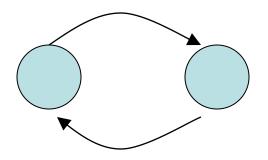
10-701 Machine Learning

Hidden Markov models (HMMs)

What's wrong with Bayesian networks

- Bayesian networks are very useful for modeling joint distributions
- But they have their limitations:
 - Cannot account for temporal / sequence models
 - DAG's (no self or any other loops)

This is not a valid Bayesian network!



Hidden Markov models

- Model a set of observation with a set of hidden states
 - Robot movement

Observations: range sensor, visual sensor Hidden states: location (on a map)

- Speech processing

Observations: sound signals

Hidden states: parts of speech, words

- Biology

Observations: DNA base pairs

Hidden states: Genes

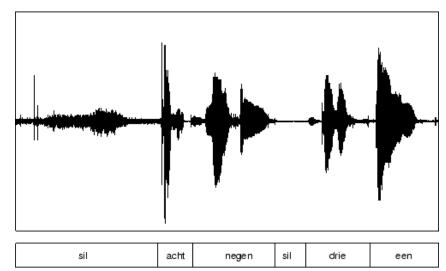
Hidden Markov models

- Model a set of observation with a set of hidden states
 - Robot movement

Observations: range sensor, visual sensor Hidden states: location (on a map)

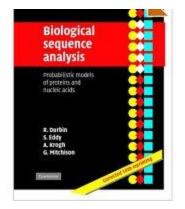
- 1. Hidden states generate observations
- 2. Hidden states transition to other hidden states

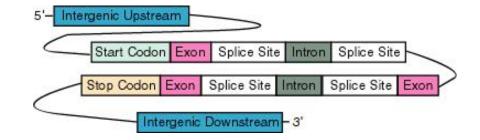
Examples: Speech processing



sil	spk	spk	sil	spk	spk

Example: Biological data





ATGAAGCTACTGTCTTCTATCGAACAAGCATGCG ATATTTGCCGACTTAAAAAGCTCAAG TGCTCCAAAGAAAAAACCGAAGTGCGCCAAGTGT CTGAAGAACAACTGGGAGTGTCGCTAC TCTCCCAAAACCAAAAGGTCTCCGCTGACTAGG GCACATCTGACAGAAGTGGAATCAAGG CTAGAAAGACTGGAACAGCTATTTCTACTGATTTT TCCTCGAGAAGACCTTGACATGATT

Contents

Pref	iace	page ix
1	Introduction	1
1.1	Sequence similarity, homology, and alignment	2
1.2	Overview of the book	2
1.3	Probabilities and probabilistic models	4
1.4	Further reading	10
2	Pairwise alignment	12
2.1	Introduction	12
2.2	The scoring model	13
2.3	Alignment algorithms	17
2.4	Dynamic programming with more complex models	28
2.5	Heuristic alignment algorithms	32
2.6	Linear space alignments	34
2.7	Significance of scores	36
2.8	Deriving score parameters from alignment data	41
2.9	Further reading	45
3	Markov chains and hidden Markov models	46
3.1	Markov chains	48
3.2	Hidden Markov models	51
3.3	Parameter estimation for HMMs	62
3.4	HMM model structure	68
3.5	More complex Markov chains	72
3.6	Numerical stability of HMM algorithms	77
3.7	Further reading	79
4	Pairwise alignment using HMMs	80
4.1	Pair HMMs	81
4.2	The full probability of x and y, summing over all paths	87
4.3	Suboptimal alignment	89
4.4	The posterior probability that x_i is aligned to y_j	91
4.5	Pair HMMs versus FSAs for searching	95

Copyrighted Material

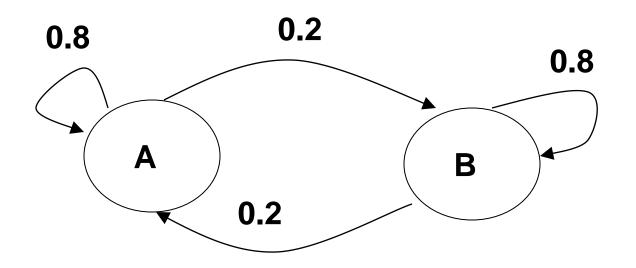
vi

10	S		-
Con	te	n	23
2000	***	**	***.

4.6	Further reading	98
5	Profile HMMs for sequence families	100
5.1	Ungapped score matrices	102
5.2	Adding insert and delete states to obtain profile HMMs	102
5.3	Deriving profile HMMs from multiple alignments	105
5.4	Searching with profile HMMs	108
5.5	Profile HMM variants for non-global alignments	113
5.6	More on estimation of probabilities	115
5.7	Optimal model construction	122
5.8	Weighting training sequences	124
5.9	Further reading	132
6	Multiple sequence alignment methods	134
6.1	What a multiple alignment means	135
6.2	Scoring a multiple alignment	137
6.3	Multidimensional dynamic programming	141
6.4	Progressive alignment methods	143
6.5	Multiple alignment by profile HMM training	149
6.6	Further reading	159
7	Building phylogenetic trees	160
7.1	The tree of life	160
7.2	Background on trees	161
7.3	Making a tree from pairwise distances	165
7.4	Parsimony	173
7.5	Assessing the trees: the bootstrap	179
7.6	Simultaneous alignment and phylogeny	180
7.7	Further reading	188
7.8	Appendix: proof of neighbour-joining theorem	190
8	Probabilistic approaches to phylogeny	192
8.1	Introduction	192
8.2	Probabilistic models of evolution	193
8.3	Calculating the likelihood for ungapped alignments	197
8.4	Using the likelihood for inference	205
8.5	Towards more realistic evolutionary models	215
8.6	Comparison of probabilistic and non-probabilistic methods	224
8.7	Further reading	231

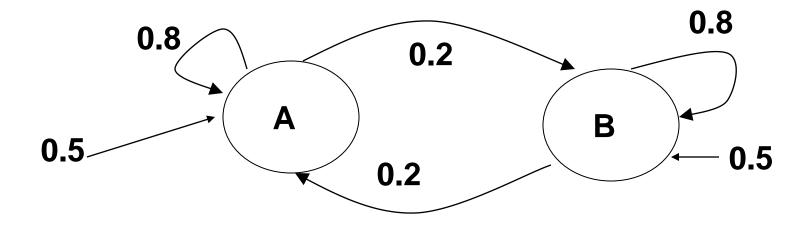
Example: Gambling on dice outcome

- Two dices, both skewed (output model).
- Can either stay with the same dice or switch to the second dice (transition mode).



A Hidden Markov model

- A set of states $\{s_1 \dots s_n\}$
 - In each time point we are in exactly one of these states denoted by \boldsymbol{q}_t
- Π_i , the probability that we start at state s_i
- A transition probability model, $P(q_t = s_i | q_{t-1} = s_j)$
- A set of possible outputs Σ
 - At time *t* we emit a symbol $\sigma \in \Sigma$
- An emission probability model, $p(o_t = \sigma | s_i)$



The Markov property

- A set of states $\{s_1 \dots s_n\}$
 - In each time point we are in exactly one of these states denoted by \boldsymbol{q}_t
- Π_i , the probability that we start at state s_i
- A transition probability model, $P(q_t = s_i | q_{t-1} = s_j)$

An important aspect of this definitions is the Markov property: q_{t+1} is conditionally independent of q_{t-1} (and any earlier time points) given q_t

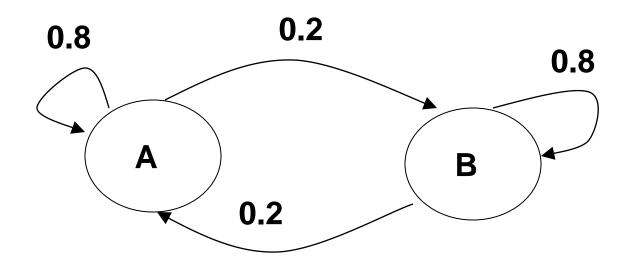
More formally $P(q_{t+1} = s_i | q_t = s_j) = P(q_{t+1} = s_i | q_t = s_j, q_{t-1} = s_j)$

0.2

What can we ask when using a HMM?

A few examples:

- "What dice is currently being used?"
- "What is the probability of a 6 in the next role?"
- "What is the probability of 6 in any of the next 3 roles?"

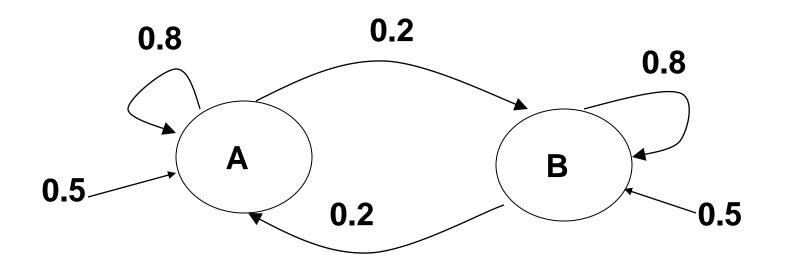


Inference in HMMs

- Computing P(Q) and $P(q_t = s_i)$
 - If we cannot look at observations
- Computing P(Q | O) and $P(q_t = s_i | O)$
 - When we have observation and care about the last state only
- Computing argmax_QP(Q | O)
 - When we care about the entire path

What dice is currently being used?

- We played *t* rounds so far
- We want to determine $P(q_t = A)$
- Lets assume for now that we cannot observe any outputs (we are blind folded)
- How can we compute this?



$P(q_t = A)?$

• Simple answer:

Lets determine P(Q) where Q is any path that ends in A $Q = q_1, \dots, q_{t-1}, A$ $P(Q) = P(q_1, \dots, q_{t-1}, A) = P(A | q_1, \dots, q_{t-1}) P(q_1, \dots, q_{t-1}) =$ $P(A | q_{t-1}) P(q_1, ..., q_{t-1}) = ... = P(A | q_{t-1}) ... P(q_2 | q_1) P(q_1)$ Markov property! **8.0 Q.2 8.0** Initial probability Α Β 0.2

$P(q_t = A)?$

• Simple answer:

1. Lets determine P(Q) where Q is any path that ends in A $Q = q_1, \dots q_{t-1}, A$ $P(Q) = P(q_1, \dots q_{t-1}, A) = P(A | q_1, \dots q_{t-1}) P(q_1, \dots q_{t-1}) =$ $P(A | q_{t-1}) P(q_1, \dots q_{t-1}) = \dots = P(A | q_{t-1}) \dots P(q_2 | q_1) P(q_1)$

2. $P(q_t = A) = \Sigma P(Q)$

where the sum is over all sets of t states that end in A

$P(q_t = A)?$

• Simple answer:

1. Lets determine P(Q) where Q is any path that ends in A $Q = q_1, \dots q_{t-1}, A$ $P(Q) = P(q_1, \dots q_{t-1}, A) = P(A | q_1, \dots q_{t-1}) P(q_1, \dots q_{t-1}) =$ $P(A | q_{t-1}) P(q_1, \dots q_{t-1}) = \dots = P(A | q_{t-1}) \dots P(q_2 | q_1) P(q_1)$

2.
$$P(q_t = A) = \Sigma P(Q)$$

where the sum is over all sets of t sates that end in A

Q: How many sets Q are there? A: A lot! (2^{t-1}) Not a feasible solution

$P(q_t = A)$, the smart way

- Lets define p_t(i) as the probability of being in state *i* at time t:
 p_t(i) = p(q_t = s_i)
- We can determine $p_t(i)$ by induction

1. $p_1(i) = \Pi_i$ 2. $p_t(i) = ?$

$P(q_t = A)$, the smart way

- Lets define $p_t(i) = probability$ state i at time $t = p(q_t = s_i)$
- We can determine p_t(i) by induction
 1. p₁(i) = Π_i
 2. p_t(i) = Σ_j p(q_t = s_i | q_{t-1} = s_j)p_{t-1}(j)

$P(q_t = A)$, the smart way

- Lets define $p_t(i) = probability$ state i at time $t = p(q_t = s_i)$
- We can determine $p_t(i)$ by induction 1. $p_1(i) = \Pi_i$ 2. $p_t(i) = \Sigma_j p(q_t = s_i | q_{t-1} = s_j)p_{t-1}(j)$

This type of computation is called dynamic programming

Complexity: O(n²*t)

Time / state	t1	t2	t3	
s1	.3			
s2	.7		•	

Number of states in our HMM

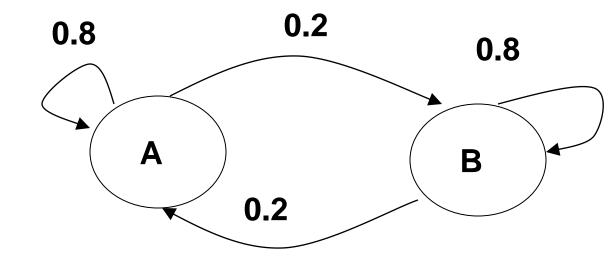
Inference in HMMs

- Computing P(Q) and P($q_t = s_i$) $\sqrt{}$
- Computing P(Q | O) and $P(q_t = s_i | O)$
- Computing argmax_QP(Q)

But what if we observe outputs?

- So far, we assumed that we could not observe the outputs
- In reality, we almost always can.

V	P(v A)	P(v B)
1	.3	.1
2	.2	.1
3	.2	.1
4	.1	.2
5	.1	.2
6	.1	.3

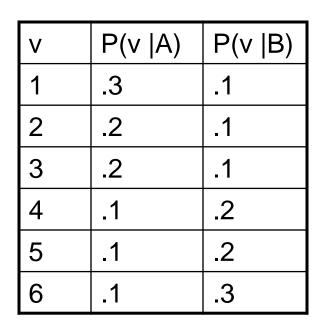


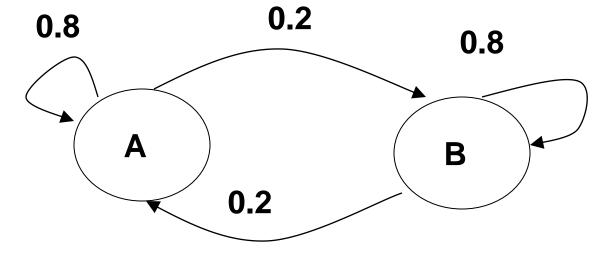
But what if we observe outputs?

- So far, we assumed that we could not observe the outputs
- In reality, we almost a Does observing the sequence

5, 6, 4, 5, 6, 6

Change our belief about the state?

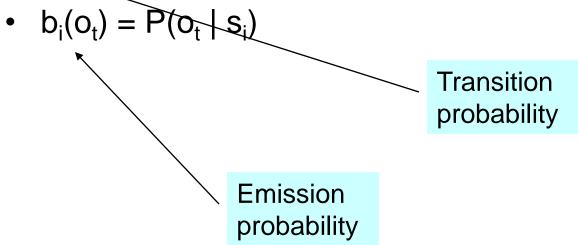




P(q_t = A) when outputs are observed

- We want to compute $P(q_t = A | O_1 \dots O_t)$
- For ease of writing we will use the following notations (commonly used in the literature)

•
$$a_{j,i} = P(q_t = s_i | q_{t-1} = s_j)$$

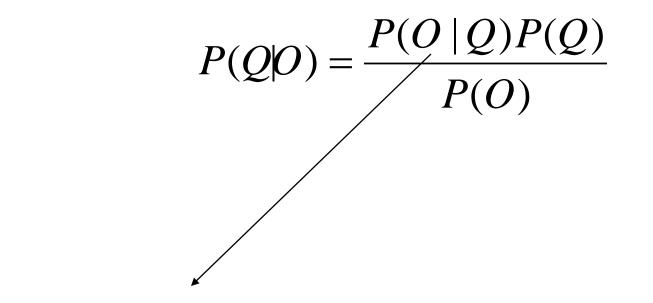


P(q_t = A) when outputs are observed

- We want to compute $P(q_t = A | O_1 \dots O_t)$
- Lets start with a simpler question. Given a sequence of states Q, what is P(Q | O₁ ... O_t) = P(Q | O)?
 - It is pretty simple to move from P(Q) to $P(q_t = A)$
 - In some cases P(Q) is the more important question
 - Speech processing
 - NLP

P(Q | O)

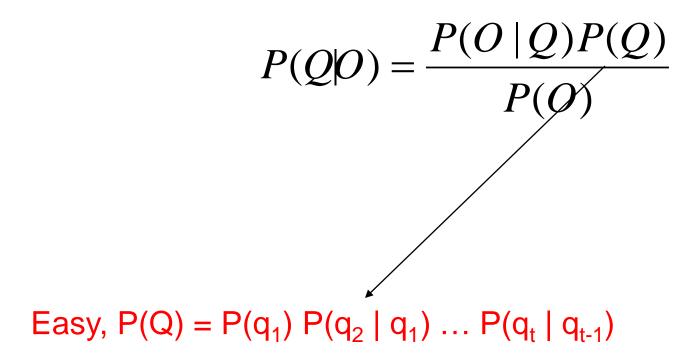
• We can use Bayes rule:



Easy, $P(O | Q) = P(o_1 | q_1) P(o_2 | q_2) \dots P(o_t | q_t)$

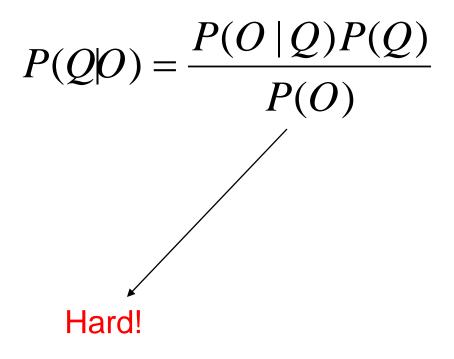
P(Q | O)

• We can use Bayes rule:



P(Q | O)

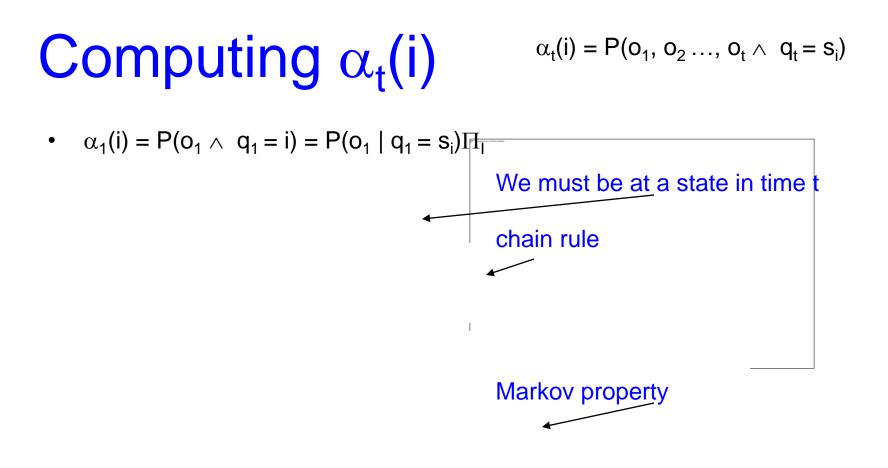
• We can use Bayes rule:



P(O)

- What is the probability of seeing a set of observations:
 An important question in it own rights, for example classification using two HMMs
- Define $\alpha_t(i) = P(o_1, o_2, \dots, o_t \land q_t = s_i)$
- $\alpha_t(i)$ is the probability that we:
 - 1. Observe $o_1, o_2 ..., o_t$
 - 2. End up at state i

How do we compute α_t (i)?

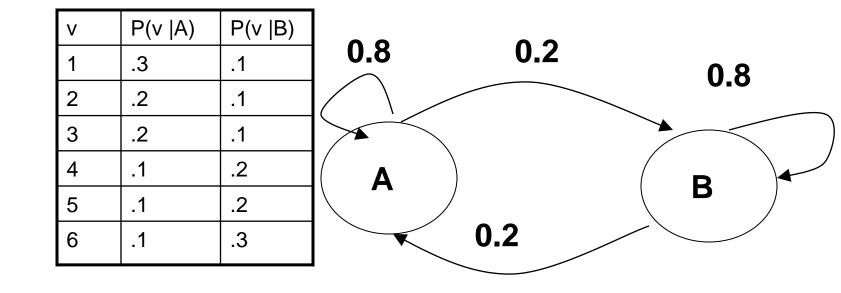


Example: Computing $\alpha_3(B)$

• We observed 2,3,6

$$\begin{split} &\alpha_1(A) = \mathsf{P}(2 \land q_1 = A) = \mathsf{P}(2 \mid q_1 = A) \Pi_A = .2^*.7 = .14, \, \alpha_1(B) = .1^*.3 = .03 \\ &\alpha_2(A) = \Sigma_{j=A,B} \mathsf{b}_A(3) \mathsf{a}_{j,A} \, \alpha_1(j) = .2^*.8^*.14 + .2^*.2^*.03 = 0.0236, \, \alpha_2(B) = 0.0052 \\ &\alpha_3(B) = \Sigma_{j=A,B} \mathsf{b}_B(6) \mathsf{a}_{j,B} \, \alpha_2(j) = .3^*.2^*.0236 + .3^*.8^*.0052 = 0.00264 \end{split}$$

П_А=0.7 П_b=0.3



Where we are

- We want to compute P(Q | O)
- For this, we only need to compute P(O)
- We know how to compute $\alpha_t(i)$

From now its easy

$$\begin{split} &\alpha_t(i) = P(o_1, o_2 \dots, o_t \land q_t = s_i) \\ &\text{so} \\ &P(O) = P(o_1, o_2 \dots, o_t) = \Sigma_i P(o_1, o_2 \dots, o_t \land q_t = s_i) = \Sigma_i \, \alpha_t(i) \\ &\text{note that} \\ &p(q_t = s_i \mid o_1, o_2 \dots, o_t) = \frac{\alpha_t(i)}{\sum_j \alpha_t(j)} \end{split}$$

 $P(A | B) = P(A \land B) / P(B)$

Complexity

- How long does it take to compute P(Q | O)?
- P(Q): O(n)
- P(O|Q): O(n)
- P(O): O(n²t)

Inference in HMMs

- Computing P(Q) and P($q_t = s_i$) $\sqrt{}$
- Computing P(Q | O) and P(q_t = s_i | O) $\sqrt{}$
- Computing argmax_QP(Q)

Most probable path

- We are almost done ...
- One final question remains
 How do we find the most probable path, that is Q* such that

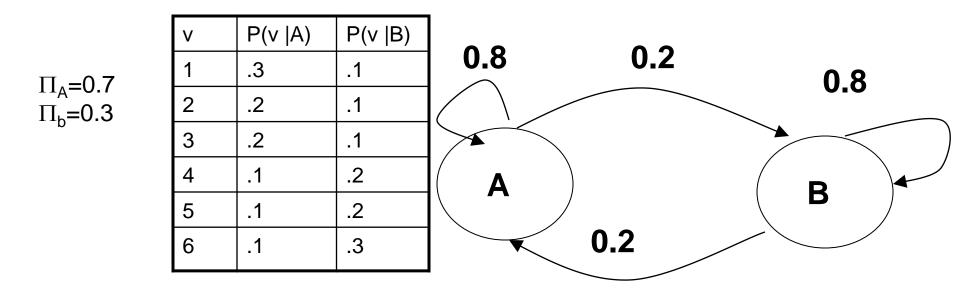
 $P(Q^* | O) = argmax_Q P(Q|O)?$

- This is an important path
 - The words in speech processing
 - The set of genes in the genome
 - etc.

Example

• What is the most probable set of states leading to the sequence:

1,2,2,5,6,5,1,2,3?



Most probable path

$$\arg \max_{Q} P(Q \mid O) = \arg \max_{Q} \frac{P(O \mid Q)P(Q)}{P(O)}$$
$$= \arg \max_{Q} P(O \mid Q)P(Q)$$

We will use the following definition:

$$\delta_t(i) = \max_{q_1 \dots q_{t-1}} p(q_1 \dots q_{t-1} \wedge q_t = s_i \wedge O_1 \dots O_t)$$

In other words we are interested in the most likely path from 1 to t that:

- 1. Ends in S_i
- 2. Produces outputs $O_1 \dots O_t$

Computing $\delta_t(i)$

$$\delta_{1}(i) = p(q_{1} = s_{i} \land O_{1})$$

= $p(q_{1} = s_{i})p(O_{1} | q_{1} = s_{i})$
= $\pi_{i}b_{i}(O_{1})$

$$\delta_{t}(i) = \max_{q_{1}...q_{t-1}} p(q_{1}...q_{t-1} \land q_{t} = s_{i} \land O_{1}...O_{t})$$

Q: Given $\delta_t(i)$, how can we compute $\delta_{t+1}(i)$?

- A: To get from $\delta_t(i)$ to $\delta_{t+1}(i)$ we need to
- 1. Add an emission for time t+1 (O_{t+1})
- 2. Transition to state s_i

$$\delta_{t+1}(i) = \max_{q_1...q_t} p(q_1...q_t \land q_{t+1} = s_i \land O_1...O_{t+1})$$

= $\max_j \delta_t(j) p(q_{t+1} = s_i | q_t = s_j) p(O_{t+1} | q_{t+1} = s_i)$
= $\max_j \delta_t(j) a_{j,i} b_i(O_{t+1})$

The Viterbi algorithm

$$\delta_{t+1}(i) = \max_{q_1...q_t} p(q_1...q_t \land q_{t+1} = s_i \land O_1...O_{t+1})$$

= $\max_j \delta_t(j) p(q_{t+1} = s_i | q_t = s_j) p(O_{t+1} | q_{t+1} = s_i)$
= $\max_j \delta_t(j) a_{j,i} b_i(O_{t+1})$

- Once again we use dynamic programming for solving $\delta_t(\textbf{i})$
- Once we have $\delta_t(i)$, we can solve for our P(Q*|O)

By:

 $P(Q^* | O) = argmax_Q P(Q|O) =$

path defined by $argmax_j \delta_t(j)$,

Inference in HMMs

- Computing P(Q) and P($q_t = s_i$) $\sqrt{}$
- Computing P(Q | O) and P(q_t = s_i | O) $\sqrt{}$
- Computing $\operatorname{argmax}_{Q}P(Q)$

What you should know

- Why HMMs? Which applications are suitable?
- Inference in HMMs
 - No observations
 - Probability of next state w. observations
 - Maximum scoring path (Viterbi)