
Ensemble methods
Boosting from Weak Learners

Eric Xing

Lecture 11, October 15, 2015

Machine Learning

10-701, Fall 2015

b r a c e

Reading: Chap. 14.3 C.B book
1© Eric Xing @ CMU, 2006-2015

 Simple (a.k.a. weak) learners e.g., naïve Bayes, logistic
regression, decision stumps (or shallow decision trees)

Are good - Low variance, don’t usually overfit
Are bad - High bias, can’t solve hard learning problems

 Can we make weak learners always good???
 No!!! But often yes…

Weak Learners:
Fighting the bias-variance tradeoff

2© Eric Xing @ CMU, 2006-2015

Why boost weak learners?
Goal: Automatically categorize type of call requested

(Collect, Calling card, Person-to-person, etc.)

 Easy to find “rules of thumb” that are “often” correct.
E.g. If ‘card’ occurs in utterance, then predict ‘calling card’

 Hard to find single highly accurate prediction rule.

3© Eric Xing @ CMU, 2006-2015

Voting (Ensemble Methods)
 Instead of learning a single (weak) classifier, learn many weak

classifiers that are good at different parts of the input space

 Output class: (Weighted) vote of each classifier
 Classifiers that are most “sure” will vote with more conviction
 Classifiers will be most “sure” about a particular part of the space
 On average, do better than single classifier!

1 -1

? ?

? ?

1 -1

H: X → Y (-1,1)
h1(X) h2(X)

H(X) = sign(∑αt ht(X))
t

weights

H(X) = h1(X)+h2(X)

4© Eric Xing @ CMU, 2006-2015

Voting (Ensemble Methods)
 Instead of learning a single (weak) classifier, learn many

weak classifiers that are good at different parts of the
input space

 Output class: (Weighted) vote of each classifier
 Classifiers that are most “sure” will vote with more conviction
 Classifiers will be most “sure” about a particular part of the space
 On average, do better than single classifier!

 But how do you ???
 force classifiers ht to learn about different parts of the input space?
 weigh the votes of different classifiers? t

5© Eric Xing @ CMU, 2006-2015

Bagging
 Recall decision trees (lecture 3)

 Pros: interpretable, can handle discrete and continuous features, robust to
outliers, low bias, etc.

 Cons: high variance

 Trees are perfect candidates for ensembles
 Consider averaging many (nearly) unbiased tree estimators
 Bias remains similar, but variance is reduced

 This is called bagging (bootstrap aggregating) (Breiman, 1996)
 Train many trees on bootstrapped data, then take average

 Bootstrap: statistical term for “roll n-face dice n times”

© Eric Xing @ CMU, 2006-2016 6

Random Forest
 Reduce correlation between trees, by introducing randomness
1. For b = 1, …, B,

1. Draw a bootstrap dataset
2. Learn a tree on , in particular select features randomly out of

features as candidates before splitting

2. Output:
 Regression:
 Classification: majority vote

 Typically take

© Eric Xing @ CMU, 2006-2016 7

Rationale: Combination of
methods
 There is no algorithm that is always the most accurate

 We can select simple “weak” classification or regression
methods and combine them into a single “strong” method

 Different learners use different

 Algorithms
 Parameters
 Representations (Modalities)
 Training sets
 Subproblems

 The problem: how to combine them

8© Eric Xing @ CMU, 2006-2015

Boosting [Schapire’89]
 Idea: given a weak learner, run it multiple times on (reweighted)

training data, then let learned classifiers vote

 On each iteration t:
 weight each training example by how incorrectly it was classified
 Learn a weak hypothesis – ht

 A strength for this hypothesis – t

 Final classifier:

 Practically useful, and theoretically interesting
 Important issues:

 what is the criterion that we are optimizing? (measure of loss)
 we would like to estimate each new component classifier in the same manner

(modularity)

H(X) = sign(∑αt ht(X))

9© Eric Xing @ CMU, 2006-2015

Combination of classifiers
 Suppose we have a family of component classifiers

(generating ±1 labels) such as decision stumps:

where = {k,w,b}

 Each decision stump pays
attention to only a single
component of the
input vector

 bwxxh k sign);(

10© Eric Xing @ CMU, 2006-2015

Combination of classifiers con’d
 We’d like to combine the simple classifiers additively so that

the final classifier is the sign of

where the “votes” {i} emphasize component classifiers that
make more reliable predictions than others

 Important issues:
 what is the criterion that we are optimizing? (measure of loss)
 we would like to estimate each new component classifier in the same manner

(modularity)

);();()(ˆ mmhhh xxx 11

11© Eric Xing @ CMU, 2006-2015

AdaBoost
 Input:

 N examples SN = {(x1,y1),…, (xN,yN)}
 a weak base learner h = h(x,)

 Initialize: equal example weights wi = 1/N for all i = 1..N
 Iterate for t = 1…T:

1. train base learner according to weighted example set (wt ,x) and obtain hypothesis
ht = h(x,t)

2. compute hypothesis error t

3. compute hypothesis weight t

4. update example weights for next iteration wt+1

 Output: final hypothesis as a linear combination of ht

12© Eric Xing @ CMU, 2006-2015

AdaBoost
 At the kth iteration we find (any) classifier h(x; k*) for which

the weighted classification error:

is better than chance.
 This is meant to be "easy" --- weak classifier

 Determine how many “votes” to assign to the new component
classifier:

 stronger classifier gets more votes

 Update the weights on the training examples:

 kkk εε /)(log. 150

);(exp kiki
k
i

k
i hayWW x 1

n

i

k
i

n

i
kii

k
ik WhyIW

1

1

1

*1);((x

13© Eric Xing @ CMU, 2006-2015

Boosting Example (Decision
Stumps)

14© Eric Xing @ CMU, 2006-2015

Boosting Example (Decision
Stumps)

15© Eric Xing @ CMU, 2006-2015

 What is the criterion that we are optimizing?
(measure of loss)

16© Eric Xing @ CMU, 2006-2015

Measurement of error
 Loss function:

 Generalization error:

 Objective: find h with minimum generalization error

 Main boosting idea: minimize the empirical error:

))((e.g.))(,(xx hyIhy

))(,()(xhyEhL

N

i
ii hyN

hL
1

1))(,()(ˆ x

17© Eric Xing @ CMU, 2006-2015

Exponential Loss
 Empirical loss:

 Another possible measure of empirical loss is

n

i
imihyhL

1
)(ˆexp)(ˆ x

N

i
imi hyN

hL
1

))(ˆ,(1)(ˆ x

18© Eric Xing @ CMU, 2006-2015

Exponential Loss
 One possible measure of empirical loss is

 The combined classifier based on m − 1 iterations defines a weighted loss
criterion for the next simple classifier to add

 each training sample is weighted by its "classifiability" (or difficulty) seen by the
classifier we have built so far

);(exp

);(exp)(ˆexp

);()(ˆexp

)(ˆexp)(ˆ

mimi

n

i

m
i

mimi

n

i
imi

n

i
mimiimi

n

i
imi

hayW

hayhy

hayhy

hyhL

x

xx

xx

x

1

1

1
1

1
1

1

Recall that:
);();()(ˆ

mmm hhh xxx 11

)(ˆexp imi
m
i hyW x1

1

19© Eric Xing @ CMU, 2006-2015

Linearization of loss function
 We can simplify a bit the estimation criterion for the new

component classifiers (assuming is small)

 Now our empirical loss criterion reduces to

 We could choose a new component classifier to optimize this
weighted agreement

);();(exp mimimimi hayhay xx 1

n

i
mii

m
im

n

i

m
i

mimi

n

i

m
i

n

i
imi

hyWaW

hayW

hy

1

1

1

1

1

1

1

1

);(

));((

)(ˆexp

x

x

x

)(ˆexp imi
m
i hyW x1

1

20© Eric Xing @ CMU, 2006-2015

A possible algorithm
 At stage m we find * that maximize (or at least give a

sufficiently high) weighted agreement:

 each sample is weighted by its "difficulty" under the previously combined m − 1
classifiers,

 more "difficult" samples received heavier attention as they dominates the total
loss

 Then we go back and find the “votes” m* associated with the
new classifier by minimizing the original weighted
(exponential) loss

n

i
mii

m
i hyW

1

1);(*x

);(exp)(ˆ
1

1
mimi

n

i

m
i hayWhL x

21© Eric Xing @ CMU, 2006-2015

The AdaBoost algorithm
 At the kth iteration we find (any) classifier h(x; k*) for which

the weighted classification error:

is better than change.
 This is meant to be "easy" --- weak classifier

 Determine how many “votes” to assign to the new component
classifier:

 stronger classifier gets more votes

 Update the weights on the training examples:

n

i

k
i

n

i
kii

k
ik WhyIW

1

1

1

*1);((x

 kkk εε /)(log. 150

);(exp kiki
k
i

k
i hayWW x 1

)(ˆexp imi
m
i hyW x1

1

22© Eric Xing @ CMU, 2006-2015

The AdaBoost algorithm cont’d
 The final classifier after m boosting iterations is given by the

sign of

 the votes here are normalized for convenience

m

mmhhh

1

11);();()(ˆ xxx

23© Eric Xing @ CMU, 2006-2015

Boosting
 We have basically derived a Boosting algorithm that

sequentially adds new component classifiers, each trained on
reweighted training examples
 each component classifier is presented with a slightly different problem

 AdaBoost preliminaries:
 we work with normalized weights Wi on the training examples, initially

uniform (Wi = 1/n)
 the weight reflect the "degree of difficulty" of each datum on the latest

classifier

24© Eric Xing @ CMU, 2006-2015

AdaBoost: summary
 Input:

 N examples SN = {(x1,y1),…, (xN,yN)}
 a weak base learner h = h(x,)

 Initialize: equal example weights wi = 1/N for all i = 1..N
 Iterate for t = 1…T:

1. train base learner according to weighted example set (wt,x) and obtain hypothesis
ht = h(x,t)

2. compute hypothesis error t

3. compute hypothesis weight t

4. update example weights for next iteration wt+1

 Output: final hypothesis as a linear combination of ht

25© Eric Xing @ CMU, 2006-2015

Base Learners
 Weak learners used in practice:

 Decision stumps (axis parallel splits)
 Decision trees (e.g. C4.5 by Quinlan 1996)
 Multi-layer neural networks
 Radial basis function networks

 Can base learners operate on weighted examples?
 In many cases they can be modified to accept weights along with the

examples
 In general, we can sample the examples (with replacement) according to

the distribution defined by the weights

26© Eric Xing @ CMU, 2006-2015

 Boosting often,
 Robust to overfitting
 Test set error decreases even after training error is zero

[Schapire, 1989]

but not always

Test Error

Training Error

Boosting results – Digit
recognition

27© Eric Xing @ CMU, 2006-2015

 T – number of boosting rounds
 d – VC dimension of weak learner, measures complexity of

classifier
 m – number of training examples

Generalization Error Bounds

T smalllarge small

T largesmall large
tradeoff

bias variance

[Freund & Schapire’95]

28© Eric Xing @ CMU, 2006-2015

Generalization Error Bounds

Boosting can overfit if T is large

Boosting often, Contradicts experimental results
 Robust to overfitting
 Test set error decreases even after training error is zero

Need better analysis tools – margin based bounds

[Freund & Schapire’95]

With high
probability

29© Eric Xing @ CMU, 2006-2015

Why it is working?
 You will need some learning theory (to be covered in the next

two lectures) to understand this fully, but for now let's just go
over some high level ideas

 Generalization Error:

With high probability, Generalization error is less than:

As T goes up, our bound becomes worse,
Boosting should overfit!

30© Eric Xing @ CMU, 2006-2015

Training
error

Test
error

The Boosting Approach to Machine Learning, by Robert E. Schapire

Experiments

31© Eric Xing @ CMU, 2006-2015

Training Margins
 When a vote is taken, the more predictors agreeing, the more

confident you are in your prediction.

 Margin for example:

The margin lies in [−1, 1] and is negative for all misclassified examples.

 Successive boosting iterations improve the majority vote or
margin for the training examples

m

mimi
iiih

hhy,y

1

11);();()(margin xxx

32© Eric Xing @ CMU, 2006-2015

A Margin Bound

Robert E. Schapire, Yoav Freund, Peter Bartlett and Wee Sun Lee.
Boosting the margin: A new explanation for the effectiveness of voting

methods. The Annals of Statistics, 26(5):1651-1686, 1998.

 For any , the generalization error is less than:

 It does not depend on T!!!

 2

m
dO,yh)(marginPr x

33© Eric Xing @ CMU, 2006-2015

Summary
 Boosting takes a weak learner and converts it to a strong
 one

 Works by asymptotically minimizing the empirical error

 Effectively maximizes the margin of the combined hypothesis

34© Eric Xing @ CMU, 2006-2015

Some additional points for fun

© Eric Xing @ CMU, 2006-2015 35

Logistic regression assumes:

And tries to maximize data likelihood:

Equivalent to minimizing log loss

iid

Boosting and Logistic
Regression

36© Eric Xing @ CMU, 2006-2015

Logistic regression equivalent to minimizing log loss

Both smooth approximations
of 0/1 loss!

Boosting minimizes similar loss function!!

Weighted average of weak learners

1

0

0/1 loss

exp loss
log loss

Boosting and Logistic
Regression

37© Eric Xing @ CMU, 2006-2015

Logistic regression:
 Minimize log loss

 Define

where xj predefined
features
(linear classifier)

 Jointly optimize over all
weights w0, w1, w2…

Boosting:
 Minimize exp loss

 Define

where ht(x) defined dynamically
to fit data
(not a linear classifier)

 Weights t learned per
iteration t incrementally

Boosting and Logistic
Regression

38© Eric Xing @ CMU, 2006-2015

Weighted average of weak
learners

Hard Decision/Predicted label:

Soft Decision:
(based on analogy with
logistic regression)

Hard & Soft Decision

39© Eric Xing @ CMU, 2006-2015

Good : Can identify outliers since focuses on examples that are
hard to categorize

Bad : Too many outliers can degrade classification performance
dramatically increase time to convergence

Effect of Outliers

40© Eric Xing @ CMU, 2006-2015

 Goal: Find nonlinear predictor such that

 Gradient boosting generalizes Adaboost
(exponential loss) to any smooth loss functions

Gradient Boosting

41© Eric Xing @ CMU, 2006-2015

Square loss (regression)

Logistic loss
(classification)
Margin loss
(ranking) (prefer item i over j)
Others…

 Let’s use decision tree to approximate
 A J-leaf node decision tree can be viewed as a

partition of the input space

 and a prediction value (weight) associated with each
partition

 Will learn (tree structure) first, then

Gradient Boosting Decision Tree

42© Eric Xing @ CMU, 2006-2011

