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 Simple (a.k.a. weak) learners e.g., naïve Bayes, logistic 
regression, decision stumps (or shallow decision trees)

Are good  - Low variance, don’t usually overfit
Are bad  - High bias, can’t solve hard learning problems

 Can we make weak learners always good???
 No!!! But often yes…

Weak Learners:
Fighting the bias-variance tradeoff
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Why boost weak learners?
Goal: Automatically categorize type of call requested 

(Collect, Calling card, Person-to-person, etc.)

 Easy to find “rules of thumb” that are “often” correct.
E.g. If ‘card’ occurs in utterance, then predict ‘calling card’

 Hard to find single highly accurate prediction rule.
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Voting  (Ensemble Methods)
 Instead of learning a single (weak) classifier, learn many weak 

classifiers that are good at different parts of the input space

 Output class: (Weighted) vote of each classifier
 Classifiers that are most “sure” will vote with more conviction
 Classifiers will be most “sure” about a particular part of the space
 On average, do better than single classifier!

1 -1

? ?

? ?

1 -1

H: X → Y (-1,1)
h1(X) h2(X)

H(X) = sign(∑αt ht(X))
t

weights

H(X) = h1(X)+h2(X)
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Voting  (Ensemble Methods)
 Instead of learning a single (weak) classifier, learn many

weak classifiers that are good at different parts of the 
input space

 Output class: (Weighted) vote of each classifier
 Classifiers that are most “sure” will vote with more conviction
 Classifiers will be most “sure” about a particular part of the space
 On average, do better than single classifier!

 But how do you ??? 
 force classifiers ht to learn about different parts of the input space?
 weigh the votes of different classifiers? t
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Bagging
 Recall decision trees (lecture 3)

 Pros: interpretable, can handle discrete and continuous features, robust to 
outliers, low bias, etc.

 Cons: high variance

 Trees are perfect candidates for ensembles
 Consider averaging many (nearly) unbiased tree estimators
 Bias remains similar, but variance is reduced

 This is called bagging (bootstrap aggregating) (Breiman, 1996)
 Train many trees on bootstrapped data, then take average

 Bootstrap: statistical term for “roll n-face dice n times”
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Random Forest
 Reduce correlation between trees, by introducing randomness
1. For b = 1, …, B,

1. Draw a bootstrap dataset 
2. Learn a tree            on       , in particular select        features randomly out of     

features as candidates before splitting

2. Output:
 Regression:  
 Classification: majority vote

 Typically take 
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Rationale: Combination of 
methods
 There is no algorithm that is always the most accurate

 We can select simple “weak” classification or regression 
methods and combine them into a single “strong” method

 Different learners use different

 Algorithms
 Parameters
 Representations (Modalities)
 Training sets
 Subproblems

 The problem: how to combine them
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Boosting [Schapire’89]
 Idea: given a weak learner, run it multiple times on (reweighted) 

training data, then let learned classifiers vote

 On each iteration t: 
 weight each training example by how incorrectly it was classified 
 Learn a weak hypothesis – ht

 A strength for this hypothesis – t

 Final classifier:

 Practically useful, and theoretically interesting
 Important issues:

 what is the criterion that we are optimizing? (measure of loss)
 we would like to estimate each new component classifier in the same manner 

(modularity)

H(X) = sign(∑αt ht(X))
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Combination of classifiers
 Suppose we have a family of component classifiers 

(generating ±1 labels) such as decision stumps:

where = {k,w,b}

 Each decision stump pays 
attention to only a single 
component of the 
input vector

 bwxxh k  sign);( 
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Combination of classifiers con’d
 We’d like to combine the simple classifiers additively so that 

the final classifier is the sign of

where the “votes” {i} emphasize component classifiers that 
make more reliable predictions than others

 Important issues:
 what is the criterion that we are optimizing? (measure of loss)
 we would like to estimate each new component classifier in the same manner 

(modularity)

);();()(ˆ mmhhh  xxx  11
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AdaBoost
 Input:

 N examples SN = {(x1,y1),…, (xN,yN)}
 a weak base learner h = h(x,)

 Initialize: equal example weights wi = 1/N for all i = 1..N
 Iterate for t = 1…T:

1. train base learner according to weighted example set (wt ,x) and obtain hypothesis 
ht = h(x,t)

2. compute hypothesis error t

3. compute hypothesis weight t

4. update example weights for next iteration wt+1

 Output: final hypothesis as a linear combination of ht
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AdaBoost
 At the kth iteration we find (any) classifier h(x; k*) for which 

the weighted classification error:

is better than chance.
 This is meant to be "easy" --- weak classifier

 Determine how many “votes” to assign to the new component 
classifier:

 stronger classifier gets more votes

 Update the weights on the training examples:
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Boosting Example (Decision 
Stumps)
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Boosting Example (Decision 
Stumps)

15© Eric Xing @ CMU, 2006-2015



 What is the criterion that we are optimizing? 
(measure of loss)
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Measurement of error
 Loss function:

 Generalization error:

 Objective: find h with minimum generalization error

 Main boosting idea: minimize the empirical error:
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Exponential Loss
 Empirical loss:

 Another possible measure of empirical loss is
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Exponential Loss
 One possible measure of empirical loss is

 The combined classifier based on m − 1 iterations defines a weighted loss 
criterion for the next simple classifier to add

 each training sample is weighted by its "classifiability" (or difficulty) seen by the 
classifier we have built so far 
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Linearization of loss function
 We can simplify a bit the estimation criterion for the new 

component classifiers (assuming  is small)

 Now our empirical loss criterion reduces to

 We could choose a new component classifier to optimize this 
weighted agreement
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A possible algorithm
 At stage m we find * that maximize (or at least give a 

sufficiently high) weighted agreement:

 each sample is weighted by its "difficulty" under the previously combined m − 1 
classifiers,

 more "difficult" samples received heavier attention as they dominates the total 
loss

 Then we go back and find the “votes” m* associated with the 
new classifier by minimizing the original weighted 
(exponential) loss
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The AdaBoost algorithm
 At the kth iteration we find (any) classifier h(x; k*) for which 

the weighted classification error:

is better than change.
 This is meant to be "easy" --- weak classifier

 Determine how many “votes” to assign to the new component 
classifier:

 stronger classifier gets more votes

 Update the weights on the training examples:
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The AdaBoost algorithm cont’d
 The final classifier after m boosting iterations is given by the 

sign of

 the votes here are normalized for convenience

m
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Boosting
 We have basically derived a Boosting algorithm that 

sequentially adds new component classifiers, each trained on 
reweighted training examples
 each component classifier is presented with a slightly different problem

 AdaBoost preliminaries:
 we work with normalized weights Wi on the training examples, initially 

uniform ( Wi = 1/n)
 the weight reflect the "degree of difficulty" of each datum on the latest 

classifier 
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AdaBoost: summary
 Input:

 N examples SN = {(x1,y1),…, (xN,yN)}
 a weak base learner h = h(x,)

 Initialize: equal example weights wi = 1/N for all i = 1..N
 Iterate for t = 1…T:

1. train base learner according to weighted example set (wt,x) and obtain hypothesis 
ht = h(x,t)

2. compute hypothesis error t

3. compute hypothesis weight t

4. update example weights for next iteration wt+1

 Output: final hypothesis as a linear combination of ht
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Base Learners
 Weak learners used in practice:

 Decision stumps (axis parallel splits)
 Decision trees (e.g. C4.5 by Quinlan 1996)
 Multi-layer neural networks
 Radial basis function networks

 Can base learners operate on weighted examples?
 In many cases they can be modified to accept weights along with the 

examples
 In general, we can sample the examples (with replacement) according to 

the distribution defined by the weights
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 Boosting often, 
 Robust to overfitting
 Test set error decreases even after training error is zero

[Schapire, 1989]

but not always

Test Error

Training Error

Boosting results – Digit 
recognition
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 T – number of boosting rounds
 d – VC dimension of weak learner, measures complexity of 

classifier 
 m – number of training examples

Generalization Error Bounds

T smalllarge small

T largesmall large
tradeoff

bias variance

[Freund & Schapire’95]
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Generalization Error Bounds

Boosting can overfit if T is large

Boosting often, Contradicts experimental results
 Robust to overfitting
 Test set error decreases even after training error is zero

Need better analysis tools – margin based bounds

[Freund & Schapire’95]

With high
probability
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Why it is working?
 You will need some learning theory (to be covered in the next 

two lectures) to understand this fully, but for now let's just go 
over some high level ideas

 Generalization Error:

With high probability, Generalization error is less than:

As T goes up, our bound becomes worse,  
Boosting should overfit!
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Training
error

Test
error

The Boosting Approach to Machine Learning, by Robert E. Schapire

Experiments
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Training Margins
 When a vote is taken, the more predictors agreeing, the more 

confident you are in your prediction.

 Margin for example:

The margin lies in [−1, 1] and is negative for all misclassified examples.

 Successive boosting iterations improve the majority vote or 
margin for the training examples
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A Margin Bound

Robert E. Schapire, Yoav Freund, Peter Bartlett and Wee Sun Lee. 
Boosting the margin: A new explanation for the effectiveness of voting 

methods.  The Annals of Statistics, 26(5):1651-1686, 1998. 

 For any , the generalization error is less than:

 It does not depend on T!!!
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Summary
 Boosting takes a weak learner and converts it to a strong
 one

 Works by asymptotically minimizing the empirical error

 Effectively maximizes the margin of the combined hypothesis
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Some additional points for fun
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Logistic regression assumes:

And tries to maximize data likelihood:

Equivalent to minimizing log loss

iid

Boosting and Logistic 
Regression
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Logistic regression equivalent to minimizing log loss

Both smooth approximations 
of 0/1 loss!

Boosting minimizes similar loss function!!

Weighted average of weak learners

1

0

0/1 loss

exp loss
log loss

Boosting and Logistic 
Regression
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Logistic regression:
 Minimize log loss

 Define 

where xj predefined 
features
(linear classifier)

 Jointly optimize over all 
weights w0, w1, w2…

Boosting:
 Minimize exp loss

 Define 

where ht(x) defined dynamically 
to fit data
(not a linear classifier)

 Weights t learned per 
iteration t incrementally

Boosting and Logistic 
Regression

38© Eric Xing @ CMU, 2006-2015



Weighted average of weak 
learners

Hard Decision/Predicted label:

Soft Decision:
(based on analogy with
logistic regression)

Hard & Soft Decision
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Good  : Can identify outliers since focuses on examples that are 
hard to categorize

Bad  : Too many outliers can degrade classification performance
dramatically increase time to convergence

Effect of Outliers

40© Eric Xing @ CMU, 2006-2015



 Goal: Find nonlinear predictor                such that 

 Gradient boosting generalizes Adaboost
(exponential loss) to any smooth loss functions

Gradient Boosting
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Square loss (regression)

Logistic loss 
(classification)
Margin loss 
(ranking) (prefer item i over j)
Others…



 Let’s use decision tree to approximate 
 A J-leaf node decision tree can be viewed as a 

partition of the input space

 and a prediction value (weight) associated with each 
partition

 Will learn       (tree structure) first, then  

Gradient Boosting Decision Tree
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