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Probabilistic 
Graphical Models

10-708

Undirected Graphical Models Undirected Graphical Models 

Eric Xing Eric Xing 

Lecture 11, Oct 17, 2005

Reading: MJ-Chap. 2,4, and KF-chap5

Review: independence properties 
of DAGs

Defn: let Il(G) be the set of local independence properties 
encoded by DAG G, namely:

{ Xi⊥ NonDescendants(Xi) | Parents(Xi) }

Defn: A DAG G is an I-map (independence-map) of P 
if Il(G)⊆ I(P)
A fully connected DAG G is an I-map for any distribution, 
since Il(G)=∅⊆ I(P) for any P.
Defn: A DAG G is a minimal I-map for P if it is an I-map for P, 
and if the removal of even a single edge from G renders it not 
an I-map.
A distribution may have several minimal I-maps

Each corresponding to a specific node-ordering
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Global Markov properties of 
DAGs

X is d-separated (directed-separated) from Z given Y if we 
can't send a ball from any node in X to any node in Z using 
the "Bayes-ball" algorithm illustrated bellow:

• Defn: I(G)=all independence 
properties that correspond to d-
separation:

• D-separation is sound and 
complete (Chap 3, Koller & Friedman)

{ });(dsep:))(I YZXYZXG G⊥=

P-maps
Defn: A DAG G is a perfect map (P-map) for a distribution P if 
I(P)=I(G).
Thm: not every distribution has a perfect map as DAG.

Pf by counterexample. Suppose we have a model where
A⊥C | {B,D}, and B⊥D | {A,C}. 
This cannot be represented by any Bayes net.

e.g., BN1 wrongly says B⊥D | A,  BN2 wrongly says B⊥D.
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Undirected graphical models

Pairwise (non-causal) relationships
Can write down model, and score specific configurations of 
the graph, but no explicit way to generate samples
Contingency constrains on node configurations

X1 X4

X2

X3

X5

Canonical examples
The grid model

Naturally arises in image processing, lattice physics, etc.
Each node may represent a single "pixel", or an atom

The states of adjacent or nearby nodes are "coupled" due to pattern continuity or 
electro-magnetic force, etc.
Most likely joint-configurations usually correspond to a  "low-energy" state  
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Social networks

Ignoring the arrows, this is a "relational network" among peopleIgnoring the arrows, this is a "relational network" among people

Protein interaction networks
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Modeling Go

Information retrieval 

topictopic

texttext

imageimage
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Semantics of Undirected Graphs
Let H be an undirected graph:

B separates A and C if every path from a node in A to a node 
in C passes through a node in B:
A probability distribution satisfies the global Markov property
if for any disjoint A, B, C, such that B separates A and C, A is 
independent of C given B:

);(sep BCAH

{ });(sep:))(I BCABCAH H⊥=

Undirected Graphical Models
Defn: an undirected graphical model represents a distribution 
P(X1 ,…,Xn) defined by an undirected graph H, and a set of 
positive potential functions ψc associated with cliques of H, 
s.t.

where Z is known as the partition function:

Also known as Markov Random Fields, Markov networks …
The potential function can be understood as an contingency 
function of its arguments assigning "pre-probabilistic" score of 
their joint configuration.   
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Cliques
For G={V,E}, a complete subgraph (clique) is a subgraph
G'={V'⊆V,E'⊆E} such that nodes in V' are fully 
interconnected
A (maximal) clique is a complete subgraph s.t. any superset 
V"⊃V' is not complete.
A sub-clique is a not-necessarily-maximal clique.

Example: 
max-cliques = {A,B,D}, {B,C,D}, 
sub-cliques = {A,B}, {C,D}, … all edges and singletons 

A

CC

DD BB

Example UGM – using max 
cliques 

For discrete nodes, we can represent P(X1:4) as two 3D tables 
instead of one 4D table
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Example UGM – using subcliques

For discrete nodes, we can represent P(X1:4) as 5 2D tables 
instead of one 4D table
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Interpretation of Clique Potentials

The model implies X⊥Z|Y. This independence statement 
implies (by definition) that the joint must factorize as:

We can write this as:                                           , but

cannot have all potentials be marginals
cannot have all potentials be conditionals

The positive clique potentials can only be thought of as 
general "compatibility", "goodness" or "happiness" functions 
over their variables, but not as probability distributions.
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Exponential Form
Constraining clique potentials to be positive could be inconvenient (e.g., 
the interactions between a pair of atoms can be either attractive or 
repulsive). We represent a clique potential ψc(xc)  in an unconstrained 
form using a real-value "energy" function φc(xc):

For convenience, we will call φc(xc) a potential when no confusion arises from the context.

This gives the joint a nice additive strcuture

where the sum in the exponent is called the "free energy":

In physics, this is called the "Boltzmann distribution".
In statistics, this is called a log-linear model.
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Example: Boltzmann machines

A fully connected graph with pairwise (edge) potentials on 
binary-valued nodes (for                                  ) is called a
Boltzmann machine

Hence the overall energy function has the form:
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Example: Ising (spin-glass) 
models

Nodes are arranged in a regular topology (often a regular 
packing grid) and connected only to their geometric 
neighbors.

Same as sparse Boltzmann machine, where Θij≠0 iff i,j are 
neighbors.

e.g., nodes are pixels, potential function encourages nearby pixels to 
have similar intensities.

Potts model: multi-state Ising model.

Example: multivariate Gaussian 
Distribution

A Gaussian distribution can be represented by a fully 
connected graph with pairwise (edge) potentials over 
continuous nodes. 
The overall energy has the form

where µ is the mean and Θ is the inverse covariance (precision) matrix.

Also known as Gaussian graphical model (GGM), same as 
Boltzmann machine except xi ∈R
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Sparse precision vs. sparse 
covariance in GGM
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Independence properties of UGM
Let us return to the question of what kinds of distributions can
be represented by undirected graphs (ignoring the details of 
the particular parameterization).
Defn: the global Markov properties of a UG H are

Is this definition sound and complete?
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Soundness and completeness of 
global Markov property

Defn: An UG H is an I-map for a distribution P if I(H) ⊆ I(P), 
i.e., P entails I(H).
Defn: P is a Gibbs distribution over H if it can be represented 
as

Thm 5.4.2 (soundness): If P is a Gibbs distribution over H, 
then H is an I-map of P.

Thm 5.4.5 (completeness): If ¬sepH(X; Z |Y), then X ⊥P Z |Y
in some P that factorizes over H.
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Local and global Markov 
properties

For directed graphs, we defined I-maps in terms of local 
Markov properties, and derived global independence.
For undirected graphs, we defined I-maps in terms of global 
Markov properties, and will now derive local independence.
Defn: The pairwise Markov independencies associated with 
UG H = (V;E) are

e.g., 
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Local Markov properties
A distribution has the local Markov property w.r.t. a graph 
H=(V,E) if the conditional distribution of variable given its 
neighbors is independent of the remaining nodes

Theorem (Hammersley-Clifford): If the distribution is strictly 
positive and satisfies the local Markov property, then it 
factorizes with respect to the graph.
NH(X) is also called the Markov blanket of X.

( ){ }VV ∈∪⊥= XXNXNXXH HH :))()(\)(Il

Relationship between local and 
global Markov properties

Thm 5.5.3. If P = Il(H) then P = Ip(H). 
Thm 5.5.4. If P = I(H) then P = Il(H).
Thm 5.5.5. If P > 0 and P = Ip(H), then P = I(H).

Pf sketch: p(a,b|c,d)=p(a|c,d)p(b|c,d) and d separate b from {a,c} 
p(a,b|c,d)p(c|d)=p(a|c,d)p(b|c,d)p(c|d)=p(a,c|d)p(b|d)

Corollary 5.5.6: If P > 0, then Il = Ip = I.
If ∃x: P(x) = 0, then we can construct an example (using 
deterministic potentials) where Ip ⇒ I or  Il ⇒ I.

Given more infoGiven more info

Given more infoGiven more info

Given less infoGiven less info
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I-maps for undirected graphs
Defn: A Markov network H is a minimal I-map for P if it is an I-
map, and if the removal of any edge from H renders it not an 
I-map.
How can we construct a minimal I-map from a positive 
distribution P?

Pairwise method: add edges between all pairs X,Y s.t.

Local method: add edges between X and all Y ∈MBP(X), where MBP(X) 
is the minimal set of nodes U s.t.

Thm 5.5.11/12: both methods induce the unique minimal I-map.

If ∃x s.t. P(x) = 0, then we can construct an example where 
either method fails to induce an I-map.

( )},{\| YXVYXP ⊥≠
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Perfect maps
Defn: A Markov network H is a perfect map for P if for any X; 
Y;Z we have that

Thm: not every distribution has a perfect map as UGM.
Pf by counterexample. No undirected network can capture all and only 
the independencies encoded in a v-structure X Z Y .

( )YZXPYZXH |);(sep ⊥=⇔ |
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The expressive power of UGM
Can we always convert directed ↔ undirected?
No.

ZZ

XX YY

W

ZZ

XX YY

BN1BN1MRFMRF

No directed model can 
represent these and only 
these independencies.

X ⊥ Y | {W, Z} 
W ⊥ Z | {X, Y} 

No undirected model can 
represent these and only 
these independencies.

X ⊥ Y

Converting Bayes nets to Markov 
nets

Defn: A Markov net H is an I-map for a Bayes net G
if I(H)⊆ I(G).
We can construct a minimal I-map for a BN by finding the 
minimal Markov blanket for each node.

We need to block all active paths coming into node X, from parents, 
children, and co-parents; so connect them all to X.
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Moralization
The moral graph H(G) of a DAG is constructed by adding 
undirected edges between any pair of disconnected 
("unmarried") nodes X,Y that are parents of a child Z, and 
then dropping all remaining arrows.

To turn a BN into a MRF, We assign each CPD to one of the 
clique potentials that contains it.


