

Probabilistic Graphical Models

10-708

Undirected Graphical Models

Eric Xing

Lecture 11, Oct 17, 2005

Reading: MJ-Chap. 2,4, and KF-chap5

Review: independence properties of DAGs

- Defn: let $\mathcal{I}_l(\mathcal{G})$ be the set of local independence properties encoded by DAG \mathcal{G} , namely:
$$\{ X_i \perp \text{NonDescendants}(X_i) \mid \text{Parents}(X_i) \}$$
- Defn: A DAG \mathcal{G} is an **I-map** (independence-map) of P if $\mathcal{I}_l(\mathcal{G}) \subseteq \mathcal{I}(P)$
- A fully connected DAG \mathcal{G} is an I-map for any distribution, since $\mathcal{I}_l(\mathcal{G}) = \emptyset \subseteq \mathcal{I}(P)$ for any P .
- Defn: A DAG \mathcal{G} is a minimal I-map for P if it is an I-map for P , and if the removal of even a single edge from \mathcal{G} renders it not an I-map.
- A distribution may have several minimal I-maps
 - Each corresponding to a specific node-ordering

Global Markov properties of DAGs

- X is **d-separated** (directed-separated) from Z given Y if we can't send a ball from any node in X to any node in Z using the "Bayes-ball" algorithm illustrated below:

- Defn: $\mathcal{I}(\mathcal{G})$ = all independence properties that correspond to d-separation:

$$\mathcal{I}(\mathcal{G}) = \{X \perp Z | Y : \text{dsep}_{\mathcal{G}}(X; Z | Y)\}$$

- D-separation is sound and complete (Chap 3, Koller & Friedman)

P-maps

- Defn: A DAG \mathcal{G} is a **perfect map** (P-map) for a distribution P if $\mathcal{I}(P) = \mathcal{I}(\mathcal{G})$.
- Thm: not every distribution has a perfect map as DAG.
 - Pf by counterexample. Suppose we have a model where $A \perp C | \{B, D\}$, and $B \perp D | \{A, C\}$. This cannot be represented by any Bayes net.
 - e.g., BN1 wrongly says $B \perp D | A$, BN2 wrongly says $B \perp D$.

Undirected graphical models

- Pairwise (non-causal) relationships
- Can write down model, and score specific configurations of the graph, but no explicit way to generate samples
- Contingency constraints on node configurations

Canonical examples

- The grid model

- Naturally arises in image processing, lattice physics, etc.
- Each node may represent a single "pixel", or an atom
 - The states of adjacent or nearby nodes are "coupled" due to pattern continuity or electro-magnetic force, etc.
 - Most likely joint-configurations usually correspond to a "low-energy" state

Social networks

The Social Structure of "Countryside" School District

Points Colored by Race

- White
- Black
- Mixed/Other

Ignoring the arrows, this is a "relational network" among people

Protein interaction networks

- Cell Polarity
- Cell Wall Maintenance
- Cell Structure
- Mitosis
- Chromosome Structure
- DNA Synthesis
- DNA Repair
- Unknown
- Others

Modeling Go

This is the middle position of a Go game.
Overlaid is the estimate for the probability of
becoming black or white for every intersection.
Large squares mean the probability is higher.

Information retrieval

Semantics of Undirected Graphs

- Let H be an undirected graph:

- B separates A and C if every path from a node in A to a node in C passes through a node in B : $\text{sep}_H(A; C|B)$
- A probability distribution satisfies the **global Markov property** if for any disjoint A, B, C , such that B separates A and C , A is independent of C given B : $I(H) = \{A \perp C|B : \text{sep}_H(A; C|B)\}$

Undirected Graphical Models

- Defn: an **undirected graphical model** represents a distribution $P(X_1, \dots, X_n)$ defined by an undirected graph H , and a set of positive **potential functions** ψ_c associated with cliques of H , s.t.

$$P(X_1, \dots, X_n) = \frac{1}{Z} \prod_{c \in C} \psi_c(\mathbf{x}_c)$$

where Z is known as the partition function:

$$Z = \sum_{x_1, \dots, x_n} \prod_{c \in C} \psi_c(\mathbf{x}_c)$$

- Also known as **Markov Random Fields**, **Markov networks** ...
- The **potential function** can be understood as an contingency function of its arguments assigning "pre-probabilistic" score of their joint configuration.

Cliques

- For $G = \{V, E\}$, a complete subgraph (clique) is a subgraph $G' = \{V' \subseteq V, E' \subseteq E\}$ such that nodes in V' are fully interconnected
- A (maximal) clique is a complete subgraph s.t. any superset $V'' \supset V'$ is not complete.
- A sub-clique is a not-necessarily-maximal clique.

- Example:
 - max-cliques = $\{A, B, D\}, \{B, C, D\},$
 - sub-cliques = $\{A, B\}, \{C, D\}, \dots \rightarrow$ all edges and singletons

Example UGM – using max cliques

$$P(x_1, x_2, x_3, x_4) = \frac{1}{Z} \psi_c(\mathbf{x}_{124}) \times \psi_c(\mathbf{x}_{234})$$

$$Z = \sum_{x_1, x_2, x_3, x_4} \psi_c(\mathbf{x}_{124}) \times \psi_c(\mathbf{x}_{234})$$

- For discrete nodes, we can represent $P(X_{1:4})$ as two 3D tables instead of one 4D table

Example UGM – using subcliques

$$P(x_1, x_2, x_3, x_4) = \frac{1}{Z} \prod_{ij} \psi_{ij}(x_{ij})$$

$$= \frac{1}{Z} \psi_{12}(x_{12}) \psi_{14}(x_{14}) \psi_{23}(x_{23}) \psi_{24}(x_{24}) \psi_{34}(x_{34})$$

$$Z = \sum_{x_1, x_2, x_3, x_4} \prod_{ij} \psi_{ij}(x_{ij})$$

		x_1
x_2	0	1
1		

- For discrete nodes, we can represent $P(X_{1:4})$ as 5 2D tables instead of one 4D table

Interpretation of Clique Potentials

- The model implies $X \perp\!\!\!\perp Z \mid Y$. This independence statement implies (by definition) that the joint must factorize as:

$$p(x, y, z) = p(y) p(x|y) p(z|y)$$

- We can write this as: $p(x, y, z) = p(x, y) p(z|y)$, but $p(x, y, z) = p(x|y) p(z, y)$

- cannot have all potentials be marginals
- cannot have all potentials be conditionals

- The positive clique potentials can only be thought of as general "compatibility", "goodness" or "happiness" functions over their variables, but not as probability distributions.

Exponential Form

- Constraining clique potentials to be positive could be inconvenient (e.g., the interactions between a pair of atoms can be either attractive or repulsive). We represent a clique potential $\psi_c(\mathbf{x}_c)$ in an unconstrained form using a real-value "energy" function $\phi_c(\mathbf{x}_c)$:

$$\psi_c(\mathbf{x}_c) = \exp\{-\phi_c(\mathbf{x}_c)\}$$

For convenience, we will call $\phi_c(\mathbf{x}_c)$ a potential when no confusion arises from the context.

- This gives the joint a nice additive structure

$$p(\mathbf{x}) = \frac{1}{Z} \exp\left\{-\sum_{c \in C} \phi_c(\mathbf{x}_c)\right\} = \frac{1}{Z} \exp\{-H(\mathbf{x})\}$$

where the sum in the exponent is called the "free energy":

$$H(\mathbf{x}) = \sum_{c \in C} \phi_c(\mathbf{x}_c)$$

- In physics, this is called the "Boltzmann distribution".
- In statistics, this is called a log-linear model.

Example: Boltzmann machines

- A fully connected graph with pairwise (edge) potentials on binary-valued nodes (for $x_i \in \{-1, +1\}$ or $x_i \in \{0, 1\}$) is called a Boltzmann machine

$$\begin{aligned} P(x_1, x_2, x_3, x_4) &= \frac{1}{Z} \exp\left\{\sum_{ij} \phi_{ij}(x_i, x_j)\right\} \\ &= \frac{1}{Z} \exp\left\{\sum_{ij} \theta_{ij} x_i x_j + \sum_i \alpha_i x_i + C\right\} \end{aligned}$$

- Hence the overall energy function has the form:

$$H(\mathbf{x}) = \sum_{ij} (x_i - \mu) \Theta_{ij} (x_j - \mu) = (\mathbf{x} - \mu)^T \Theta (\mathbf{x} - \mu)$$

Example: Ising (spin-glass) models

- Nodes are arranged in a regular topology (often a regular packing grid) and connected only to their geometric neighbors.

- Same as sparse Boltzmann machine, where $\Theta_{ij} \neq 0$ iff i, j are neighbors.
 - e.g., nodes are pixels, potential function encourages nearby pixels to have similar intensities.
- Potts model: multi-state Ising model.

Example: multivariate Gaussian Distribution

- A Gaussian distribution can be represented by a fully connected graph with pairwise (edge) potentials over continuous nodes.
- The overall energy has the form

$$H(x) = \sum_{ij} (x_i - \mu) \Theta_{ij} (x_j - \mu) = (x - \mu)^T \Theta (x - \mu)$$

where μ is the mean and Θ is the inverse covariance (precision) matrix.

- Also known as Gaussian graphical model (GGM), same as Boltzmann machine except $x_i \in \mathbb{R}$

Sparse precision vs. sparse covariance in GGM

$$\Sigma^{-1} = \begin{pmatrix} 1 & 6 & 0 & 0 & 0 \\ 6 & 2 & 7 & 0 & 0 \\ 0 & 7 & 3 & 8 & 0 \\ 0 & 0 & 8 & 4 & 9 \\ 0 & 0 & 0 & 9 & 5 \end{pmatrix} \quad \Sigma = \begin{pmatrix} 0.10 & 0.15 & -0.13 & -0.08 & 0.15 \\ 0.15 & -0.03 & 0.02 & 0.01 & -0.03 \\ -0.13 & 0.02 & 0.10 & 0.07 & -0.12 \\ -0.08 & 0.01 & 0.07 & -0.04 & 0.07 \\ 0.15 & -0.03 & -0.12 & 0.07 & 0.08 \end{pmatrix}$$

$$\Sigma_{15}^{-1} = 0 \Leftrightarrow X_1 \perp X_5 \mid X_{\text{nbrs}(1) \text{ or } \text{nbrs}(5)}$$

↗

$$X_1 \perp X_5 \Leftrightarrow \Sigma_{15} = 0$$

Independence properties of UGM

- Let us return to the question of what kinds of distributions can be represented by undirected graphs (ignoring the details of the particular parameterization).
- Defn: the global Markov properties of a UGM \mathcal{H} are

$$I(\mathcal{H}) = \{X \perp Z \mid Y : \text{sep}_{\mathcal{H}}(X; Z \mid Y)\}$$

- Is this definition sound and complete?

Soundness and completeness of global Markov property

- Defn: An UG H is an I-map for a distribution P if $I(H) \subseteq I(P)$, i.e., P entails $I(H)$.
- Defn: P is a **Gibbs distribution** over H if it can be represented as

$$P(x_1, \dots, x_n) = \frac{1}{Z} \prod_{c \in C} \psi_c(x_c)$$

- Thm 5.4.2 (soundness): If P is a Gibbs distribution over H , then H is an I-map of P .
- Thm 5.4.5 (completeness): If $\neg \text{sep}_H(X; Z|Y)$, then $X \not\perp\!\!\!\perp Z|Y$ in some P that factorizes over H .

Local and global Markov properties

- For directed graphs, we defined I-maps in terms of local Markov properties, and derived global independence.
- For undirected graphs, we defined I-maps in terms of global Markov properties, and will now derive local independence.
- Defn: The **pairwise Markov independencies** associated with UG $H = (V, E)$ are

$$I_i(H) = \{X \perp\!\!\!\perp Y | V \setminus \{X, Y\} : \{X, Y\} \notin E\}$$

- e.g., $X_1 \perp\!\!\!\perp X_5 | \{X_2, X_3, X_4\}$

Local Markov properties

- A distribution has the *local Markov property* w.r.t. a graph $H = (V, E)$ if the conditional distribution of variable given its neighbors is independent of the remaining nodes

$$I_l(H) = \{X \perp V \setminus (X \cup N_H(X)) | N_H(X) : X \in V\}$$

- **Theorem** (Hammersley-Clifford): If the distribution is *strictly positive* and satisfies the local Markov property, then it factorizes with respect to the graph.
- $N_H(X)$ is also called the *Markov blanket* of X .

Relationship between local and global Markov properties

- Thm 5.5.3. If $P \models I_l(H)$ then $P \models I_p(H)$.
- Thm 5.5.4. If $P \models I(H)$ then $P \models I_l(H)$.
- Thm 5.5.5. If $P > 0$ and $P \models I_p(H)$, then $P \models I(H)$.
 - Pf sketch: $p(a,b|c,d) = p(a|c,d)p(b|c,d)$ and d separate b from $\{a,c\}$
 $\rightarrow p(a,b|c,d)p(c|d) = p(a|c,d)p(b|c,d)p(c|d) = p(a,c|d)p(b|d)$
- Corollary 5.5.6: If $P > 0$, then $I_l = I_p = I$.
- If $\exists x: P(x) = 0$, then we can construct an example (using deterministic potentials) where $I_p \not\supseteq I$ or $I_l \not\supseteq I$.

I-maps for undirected graphs

- Defn: A Markov network H is a minimal I-map for P if it is an I-map, and if the removal of any edge from H renders it not an I-map.
- How can we construct a minimal I-map from a positive distribution P ?
 - Pairwise method: add edges between all pairs X, Y s.t.

$$P \not\models (X \perp Y | V \setminus \{X, Y\})$$
 - Local method: add edges between X and all $Y \in MB_P(X)$, where $MB_P(X)$ is the minimal set of nodes U s.t.

$$P \not\models (X \perp V \setminus \{X\} \setminus U | Y)$$
- Thm 5.5.11/12: both methods induce the unique minimal I-map.
- If $\exists x$ s.t. $P(x) = 0$, then we can construct an example where either method fails to induce an I-map.

Perfect maps

- Defn: A Markov network H is a perfect map for P if for any X, Y, Z we have that

$$\text{sep}_H(X; Z | Y) \Leftrightarrow P \models (X \perp Z | Y)$$

- Thm: not every distribution has a perfect map as UGM.
 - Pf by counterexample. No undirected network can capture all and only the independencies encoded in a v-structure $X \rightarrow Z \leftarrow Y$.

The expressive power of UGM

- Can we always convert directed \leftrightarrow undirected?
- No.

MRF

BN1

No directed model can represent these and only these independencies.

$$\begin{aligned} X \perp Y \mid \{W, Z\} \\ W \perp Z \mid \{X, Y\} \end{aligned}$$

No undirected model can represent these and only these independencies.

$$X \perp Y$$

Converting Bayes nets to Markov nets

- Defn: A Markov net H is an I-map for a Bayes net G if $I(H) \subseteq I(G)$.
- We can construct a minimal I-map for a BN by finding the minimal **Markov blanket** for each node.
 - We need to block all active paths coming into node X , from parents, children, and co-parents; so connect them all to X .

Moralization

- The moral graph $H(\Theta)$ of a DAG is constructed by adding undirected edges between any pair of disconnected ("unmarried") nodes X, Y that are parents of a child Z , and then dropping all remaining arrows.

- To turn a BN into a MRF, We assign each CPD to one of the clique potentials that contains it.