
 

 

Hidden Markov models (HMMs) 

10-701  

Machine Learning 



What’s wrong with Bayesian 

networks 

• Bayesian networks are very useful for modeling joint 

distributions 

• But they have their limitations: 

           - Cannot account for temporal / sequence models 

           - DAG’s (no self or any other loops)   

This is not a valid 

Bayesian network! 



Hidden Markov models 

• Model a set of observation with a set of hidden states 

    - Robot movement 

      Observations: range sensor, visual sensor 

      Hidden states: location (on a map) 

    - Speech processing 

      Observations: sound signals 

      Hidden states: parts of speech, words 

    - Biology 

      Observations: DNA base pairs 

      Hidden states: Genes 



Hidden Markov models 

• Model a set of observation with a set of hidden states 

    - Robot movement 

      Observations: range sensor, visual sensor 

      Hidden states: location (on a map) 

    - Speech processing 

      Observations: sound signals 

      Hidden states: parts of speech, words 

    - Biology 

      Observations: DNA base pairs 

      Hidden states: Genes 

1. Hidden states generate observations 

2. Hidden states transition to other hidden states 

 

 

 



Examples: Speech processing 



Example: Biological data 

ATGAAGCTACTGTCTTCTATCGAACAAGCATGCG

ATATTTGCCGACTTAAAAAGCTCAAG 

TGCTCCAAAGAAAAACCGAAGTGCGCCAAGTGT

CTGAAGAACAACTGGGAGTGTCGCTAC 

TCTCCCAAAACCAAAAGGTCTCCGCTGACTAGG

GCACATCTGACAGAAGTGGAATCAAGG 

CTAGAAAGACTGGAACAGCTATTTCTACTGATTTT

TCCTCGAGAAGACCTTGACATGATT 







Example: Gambling on dice 

outcome 

• Two dices, both skewed (output model). 

• Can either stay with the same dice or switch to the 

second dice (transition mode).  
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A Hidden Markov model 
• A set of states {s1 … sn} 

    - In  each time point we are in exactly one of these states 

denoted by qt 

• i, the probability that we start at state si 

• A transition probability model, P(qt = si | qt-1 = sj) 

• A set of possible outputs  

   - At time t we emit a symbol  

• An emission probability model, p(ot =  | si) 
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The Markov property 
• A set of states {s1 … sn} 

    - In  each time point we are in exactly one of these states 

denoted by qt 

• i, the probability that we start at state si 

• A transition probability model, P(qt = si | qt-1 = sj) 

• A set of possible outputs  

   - In time point t we emit a symbol ot 

• An emission probability model, p(ot | si) 
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An important aspect of this definitions is the Markov property:  

qt+1 is conditionally independent of qt-1 (and any earlier time 

points) given qt 

More formally P(qt+1 = si | qt = sj) = P(qt+1 = si | qt = sj ,qt-1 = sj) 

 

  



What can we ask when using a 

HMM? 

A few examples: 

• “What dice is currently being used?” 

• “What is the probability of a 6 in the next role?” 

• “What is the probability of 6 in any of the next 3 roles?” 
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Inference in HMMs 

• Computing P(Q) and P(qt = si) 

    - If we cannot look at observations 

• Computing P(Q | O) and P(qt = si |O) 

    - When we have observation and care about the last 

state only 

• Computing argmaxQP(Q | O) 

    - When we care about the entire path 



What dice is currently being used? 

• We played t rounds so far 

• We want to determine P(qt = A) 

• Lets assume for now that we cannot observe any outputs 

(we are blind folded) 

• How can we compute this? 
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P(qt = A)? 

• Simple answer: 

    Lets determine P(Q) where Q is any path that ends in A 

    Q = q1, … qt-1, A 

    P(Q) = P(q1, … qt-1, A) = P(A | q1, … qt-1) P(q1, … qt-1) = 

P(A | qt-1) P(q1, … qt-1) = … = P(A | qt-1) … P(q2 | q1) P(q1) 
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Markov property! 

Initial probability 



P(qt = A)? 

• Simple answer: 

    1. Lets determine P(Q) where Q is any path that ends in A 

    Q = q1, … qt-1, A 

    P(Q) = P(q1, … qt-1, A) = P(A | q1, … qt-1) P(q1, … qt-1) = 

P(A | qt-1) P(q1, … qt-1) = … = P(A | qt-1) … P(q2 | q1) P(q1) 

 

   2. P(qt = A) = P(Q) 

where the sum is over all sets of t 

states that end in A 



P(qt = A)? 

• Simple answer: 

    1. Lets determine P(Q) where Q is any path that ends in A 

    Q = q1, … qt-1, A 

    P(Q) = P(q1, … qt-1, A) = P(A | q1, … qt-1) P(q1, … qt-1) = 

P(A | qt-1) P(q1, … qt-1) = … = P(A | qt-1) … P(q2 | q1) P(q1) 

 

   2. P(qt = A) = P(Q) 

where the sum is over all sets of t 

sates that end in A 

Q: How many sets Q 

are there? 

A: A lot! (2t-1) 

Not a feasible solution 



P(qt = A), the smart way 

• Lets define pt(i) as the probability of being in state i at time t: 

pt(i) = p(qt = si) 

• We can determine pt(i) by induction 

    1. p1(i) = i  

    2. pt(i) = ? 



P(qt = A), the smart way 

• Lets define pt(i) = probability state i at time t = p(qt = si) 

• We can determine pt(i) by induction 

    1. p1(i) = i  

    2. pt(i) = j p(qt = si | qt-1 = sj)pt-1(j)  



P(qt = A), the smart way 

• Lets define pt(i) = probability state i at time t = p(qt = si) 

• We can determine pt(i) by induction 

    1. p1(i) = i  

    2. pt(i) = j p(qt = si | qt-1 = sj)pt-1(j)  

This type of computation is 

called dynamic programming 

Complexity: O(n2*t) 

Time / 

state 

t1 t2 t3 

s1 .3 

s2 .7 

Number of states in our HMM 



Inference in HMMs 

• Computing P(Q) and P(qt = si) 

 

• Computing P(Q | O) and P(qt = si |O) 

 

• Computing argmaxQP(Q) 

 



But what if we observe outputs? 

• So far, we assumed that we could not observe the 

outputs 

• In reality, we almost always can.  
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But what if we observe outputs? 

• So far, we assumed that we could not observe the 

outputs 

• In reality, we almost always can.  

v P(v |A) P(v |B) 

1 .3 .1 

2 .2 .1 

3 .2 .1 

4 .1 .2 

5 .1 .2 

6 .1 .3 

Does observing the sequence  

5, 6, 4, 5, 6, 6 

Change our belief about the state? 
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P(qt = A) when outputs are 

observed 
• We want to compute P(qt = A | O1 … Ot) 

• For ease of writing we will use the following notations 

(commonly used in the literature) 

• aj,i = P(qt = si | qt-1 = sj) 

• bi(ot) = P(ot | si) 

 Transition 

probability 

Emission 

probability 



P(qt = A) when outputs are 

observed 
• We want to compute P(qt = A | O1 … Ot) 

• Lets start with a simpler question. Given a sequence of 

states Q, what is P(Q | O1 … Ot) = P(Q | O)? 

    - It is pretty simple to move from P(Q) to P(qt = A )  

    - In some cases P(Q) is the more important question 

        - Speech processing 

        - NLP  

 

 



P(Q | O) 

• We can use Bayes rule: 
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Easy, P(O | Q) = P(o1 | q1) P(o2 | q2) … P(ot | qt) 



P(Q | O) 

• We can use Bayes rule: 
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Easy, P(Q) = P(q1) P(q2 | q1) … P(qt | qt-1) 



P(Q | O) 

• We can use Bayes rule: 
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Hard! 



P(O) 

• What is the probability of seeing a set of observations:                                                                  

- An important question in it own rights, for example 

classification using two HMMs 

• Define t(i) = P(o1, o2 …, ot   qt = si) 

• t(i) is the probability that we: 

           1. Observe o1, o2 …, ot  

           2. End up at state i 

How do we compute t (i)? 
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Computing t(i) 

• 1(i) = P(o1   q1 = i) = P(o1 | q1 = si)I 

 

 

 

We must be at a state in time t 

chain rule 

Markov property 

t(i) = P(o1, o2 …, ot   qt = si) 



Example: Computing 3(B)  

A B 

0.2 

0.2 

0.8 
0.8 

v P(v |A) P(v |B) 

1 .3 .1 

2 .2 .1 

3 .2 .1 

4 .1 .2 

5 .1 .2 

6 .1 .3 

A=0.7  

b=0.3 

• We observed 2,3,6 

1(A) = P(2   q1 = A) = P(2 | q1 = A)A =.2*.7 = .14, 1(B) = .1*.3 = .03  

2(A) = j=A,BbA(3)aj,A 1( j)=.2*.8*.14+.2*.2*.03 = 0.0236, 2(B) = 0.0052 

3(B) = j=A,BbB(6)aj,B 2( j)=.3*.2*.0236+.3*.8*.0052 = 0.00264 



Where we are 

• We want to compute P(Q | O) 

• For this, we only need to compute P(O) 

• We know how to compute t(i) 

 

From now its easy 

    t(i) = P(o1, o2 …, ot   qt = si) 

    so 

    P(O) = P(o1, o2 …, ot) = iP(o1, o2 …, ot   qt = si) = i t(i) 

    note that 

    p(qt=si | o1, o2 …, ot ) =  

 

          



 t (i)

 t (j)
j



P(A | B) = P(A  B) / P(B) 



Complexity 

• How long does it take to compute P(Q | O)? 

• P(Q): O(n) 

• P(O|Q): O(n) 

• P(O): O(n2t) 



Inference in HMMs 

• Computing P(Q) and P(qt = si) 

 

• Computing P(Q | O) and P(qt = si |O) 

 

• Computing argmaxQP(Q) 

 

 



Most probable path 

• We are almost done … 

• One final question remains 

    How do we find the most probable path, that is Q* such 

that  

                     P(Q* | O) = argmaxQP(Q|O)? 

 

• This is an important path 

     - The words in speech processing 

     - The set of genes in the genome 

    - etc. 



Example 

• What is the most probable set of states leading to the 

sequence: 

                          1,2,2,5,6,5,1,2,3 ? 
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Most probable path 
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In other words we are interested in the most likely 

path from 1 to t that: 

1. Ends in Si     

2. Produces outputs O1 … Ot  
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Computing  t(i) 
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Q: Given t(i), how can we compute t+1(i)? 

A: To get from t(i) to t+1(i) we need to 

1. Add an emission for time t+1 (Ot+1) 

2. Transition to state si 
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The Viterbi algorithm 



t1(i) max
q1 q t

p(q1 qt qt1  si O1...Ot1)

max
j
t ( j)p(qt1  si |qt  s j )p(Ot1 |qt1  si)

max
j

t ( j)a j ,ibi(Ot1)

• Once again we use dynamic programming for 

solving t(i) 

• Once we have t(i), we can solve for our P(Q*|O) 

By: 

P(Q* | O) = argmaxQP(Q|O) = 

                  path defined by argmaxj  t(j),  

 

 



Inference in HMMs 

• Computing P(Q) and P(qt = si) 

 

• Computing P(Q | O) and P(qt = si |O) 

 

• Computing argmaxQP(Q)   

 

 

 



What you should know 

• Why HMMs? Which applications are suitable? 

• Inference in HMMs 

    - No observations 

    - Probability of next state w. observations 

    - Maximum scoring path (Viterbi) 


