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Machine Learning

10-701, Fall 2015

Computational Learning Theory

Eric Xing

Lecture 15, October 29, 2015

Reading: Chap. 7 T.M book
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Generalizability of Learning
 In machine learning it's really generalization error that we care 

about, but most learning algorithms fit their models to the 
training set.

 Why should doing well on the training set tell us anything 
about generalization error? Specifically, can we relate error on 
training set to generalization error? 

 Are there conditions under which we can actually prove that 
learning algorithms will work well?
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Complexity of Learning
 The complexity of leaning is measured mainly along

two axis: Information and computation.

The Information complexity is concerned with the 
generalization performance of learning; 
 How many training examples are needed? 
 How fast do learner’s estimate converge to the true population parameters? etc.

The Computational complexity concerns the computation 
resources applied to the training data to extract from it 
learner’s predictions.

It seems that when an algorithm improves with respect to one of 
these measures it deteriorates with respect to the other.
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What General Laws
Constrain Inductive Learning?

 Sample Complexity
 How many training examples are sufficient 

to learn target concept?

 Computational Complexity
 Resources required to learn target concept?

 Want theory to relate:
 Training examples

 Quantity
 Quality m
 How presented

 Complexity of hypothesis/concept space H
 Accuracy of approx to target concept      
 Probability of successful learning            
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Prototypical concept learning 
task

Binary classification
 Everything we'll say here generalizes to other, including regression and multi-

class classification, problems.

 Given:
 Instances X: Possible days, each described by the attributes Sky, AirTemp, 

Humidity, Wind, Water, Forecast
 Target function c: EnjoySport : X  {0, 1}
 Hypotheses space H: Conjunctions of literals. E.g. 

(?, Cold, High, ?, ?, EnjoySport).
 Training examples S: iid positive and negative examples of the target function 

(x1, c(x1)), ... (xm, c(xm))

 Determine:
 A hypothesis h in H such that h(x) is "good" w.r.t c(x) for all x in S?
 A hypothesis h in H such that h(x) is "good" w.r.t c(x) for all x in the true dist D?
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Sample labels are 
consistent
with some h in H

Learner’s hypothesis 
required to meet 
absolute upper bound
on its error

No prior restriction on 
the sample labels

The required upper 
bound on the 
hypothesis error is 
only relative (to the 
best hypothesis in the 
class)

PAC framework Agnostic framework

Two Basic Competing Models



© Eric Xing @ CMU, 2006-2015 7

Sample Complexity
 How many training examples are sufficient to learn the target 

concept?

 Training scenarios:
1 If learner proposes instances, as queries to teacher

 Learner proposes instance x, teacher provides c(x)

2 If teacher (who knows c) provides training examples
 teacher provides sequence of examples of form (x, c(x))

3 If some random process (e.g., nature) proposes instances
 instance x generated randomly, teacher provides c(x)
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 Given: 
 set of examples X
 fixed (unknown) distribution D over X
 set of hypotheses H
 set of possible target concepts C

 Learner observes sample S = {  xi, c(xi)   }
 instances xi drawn from distr. D
 labeled by target concept c  C
(Learner does NOT know c(.), D)

 Learner outputs h  H estimating c
 h is evaluated by performance on subsequent instances drawn from D

 For now: 
 C = H (so c  H)
 Noise-free data
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True error of a hypothesis

 Definition: The true error (denoted D(h)) of hypothesis h with respect 
to target concept c and distribution D is the probability that h will 
misclassify an instance drawn at random according to  D .
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Two notions of error
 Training error (a.k.a., empirical risk or empirical error) of 

hypothesis h with respect to target concept c
 How often h(x)  c(x) over training instance from S

 True error of (a.k.a., generalization error, test error) 
hypothesis h with respect to c
 How often h(x)  c(x) over future random instances 

drew iid from D

Can we bound

in terms of

??
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The Union Bound
 Lemma. (The union bound). Let A1;A2, … , Ak be k different 

events (that may not be independent). Then

 In probability theory, the union bound is usually stated as an axiom (and thus we 
won't try to prove it), but it also makes intuitive sense: The probability of any one 
of k events happening is at most the sums of the probabilities of the k different 
events.
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Hoeffding inequality
 Lemma. (Hoeding inequality) Let Z1,…,Zm be m independent 

and identically distributed (iid) random variables drawn from a 
Bernoulli() distribution, i.e., P(Zi = 1) = , and P(Zi = 0) = 1- . 

Let                              be the mean of these random variables, 
and let any > 0 be fixed. Then

 This lemma (which in learning theory is also called the Chernoff bound) says that 
if we take      the average of m Bernoulli(   ) random variables  to be our 
estimate of     , then the probability of our being far from the true value is small, so 
long as m is large.
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Version Space
 A hypothesis h is consistent with a set of training examples S

of target concept c if and only if h(x)=c(x) for each training 
example  xi, c(xi)  in S

 The version space, VSH,S , with respect to hypothesis space H
and training examples S is the subset of hypotheses from H
consistent with all training examples in S.
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Consistent Learner
 A learner is consistent if it outputs hypothesis that perfectly 

fits the training data
 This is a quite reasonable learning stragety

 Every consistent learning outputs a hypothesis belonging to 
the version space

 We want to know how such hypothesis generalizes 
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Probably Approximately Correct
Goal:

PAC-Learner produces hypothesis ĥ that
is approximately correct,

errD(ĥ)  0
with high probability

P( errD(ĥ)  0 )  1

 Double “hedging"
 approximately
 probably

Need both!
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 Definition: The version space VSH,S is said to be -exhausted with 
respect to c and S, if every hypothesis h in VSH,S has true error less 
than  with respect to c and D.

Exhausting the version space
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How many examples will -
exhaust the VS

Theorem: [Haussler, 1988].
 If the hypothesis space H is finite, and S is a sequence of m  1 

independent random examples of some target concept c, then for 
any 0    1/2, the probability that the version space with respect to 
H and S is not -exhausted (with respect to c) is less than

 This bounds the probability that any consistent learner will output a 
hypothesis h with (h)  
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Proof
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What it means
 [Haussler, 1988]: probability that the version space is not ε-

exhausted after m training examples is at most |H|e-m

Suppose we want this probability to be at most δ

1. How many training examples suffice?

2. If errortrain(h) = 0 then with probability at least (1-δ):
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 How many examples are sufficient to assure with probability at least 
(1 - ) that

every h in VSH,S satisfies D(h)  

 Use our theorem:

 Suppose H contains conjunctions of constraints on up to n boolean 
attributes (i.e., n boolean literals). 
Then |H| = 3n, and

or
))/1ln(3(ln1   nm

))/1ln((ln1   Hm

))/ln(ln(  131  nm

Learning Conjunctions of 
Boolean Literals
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PAC Learnability
A learning algorithm is PAC learnable if it

 Requires no more than polynomial computation per training 
example, and 

 no more than polynomial number of samples

Theorem: conjunctions of Boolean literals is PAC learnable 
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 If H is as given in EnjoySport then |H| = 973, and

 if want to assure that with probability 95%, VS contains only 
hypotheses with S(h)  .1, then it is sufficient to have m
examples, where

))/ln((ln  11  Hm

))/1ln(973(ln1  m

))05./1ln(973(ln1.
1 m

)00.388.6(10 m

)20ln973(ln10 m

8.98m

How about EnjoySport?
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 Learner L can draw labeled instance x, c(x) in unit time, x  X of 
length n drawn from distribution D, labeled by target concept c  C

Def'n: Learner L PAC-learns class C using hypothesis space H
if
1. for any target concept c  C,

any distribution D, any  such that 0 <  < 1/2,   such that 0 <  < 1/2,
L returns h  H s.t.

w/ prob.  1 – ,      errD(h) < 
2. L's run-time    (and hence, sample complexity)

is poly(|x|, size(c), 1/, 1/)

 Sufficient:
1. Only poly(…) training instances   – |H| = 2poly()

2. Only poly time / instance  …
Often C = H

PAC-Learning

))/ln((ln  11  Hm
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So far, assumed c  H

Agnostic learning setting: don't assume c  H

 What do we want then?
 The hypothesis h that makes fewest errors on training data

 What is sample complexity in this case?

derived from Hoeffding bounds:

))/1ln((ln22
1 


 Hm

22  m
SD eherrorherror  ])()(Pr[

Agnostic Learning
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Empirical Risk Minimization 
Paradigm
 Choose a Hypothesis Class H of subsets of  X.
 For an input sample S , find some h in H that fits S "well".
 For a new point  x , predict a label according to its membership in  h.

 Example:
 Consider linear classification, and let

Then 

 We think of ERM as the most "basic" learning algorithm, and it will be this algorithm 
that we focus on in the remaining.

 In our study of learning theory, it will be useful to abstract away from the specific 
parameterization of hypotheses and from issues such as whether we're using a linear 
classier or an ANN
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The Case of Finite H
 H = {h1, …, hk} consisting of k hypotheses.

 We would like to give guarantees on the generalization error 
of ĥ.

 First, we will show that         is a reliable estimate of ε(h) for all 
h. 

 Second, we will show that this implies an upper-bound on the 
generalization error of ĥ.
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Misclassification Probability
 The outcome of a binary classifier can be viewed as a 

Bernoulli random variable Z :

 For each sample:

 Hoeffding inequality

 This shows that, for our particular hi, training error will be close to generalization 
error with high probability, assuming m is large.
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 But we don't just want to guarantee that          will be close          
(with high probability) for just only one particular hi. We want to 
prove that this will be true for simultaneously for all hi H

 For k hypothesis: 

 This means:

Uniform Convergence
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 In the discussion above, what we did was, for particular 
values of m and γ, given a bound on the probability that: 

for some hi H

 There are three quantities of interest here: m and γ, and 
probability of error; we can bound either one in terms of the 
other two.



© Eric Xing @ CMU, 2006-2015 30

Sample Complexity
 How many training examples we need in order make a guarantee?

 We find that if

then with probability at least 1-δ, we have that
for all hi H

 The key property of the bound above is that the number of training 
examples needed to make this guarantee is only logarithmic in k, the 
number of hypotheses in H. This will be important later.
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Generalization Error Bound
 Similarly, we can also hold m and δ fixed and solve for γ in the 

previous equation, and show [again, convince yourself that 
this is right!] that with probability 1- δ , we have that for all hi H

 Define                                   to be the best possible 
hypothesis in H.

 If uniform convergence occurs, then the generalization error of          is at most 2
worse than the best possible hypothesis in H!
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Summary


