterization).

e Defn: the global Markov properties of a UG Hare
I(H) =X L Z|Y)isep,, (X ZY))|

7N
rd \\

e |[s this definition sound and complete?

11



Soundness and completeness of
global Markov property

|
Defn: An UG AHis an I-map for a distribution Pif IIH) < I(AP),
i.e., P entails I{H).

Defn: Pis a Gibbs distribution over Hif it can be represented
as 1
P(xy,...X,) = ?Hg//c(xc)

ceC

Thm 5.4.2 (soundness): If Pis a Gibbs distribution over A,
then A is an I-map of ~.

Thm 5.4.5 (completeness): If —sep (X Z|Y), then X £, Z|Y
in some Pthat factorizes over H.

Local and global Markov
properties o

For directed graphs, we defined I-maps in terms of local
Markov properties, and derived global independence.

For undirected graphs, we defined I-maps in terms of global
Markov properties, and will now derive local independence.

Defn: The pairwise Markov independencies associated with
UG H=(VE) are
L (H) = (X LYV X Y3 {X Y3 E)

e.g., Xl J_X5‘{X2;X3|X4}

0000
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Local Markov properties

\
e A distribution has the local Markov property w.r.t. a graph

H=(V,E) if the conditional distribution of variable given its
neighbors is independent of the remaining nodes

L (H) = X LVAX UNL (X)IN, (X)) X eV}

e Theorem (Hammersley-Clifford): If the distribution is strictly
positive and satisfies the local Markov property, then it
factorizes with respect to the graph.

e N,(X)is also called the Markov blanket of X.

Relationship between local and
global Markov properties o

e Thm 5.5.3. If PE L(H) then P I(A).
e Thm 5.5.4. If PE I{H) then PE L(H).

e Thm5.5.5.1f >0 and Pk I(H), then P= I{A).

e Pf sketch: p(a,b|c,d)=p(alc,d)p(b|c,d) and d separate b from {a,c}
= p(a,blc,d)p(c|d)=p(alc,d)p(blc,d)p(cld)=p(a,cld)p(bld)

e Corollary 5.5.6: If P >0, then I;= I = L.

e If 3x:. AX) =0, then we can construct an example (using
deterministic potentials) where I, 4 I or I; % I.

I
Given more infg y \\55 ’ SGi(\,Er-,I]gss info

3
Giver'15m'6re info
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I-maps for undirected graphs

\
e Defn: A Markov network A'is a minimal I-map for Pifitis an I-

map, and if the removal of any edge from H renders it not an
I-map.
e How can we construct a minimal I-map from a positive
distribution P?
e Pairwise method: add edges between all pairs X, Y's.t.
Pr(X LY IV\{X, VY

e Local method: add edges between Xand all ¥ eMB(X), where MB(X)
is the minimal set of nodes Us.t.

Pl (X LV\{XHULY)
e Thm 5.5.11/12: both methods induce the unique minimal I-map.

e If Ix s.t. AX) = 0, then we can construct an example where
either method fails to induce an I-map.

Perfect maps

e Defn: A Markov network H'is a perfect map for Pif for any X;
Y:Zwe have that

sep (X ZY) o P=(XLZ|Y)

e Thm: not every distribution has a perfect map as UGM.

e Pf by counterexample. No undirected network can capture all and only
the independencies encoded in a v-structure X > Z € Y.




[ X X ]
0000
s
The expressive power of UGM '
e Can we always convert directed <> undirected?
e No.
BN1
No directed model can No undirected model can
represent these and only represent these and only
these independencies. these independencies.
XLY|{W, Z XLy
WLZi{x %
. [ X X ]
Converting Bayes nets to Markov | 322:
nets oo

e Defn: A Markov net His an I-map for a Bayes net &

if TH)c 1(6).
e We can construct a minimal I-map for a BN by finding the
minimal Markov blanket for each node.

e We need to block all active paths coming into node X, from parents,
children, and co-parents; so connect them all to X

15



Moralization

\
e The moral graph A(&) of a DAG is constructed by adding

undirected edges between any pair of disconnected
("unmarried") nodes X, ¥'that are parents of a child Z and
then dropping all remaining arrows.

e Toturn a BN into a MRF, We assign each CPD to one of the
clique potentials that contains it.
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