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Choosing a restaurant 

Reviews 

(out of 5 

stars) 

$ Distance Cuisine 

(out of 10) 

 4 30 21 7 

2 15 12 8 

5 27 53 9 

3 20 5 6 

• In everyday life we need to make decisions 

by taking into account lots of factors 

• The question is what weight we put on each 

of these factors (how important are they with 

respect to the others). 

• Assume we would like to build a 

recommender system for ranking potential 

restaurants based on an individuals’ 

preferences 

• If we have many observations we may be 

able to recover the weights 

? 



Linear regression 

• Given an input x we would like 

to compute an output y 

• For example: 

    - Predict height from age 

    - Predict Google’s price from 

Yahoo’s price 

    - Predict distance from wall 

using sensor readings 

X 

Y 

Note that now Y can be  

continuous   



Linear regression 

• Given an input x we would like to 
compute an output y 

• In linear regression we assume 
that y and x are related with the 
following equation:  

 

                 

                       y = wx+ 

     

    where w is a parameter and  
represents measurement or 
other noise   

X 

Y 

What we are 

trying to predict 

Observed values 



• Our goal is to estimate w from a training data 

of <xi,yi> pairs 

•  One way to find such relationship is to 

minimize the a least squares error: 

 

 

• Several other approaches can be used as well 

• So why least squares? 

    - minimizes squared distance between 

measurements and predicted line 

     - has a nice probabilistic interpretation 

     - easy to compute 

Linear regression 
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If the noise is Gaussian 

with mean 0 then least 

squares is also the 

maximum likelihood 

estimate of w 



Solving linear regression using 

least squares minimization 

• You should be familiar with this by now … 

• We just take the derivative w.r.t. to w and set to 0: 
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Regression example 

• Generated: w=2 

• Recovered: w=2.03 

• Noise: std=1 



Regression example 

• Generated: w=2 

• Recovered: w=2.05 

• Noise: std=2 



Regression example 

• Generated: w=2 

• Recovered: w=2.08 

• Noise: std=4 



Bias term 

• So far we assumed that the 

line passes through the origin 

• What if the line does not? 

• No problem, simply change the 

model to 

                   y = w0 + w1x+ 

 

• Can use least squares to 

determine w0 , w1 
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Bias term 

• So far we assumed that the 

line passes through the origin 

• What if the line does not? 

• No problem, simply change the 

model to 

                   y = w0 + w1x+ 

 

• Can use least squares to 

determine w0 , w1 
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Just a second, we will soon 

give a simpler solution 



Multivariate regression 
• What if we have several inputs? 

    - Stock prices for Yahoo, Microsoft and Ebay for 

the Google prediction task  

• This becomes a multivariate linear regression 

problem 

• Again, its easy to model: 

                        y = w0 + w1x1+ … + wkxk +  

 

 Google’s stock price 

Yahoo’s stock price 

Microsoft’s stock price 



Multivariate regression 

• What if we have several inputs? 

    - Stock prices for Yahoo, Microsoft and Ebay for 

the Google prediction task  

• This becomes a multivariate regression problem 

• Again, its easy to model: 

                        y = w0 + w1x1+ … + wkxk +  

 

 

Not all functions can be 

approximated using the input 

values directly 



y=10+3x1
2-2x2

2+ 

In some cases we would like to use 

polynomial or other terms based on the 

input data, are these still linear 

regression problems? 

Yes. As long as the coefficients are 

linear the equation is still a linear 

regression problem! 



Non-Linear basis function 

• So far we only used the observed values 

• However, linear regression can be applied in the same way to 

functions of these values 

• As long as these functions can be directly computed from the 

observed values the parameters are still linear in the data and the 

problem remains a linear regression problem 
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Non-Linear basis function 

• What type of functions can we use? 

• A few common examples: 

 

    - Polynomial: j(x) = xj for j=0 … n 

 

    - Gaussian:  

 

   - Sigmoid:     



 j (x) 
(x  j )

2 j

2



 j (x) 
1

1 exp(s jx)
Any function of the input 

values can be used. The 

solution for the parameters 

of the regression remains 

the same. 



General linear regression 

problem 
• Using our new notations for the basis function linear regression can 

be written as 

 

 

• Where j(x) can be either xj for multivariate regression or one of the 

non linear basis we defined 

• Once again we can use ‘least squares’ to find the optimal solution. 

y  w j j (x)
j 0

n





LMS for the general linear 

regression problem 



y  w j j (x)
j 0

n
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Our goal is to minimize the following 

loss function: 

Moving to vector notations we get: 

We take the derivative w.r.t w 



J(w)  (y i wT(x i))2
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Equating to 0 we get 
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w – vector of dimension k+1 

(xi) – vector of dimension k+1 

yi – a scaler 



LMS for general linear regression problem 

We take the derivative w.r.t w 
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Then deriving w 

we get: 



w  (T)1Ty



LMS for general linear regression problem 



J(w)  (y i wT(x i))2

i



Deriving w we get: 



w  (T)1Ty

n by k+1 matrix 

n entries vector 
k+1 entries vector 

This solution is 

also known as 

‘psuedo inverse’ 



Example: Polynomial regression 



A probabilistic interpretation 

Our least squares minimization solution can also be 

motivated by a probabilistic in interpretation of the 

regression problem: 

 



y wT(x)

The MLE for w in this model 

is the same as the solution 

we derived for least squares 

criteria: 



w  (T)1Ty



Other types of linear regression 

• Linear regression is a useful model for many problems  

• However, the parameters we learn for this model are global; they 

are the same regardless of the value of the input x 

• Extension to linear regression adjust their parameters based on the 

region of the input we are dealing with 



Splines  
• Instead of fitting one function for the entire region, fit a set of 

piecewise (usually cubic) polynomials satisfying continuity and 

smoothness constraints. 

• Results in smooth and flexible functions without too many 

parameters 

• Need to define the regions in advance (usually uniform) 
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Splines  
• The polynomials are not independent 

• For cubic splines we require that they agree in the border point on 

the value, the values of the first derivative and the value of the 

second derivative 

• How many free parameters do we actually have? 
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Splines  
• Splines sometimes contain additional 

requirements for the first and last 

polynomial (for example, having them 

start at 0) 

• Once Splines are fitted to the data they 

can be used to predict new values in the 

same way as regular linear regression, 

though they are limited to the support 

regions for which they have been defined 

• Note the range of functions that can be 

displayed with relatively small number of 

polynomials (in the example I am using 

5)  



Locally weighted models 

• Splines rely on a fixed region for each polynomial and the weight of 

all points within the region is the same. 

• An alternative option is to set the region based on the density of the 

input data and have points closer to the point we are trying to 

estimate have a higher weight 



Weighted regression 
• For a point x we use weight function x centered at x to assign 

weight to points in x’s vicinity 

• Next we solve the following weighted regression problem 

 

 

• The solution is the same as our general solution (the weight is 

given for every input) 
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x(x
1)=0.3 

x1 x2 x 

x(x)=0.9 

x(x
2)=0.7 



Determining the weights 

• There are a number of ways to determine the weights 

• One options is to use a Gaussian centered at x, such that 

 

 

 

     2 is a parameter that should be selected by the user 



x(x
i) 

1

2


(xx i )2

2 2e

More on these weights when we 

discuss kernels 



Important points 

• Linear regression 

    - basic model 

    - as a function of the input 

• Solving linear regression 

• Error in linear regression 

• Advanced regression models 


