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Reading: Chap. 6&7, C.B book, and listed papers
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What is a good Decision 
Boundary?
 Consider a binary classification 

task with y = ±1 labels (not 0/1 as 
before). 

 When the training examples are 
linearly separable, we can set the 
parameters of a linear classifier 
so that all the training examples 
are classified correctly

 Many decision boundaries!
 Generative classifiers
 Logistic regressions …

 Are all decision boundaries 
equally good?

Class 1

Class 2
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What is a good Decision 
Boundary?
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Not All Decision Boundaries Are 
Equal!

 Why we may have such boundaries?
 Irregular distribution
 Imbalanced training sizes
 outliners
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Classification and Margin
 Parameterzing decision boundary

 Let w denote a vector orthogonal to the decision boundary, and b denote a scalar 
"offset" term, then we can write the decision boundary as:
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Classification and Margin
 Parameterzing decision boundary

 Let w denote a vector orthogonal to the decision boundary, and b denote a scalar 
"offset" term, then we can write the decision boundary as:

Class 1

Class 2

 Margin

(wTxi+b)/||w|| > +c/||w|| for all xi in class 2
(wTxi+b)/||w|| < c/||w|| for all xi in class 1

Or more compactly:

(wTxi+b)yi /||w|| >c/||w||

The margin between any two points
m = d + d+ =

d - d+
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Maximum Margin Classification
 The minimum permissible margin is:

 Here is our Maximum Margin Classification problem:
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Maximum Margin Classification, 
con'd.
 The optimization problem:

 But note that the magnitude of c merely scales w and b, and does 
not change the classification boundary at all! (why?)

 So we instead work on this cleaner problem:

 The solution to this leads to the famous Support Vector Machines -
-- believed by many to be the best "off-the-shelf" supervised learning 
algorithm
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Support vector machine
 A convex quadratic programming problem

with linear constrains:

 The attained margin is now given by

 Only a few of the classification constraints are relevant  support vectors

 Constrained optimization
 We can directly solve this using commercial quadratic programming (QP) code
 But we want to take a more careful investigation of Lagrange duality, and the 

solution of the above in its dual form. 
 deeper insight: support vectors, kernels …
 more efficient algorithm
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Digression to Lagrangian Duality
 The Primal Problem

Primal:

The generalized Lagrangian:

the 's (≥0) and 's are called the Lagarangian multipliers 

Lemma:

A re-written Primal:
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Lagrangian Duality, cont.
 Recall the Primal Problem:

 The Dual Problem:

 Theorem (weak duality): 

 Theorem (strong duality):
Iff there exist a saddle point of                   , we have
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A sketch of strong and weak 
duality
 Now, ignoring h(x) for simplicity, let's look at what's happening 

graphically in the duality theorems.
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A sketch of strong and weak 
duality
 Now, ignoring h(x) for simplicity, let's look at what's happening 

graphically in the duality theorems.
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A sketch of strong and weak 
duality
 Now, ignoring h(x) for simplicity, let's look at what's happening 

graphically in the duality theorems.
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The KKT conditions
 If there exists some saddle point of L, then the saddle point 

satisfies the following "Karush-Kuhn-Tucker" (KKT) 
conditions:

 Theorem: If w*, * and * satisfy the KKT condition, then it is also a 
solution to the primal and the dual problems.
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Solving optimal margin classifier
 Recall our opt problem:

 This is equivalent to

 Write the Lagrangian:

 Recall that (*) can be reformulated as
Now we solve its dual problem:   
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***(      )

The Dual Problem

 We minimize L with respect to w and b first:

Note that (*) implies: 

 Plug (***) back to L , and using (**), we have:
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The Dual problem, cont.
 Now we have the following dual opt problem:

 This is, (again,) a quadratic programming problem.
 A global maximum of i can always be found. 
 But what's the big deal??
 Note two things:
1. w can be recovered by 

2. The "kernel"
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See next …

More later …
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Support vectors
 Note the KKT condition --- only a few i's can be nonzero!!

miwgα ii ,,1    ,0)( 

6=1.4

Class 1

Class 2

1=0.8

2=0

3=0

4=0

5=0
7=0

8=0.6

9=0

10=0
Call the training data points 
whose i's are nonzero the 
support vectors (SV) 
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Support vector machines
 Once we have the Lagrange multipliers {i}, we can 

reconstruct the parameter vector w as a weighted combination 
of the training examples:

 For testing with a new data z
 Compute                                                      

and classify z as class 1 if the sum is positive, and class 2 otherwise

 Note: w need not be formed explicitly
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Interpretation of support vector 
machines

 The optimal w is a linear combination of a small number of 
data points. This “sparse” representation can be viewed as 
data compression as in the construction of kNN classifier

 To compute the weights {i}, and to use support vector 
machines we need to specify only the inner products (or 
kernel) between the examples 

 We make decisions by comparing each new example z with 
only the support vectors:
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Non-linearly Separable Problems

 We allow “error” i in classification; it is based on the output of 
the discriminant function wTx+b

 i approximates the number of misclassified samples

Class 1

Class 2
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Soft Margin Hyperplane
 Now we have a slightly different opt problem:

 i are “slack variables” in optimization
 Note that i=0 if there is no error for xi

 i is an upper bound of the number of errors
 C : tradeoff parameter between error and margin
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The Optimization Problem
 The dual of this new constrained optimization problem is

 This is very similar to the optimization problem in the linear 
separable case, except that there is an upper bound C on i 
now

 Once again, a QP solver can be used to find i
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The SMO algorithm
 Consider solving the unconstrained opt problem:

 We’ve already see three opt algorithms! 
 ?
 ?
 ?

 Coordinate ascend:
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Coordinate ascend
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Sequential minimal optimization
 Constrained optimization:

 Question: can we do coordinate along one direction at a time 
(i.e., hold all [-i] fixed, and update i?)
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The SMO algorithm

Repeat till convergence

1. Select some pair i and j to update next (using a heuristic that tries 
to pick the two that will allow us to make the biggest progress 
towards the global maximum).

2. Re-optimize J() with respect to i and j, while holding all the other 
k 's (k i; j) fixed.

Will this procedure converge?
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Convergence of SMO

 Let’s hold 3 ,…, m fixed and reopt J w.r.t. 1 and 2
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Convergence of SMO
 The constraints:

 The objective:

 Constrained opt:
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Cross-validation error of SVM
 The leave-one-out cross-validation error does not depend on 

the dimensionality of the feature space but only on the # of 
support vectors!

examples  trainingof #
ctorssupport ve #error  CVout -one-Leave 
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Summary
 Max-margin decision boundary

 Constrained convex optimization

 Duality

 The KTT conditions and the support vectors

 Non-separable case and slack variables

 The SMO algorithm
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