
 

 

Logistic regression 
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Machine Learning 



Back to classification 

      

      1. Instance based classifiers 

          - Use observation directly (no models) 

          - e.g. K nearest neighbors 

       

      2. Generative: 

              - build a generative statistical model 

              - e.g., Bayesian networks 

       

      3. Discriminative 

              - directly estimate a decision rule/boundary 

              - e.g., decision tree 

            



Generative vs. discriminative 

classifiers 
• When using generative classifiers we relied on all points 

to learn the generative model 

• When using discriminative classifiers we mainly care 

about the boundary  
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Regression for classification 

• In some cases we can use linear regression for determining the 

appropriate boundary. 

• However, since the output is usually binary or discrete there are 

more efficient regression methods 

• Recall that for classification we are interested in the conditional 

probability p(y | X ; ) where  are the parameters of our model 

• When using regression  represents the values of our regression 

coefficients (w). 



Regression for classification 

• Assume we would like to use linear regression to learn the 

parameters for  p(y | X ; ) 

• Problems? 
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Optimal regression 

 model 

wTX  0  classify as 1 

wTX < 0  classify as -1 



The sigmoid function 

• To classify using regression models 

we replace the linear function with the 

sigmoid function: 

 

 

 

• Using the sigmoid we set (for binary 

classification problems) 
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The sigmoid function 

• To classify using regression models 

we replace the linear function with the 

sigmoid function: 

 

 

 

• Using the sigmoid we set (for binary 

classification problems) 
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Note that we are 
defining the 

probabilities in terms 
of p(y|X). No need to 
use Bayes rule here! 



Logistic regression vs. Linear 

regression 
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Determining parameters for logistic 

regression problems 
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•  So how do we learn the parameters? 

•  Similar to other regression problems 

we look for the MLE for w 

•  The likelihood of the data given the 

model is: 
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Defining a new 
function, g 



Solving logistic regression 

problems 
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• The likelihood of the data is: 

 

• Taking the log we get:  
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Maximum likelihood estimation 
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Bad news: No close 

form solution! 

Good news: Concave 

function 

Taking the partial 
derivative w.r.t. 

each component of 
the w vector  
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Gradient ascent 

z=x(y-g(w;x)) 

w 

Slope = z/ w 

z 

w 

• Going in the direction to the slope will lead to a larger z 

• But not too much, otherwise we would go beyond the 

optimal w 



Gradient descent 

z=(f(w)-y)2 

w 

Slope = z/ w 

z 

w 

• Going in the opposite direction to the slope will lead to 

a smaller z 

• But not too much, otherwise we would go beyond the 

optimal w 



Gradient ascent for logistic 

regression 
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We use the gradient to adjust the value of w:  

 

 

 

Where  is a (small) constant  
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Algorithm for logistic regression 

1. Chose  

2. Start with a guess for w 

3. For all j set  

 

4. If no improvement for  

 

 

stop. Otherwise go to step 3  

Example 
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Regularization 

• Similar to other data estimation problems, we may not have enough 

samples to learn good models for logistic regression classification 

• One way to overcome this is to ‘regularize’ the model, impose 

additional constraints on the parameters we are fitting. 

• For example, lets assume that wi
 comes from a Gaussian 

distribution with mean 0 and variance 2 (where 2 is a user defined 

parameter): wj~N(0, 2) 

• In that case we have a prior on the parameters and so:  
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Regularization 

• If we regularize the parameters we need to take the prior into 

account when computing the posterior for our parameters  

 

 

• Here we use a Gaussian model for the prior. 

• Thus, the  log likelihood changes to : 

 

 

 

• And the new update rule (after taking the derivative w.r.t. wi) is: 
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The variance of 
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estimate 

)();|1()|,1(  pXypXyp 



Regularization 

• There are many other ways to regularize logistic regression 

• The Gaussian model leads to an L2 regularization (we are trying to 

minimize the square value of w) 

• Another popular regularization is an L1 which tries to minimize |w| 



Logistic regression for more 

than 2 classes 
• Logistic regression can be used to classify data from more than 2 

classes. Assume we have k classes then: 

• for i<k we set 
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Logistic regression for more 

than 2 classes 
• Logistic regression can be used to classify data from more than 2 

classes. Assume we have k classes then: 

• for i<k we set 
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Binary logistic regression is a 

special case of this rule 



Update rule for logistic 

regression with multiple classes 
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Where (yi)=1 if yi=m 

and (yi)=0 otherwise 

The update rule becomes: 

 


N

i m

j

i

j

m

j

m wXmypyXww iii
1

)};|()({



Data transformation 

• Similar to what we did with linear regression we can extend logistic 

regression to other transformations of the data  

  

 

• As before, we are free to choose the basis functions 
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Important points 

• Advantage of logistic regression over linear regression for 

classification 

• Sigmoid function 

• Gradient ascent / descent 

• Regularization 

• Logistic regression for multiple classes 

 



Logistic regression 

• The name comes from the logit transformation: 
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