Machine Learning

Lecture 9, October 6, 2015

Reading: Chap. 6\&7, C.B book, and listed papers

What is a good Decision Boundary?

- Consider a binary classification task with $\mathrm{y}= \pm 1$ labels (not 0/1 as before).
- When the training examples are linearly separable, we can set the parameters of a linear classifier so that all the training examples are classified correctly
- Many decision boundaries!
- Generative classifiers

- Logistic regressions ...
- Are all decision boundaries equally good?

What is a good Decision Boundary?

Not All Decision Boundaries Are Equal!

- Why we may have such boundaries?
- Irregular distribution
- Imbalanced training sizes
- outliners

Classification and Margin

- Parameterzing decision boundary
- Let w denote a vector orthogonal to the decision boundary, and b denote a scalar "offset" term, then we can write the decision boundary as:

Classification and Margin

- Parameterzing decision boundary
- Let w denote a vector orthogonal to the decision boundary, and b denote a scalar "offset" term, then we can write the decision boundary as:
$\uparrow \underbrace{\frac{w^{T}}{\left\|w^{T}\right\|^{2}} x+\frac{b}{\left\|w^{T}\right\|}=0} \begin{aligned} & \mathbf{w}\end{aligned}$

Maximum Margin Classification

- The minimum permissible margin is:

$$
m=\frac{w^{T}}{\|w\|}\left(x_{i^{*}}-x_{j^{*}}\right)=\frac{2 c}{\|w\|}
$$

- Here is our Maximum Margin Classification problem:

Maximum Margin Classification, con'd.

- The optimization problem:

$$
\begin{array}{ll}
\max _{w, b} & \frac{c}{\|w\|} \\
\text { s.t } & y_{i}\left(w^{T} x_{i}+b\right) \geq c, \quad \forall i
\end{array}
$$

- But note that the magnitude of c merely scales w and b, and does not change the classification boundary at all! (why?)
- So we instead work on this cleaner problem:

$$
\begin{array}{ll}
\max _{w, b} & \frac{1}{\|w\|} \\
\text { s.t } & y_{i}\left(w^{T} x_{i}+b\right) \geq 1, \quad \forall i
\end{array}
$$

- The solution to this leads to the famous Support Vector Machines --- believed by many to be the best "off-the-shelf" supervised learning algorithm

Support vector machine

- A convex quadratic programming problem with linear constrains:

$$
\max _{w, b} \frac{1}{\|w\|}
$$

s.t

$$
y_{i}\left(w^{T} x_{i}+b\right) \geq 1, \quad \forall i
$$

- The attained margin is now given by $\frac{1}{\|w\|}$

- Only a few of the classification constraints are relevant $\boldsymbol{\rightarrow}$ support vectors
- Constrained optimization
- We can directly solve this using commercial quadratic programming (QP) code
- But we want to take a more careful investigation of Lagrange duality, and the solution of the above in its dual form.
\rightarrow deeper insight: support vectors, kernels ...
\rightarrow more efficient algorithm

Digression to Lagrangian Duality

- The Primal Problem

$$
\min _{w} \quad f(w)
$$

Primal:

$$
\begin{array}{ll}
\text { s.t. } & g_{i}(w) \leq 0, \quad i=1, \ldots, k \\
& h_{i}(w)=0, \quad i=1, \ldots, l
\end{array}
$$

The generalized Lagrangian:

$$
\mathcal{L}(w, \alpha, \beta)=f(w)+\sum_{i=1}^{k} \alpha_{i} g_{i}(w)+\sum_{i=1}^{l} \beta_{i} h_{i}(w)
$$

the $\alpha^{\prime} \mathrm{s}\left(\alpha_{l} \geq 0\right)$ and β s are called the Lagarangian multipliers
Lemma:

$$
\max _{\alpha, \beta, \alpha_{i} \geq 0} \mathcal{L}(w, \alpha, \beta)=\left\{\begin{array}{cc}
f(w) & \text { if } w \text { satisfies primal constraints } \\
\infty & 0 / \mathrm{w}
\end{array}\right.
$$

A re-written Primal:

$$
\min _{w} \max _{\alpha, \beta, \alpha_{i} \geq 0} \mathcal{L}(w, \alpha, \beta)
$$

Lagrangian Duality, cont.

- Recall the Primal Problem:

$$
\min _{w} \max _{\alpha, \beta, \alpha_{i} \geq 0} \mathcal{L}(w, \alpha, \beta)
$$

- The Dual Problem:

$$
\max _{\alpha, \beta, \alpha_{i} \geq 0} \min _{w} \mathcal{L}(w, \alpha, \beta)
$$

- Theorem (weak duality):

$$
d^{*}=\max _{\alpha, \beta, \alpha_{i} \geq 0} \min _{w} \mathcal{L}(w, \alpha, \beta) \leq \min _{w} \max _{\alpha, \beta, \alpha_{i} \geq 0} \mathcal{L}(w, \alpha, \beta)=p^{*}
$$

- Theorem (strong duality):

Iff there exist a saddle point of $\mathcal{L}(w, \alpha, \beta)$, we have

$$
d^{*}=p^{*}
$$

A sketch of strong and weak duality

- Now, ignoring $h(x)$ for simplicity, let's look at what's happening graphically in the duality theorems.

$$
d^{*}=\max _{\alpha_{i} \geq 0} \min _{w} f(w)+\alpha^{T} g(w) \leq \min _{w} \max _{\alpha_{i} \geq 0} f(w)+\alpha^{T} g(w)=p^{*}
$$

A sketch of strong and weak duality

- Now, ignoring $h(x)$ for simplicity, let's look at what's happening graphically in the duality theorems.

$$
d^{*}=\max _{\alpha_{i} \geq 0} \min _{w} f(w)+\alpha^{T} g(w) \leq \min _{w} \max _{\alpha_{i} \geq 0} f(w)+\alpha^{T} g(w)=p^{*}
$$

A sketch of strong and weak duality

- Now, ignoring $h(x)$ for simplicity, let's look at what's happening graphically in the duality theorems.

$$
d^{*}=\max _{\alpha_{i} \geq 0} \min _{w} f(w)+\alpha^{T} g(w) \leq \min _{w} \max _{\alpha_{i} \geq 0} f(w)+\alpha^{T} g(w)=p^{*}
$$

The KKT conditions

- If there exists some saddle point of \mathcal{L}, then the saddle point satisfies the following "Karush-Kuhn-Tucker" (KKT) conditions:

$$
\begin{array}{rll}
\frac{\partial}{\partial w_{i}} \mathcal{L}(w, \alpha, \beta)=0, & i=1, \ldots, k & \\
\frac{\partial}{\partial \beta_{i}} \mathcal{L}(w, \alpha, \beta)=0, & i=1, \ldots, l & \\
\alpha_{i} g_{i}(w)=0, & i=1, \ldots, m & \text { Complementary slackness } \\
g_{i}(w) \leq 0, & i=1, \ldots, m & \text { Primal feasibility } \\
\alpha_{i} \geq 0, & i=1, \ldots, m & \text { Dual feasibility }
\end{array}
$$

- Theorem: If w^{*}, α^{*} and β^{*} satisfy the KKT condition, then it is also a solution to the primal and the dual problems.

Solving optimal margin classifier

- Recall our opt problem:

$\max _{w, b}$	$\frac{1}{\\|w\\|}$
s.t	$y_{i}\left(w^{T} x_{i}+b\right) \geq 1, \quad \forall i$

- This is equivalent to

$$
\begin{array}{ll}
\min _{w, b} & \frac{1}{2} w^{T} w \tag{*}\\
\text { s.t } & 1-y_{i}\left(w^{T} x_{i}+b\right) \leq 0, \quad \forall i
\end{array}
$$

- Write the Lagrangian:

$$
\mathcal{L}(w, b, \alpha)=\frac{1}{2} w^{T} w-\sum_{i=1}^{m} \alpha_{i}\left[y_{i}\left(w^{T} x_{i}+b\right)-1\right]
$$

- Recall that (*) can be reformulated as $\min _{w, b} \max _{\alpha_{i} \geq 0} \mathcal{L}(w, b, \alpha)$

Now we solve its dual problem: $\max _{\alpha_{i} \geq 0} \min _{w, b} \mathcal{L}(w, b, \alpha)$

$\mathcal{L}(w, b, \alpha)=\frac{1}{2} w^{T} w-\sum_{i=1}^{m} \alpha_{i}\left[y_{i}\left(w^{T} x_{i}+b\right)-1\right]$
 The Dual Problem

$$
\max _{\alpha_{i} \geq 0} \min _{w, b} \mathcal{L}(w, b, \alpha)
$$

- We minimize \mathcal{L} with respect to w and b first:

$$
\begin{gather*}
\nabla_{w} \mathcal{L}(w, b, \alpha)=w-\sum_{i=1}^{m} \alpha_{i} y_{i} x_{i}=0, \tag{*}\\
\nabla_{b} \mathcal{L}(w, b, \alpha)=\sum_{i=1}^{m} \alpha_{i} y_{i}=0, \tag{**}
\end{gather*}
$$

Note that (*) implies:

$$
\begin{equation*}
w=\sum_{i=1}^{m} \alpha_{i} y_{i} x_{i} \tag{***}
\end{equation*}
$$

- Plug (${ }^{* * *}$) back to \mathcal{L}, and using (**), we have:

The Dual problem, cont.

- Now we have the following dual opt problem:

$$
\begin{array}{ll}
\max _{\alpha} \mathcal{J}(\alpha) & =\sum_{i=1}^{m} \alpha_{i}-\frac{1}{2} \sum_{i, j=1}^{m} \alpha_{i} \alpha_{j} y_{i} y_{j}\left(\mathbf{x}_{i}^{T} \mathbf{x}_{j}\right) \\
\text { s.t. } \quad \alpha_{i} \geq 0, \quad i=1, \ldots, k \\
& \sum_{i=1}^{m} \alpha_{i} y_{i}=0 .
\end{array}
$$

- This is, (again,) a quadratic programming problem.
- A global maximum of α_{i} can always be found.
- But what's the big deal??
- Note two things:

1. w can be recovered by $w=\sum_{i=1}^{m} \alpha_{i} y_{i} \mathbf{x}_{i} \quad$ See next \ldots
2. The "kernel"
$\mathbf{x}_{i}^{T} \mathbf{x}_{j}$
More later ..

Support vectors

- Note the KKT condition --- only a few α_{i} 's can be nonzero!!

$$
\alpha_{i} g_{i}(w)=0, \quad i=1, \ldots, m
$$

$$
\mathbf{w}^{T} \mathbf{x}+b=-1
$$

Call the training data points whose α_{i} 's are nonzero the support vectors (SV)

Support vector machines

- Once we have the Lagrange multipliers $\left\{\alpha_{i}\right\}$, we can reconstruct the parameter vector w as a weighted combination of the training examples:

$$
w=\sum_{i \in S V} \alpha_{i} y_{i} \mathbf{x}_{i}
$$

- For testing with a new data \mathbf{Z}
- Compute

$$
w^{T} z+b=\sum_{i \in S V} \alpha_{i} y_{i}\left(\mathbf{x}_{i}^{T} z\right)+b
$$

and classify \mathbf{z} as class 1 if the sum is positive, and class 2 otherwise

- Note: w need not be formed explicitly

Interpretation of support vector machines

- The optimal w is a linear combination of a small number of data points. This "sparse" representation can be viewed as data compression as in the construction of kNN classifier
- To compute the weights $\left\{\alpha_{i}\right\}$, and to use support vector machines we need to specify only the inner products (or kernel) between the examples $\mathbf{x}_{i}^{T} \mathbf{x}_{j}$
- We make decisions by comparing each new example \mathbb{z} with only the support vectors:

$$
y^{*}=\operatorname{sign}\left(\sum_{i \in S V} \alpha_{i} y_{i}\left(\mathbf{x}_{i}^{T} z\right)+b\right)
$$

Non-linearly Separable Problems

- We allow "error" ξ_{i} in classification; it is based on the output of the discriminant function $\boldsymbol{w}^{T} \boldsymbol{x}+b$
- $\quad \xi_{\mathrm{i}}$ approximates the number of misclassified samples

Soft Margin Hyperplane

- Now we have a slightly different opt problem:

$$
\begin{aligned}
\min _{w, b} & \frac{1}{2} w^{T} w+C \sum_{i=1}^{m} \xi_{i} \\
& y_{i}\left(w^{T} x_{i}+b\right) \geq 1-\xi_{i}, \quad \forall i \\
\text { s.t } & \xi_{i} \geq 0, \quad \forall i
\end{aligned}
$$

- ξ_{i} are "slack variables" in optimization
- Note that $\xi_{i}=0$ if there is no error for \mathbf{x}_{i}
- ξ_{i} is an upper bound of the number of errors
- C : tradeoff parameter between error and margin

The Optimization Problem

- The dual of this new constrained optimization problem is

$$
\begin{aligned}
\max _{\alpha} & \mathcal{J}(\alpha)=\sum_{i=1}^{m} \alpha_{i}-\frac{1}{2} \sum_{i, j=1}^{m} \alpha_{i} \alpha_{j} y_{i} y_{j}\left(\mathbf{x}_{i}^{T} \mathbf{x}_{j}\right) \\
\text { s.t. } & 0 \leq \alpha_{i} \leq C, \quad i=1, \ldots, m \\
& \sum_{i=1}^{m} \alpha_{i} y_{i}=0 .
\end{aligned}
$$

- This is very similar to the optimization problem in the linear separable case, except that there is an upper bound C on α_{i} now
- Once again, a QP solver can be used to find α_{i}

The SMO algorithm

- Consider solving the unconstrained opt problem:

$$
\max _{\alpha} W\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{m}\right)
$$

- We've already see three opt algorithms!
- ?
- ?
- ?
- Coordinate ascend:

Coordinate ascend

Sequential minimal optimization

- Constrained optimization:

$$
\begin{aligned}
\max _{\alpha} & \mathcal{F}(\alpha)=\sum_{i=1}^{m} \alpha_{i}-\frac{1}{2} \sum_{i, j=1}^{m} \alpha_{i} \alpha_{j} y_{i} y_{j}\left(\mathbf{x}_{i}^{T} \mathbf{x}_{j}\right) \\
\text { s.t. } & 0 \leq \alpha_{i} \leq C, \quad i=1, \ldots, m \\
& \sum_{i=1}^{m} \alpha_{i} y_{i}=0 .
\end{aligned}
$$

- Question: can we do coordinate along one direction at a time (i.e., hold all $\alpha_{[-i]}$ fixed, and update α_{i} ?)

The SMO algorithm

Repeat till convergence

1. Select some pair α_{i} and α_{j} to update next (using a heuristic that tries to pick the two that will allow us to make the biggest progress towards the global maximum).
2. Re-optimize $\mathrm{J}(\alpha)$ with respect to α_{i} and α_{j}, while holding all the other α_{k} 's $(k \neq i ; j)$ fixed.

Will this procedure converge?

Convergence of SMO

$$
\max _{\alpha} \quad \mathcal{J}(\alpha)=\sum_{i=1}^{m} \alpha_{i}-\frac{1}{2} \sum_{i, j=1}^{m} \alpha_{i} \alpha_{j} y_{i} y_{j}\left(\mathbf{x}_{i}^{T} \mathbf{x}_{j}\right)
$$

KKT:

$$
\begin{array}{ll}
\text { s.t. } & 0 \leq \alpha_{i} \leq C, \quad i=1, \ldots, k \\
& \sum_{i=1}^{m} \alpha_{i} y_{i}=0
\end{array}
$$

- Let's hold $\alpha_{3}, \ldots, \alpha_{m}$ fixed and reopt J w.r.t. α_{1} and α_{2}

Convergence of SMO

- The constraints:

$$
\alpha_{1} y_{1}+\alpha_{2} y_{2}=\xi
$$

$$
0 \leq \alpha_{1} \leq C
$$

$$
0 \leq \alpha_{2} \leq C
$$

- The objective:

$$
\mathcal{J}\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{m}\right)=\mathcal{J}\left(\left(\xi-\alpha_{2} y_{2}\right) y_{1}, \alpha_{2}, \ldots, \alpha_{m}\right)
$$

- Constrained opt:

Cross-validation error of SVM

- The leave-one-out cross-validation error does not depend on the dimensionality of the feature space but only on the \# of support vectors!

$$
\text { Leave - one - out CV error }=\frac{\# \text { support vectors }}{\# \text { of training examples }}
$$

Summary

- Max-margin decision boundary
- Constrained convex optimization
- Duality
- The KTT conditions and the support vectors
- Non-separable case and slack variables
- The SMO algorithm

