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Types of classifiers 

• We can divide the large variety of classification approaches into roughly two main 
types  

      

      1. Instance based classifiers 

          - Use observation directly (no models) 

          - e.g. K nearest neighbors 

       

      2. Generative: 

              - build a generative statistical model 

              - e.g., Bayesian networks 

       

      3. Discriminative 

              - directly estimate a decision rule/boundary 

              - e.g., decision tree 

            



Decision trees 

• One of the most intuitive classifiers 

• Easy to understand and construct 

• Surprisingly, also works very (very) well* 

* More on this towards the end 

of this lecture 

Lets build a decision tree! 



Structure of a decision tree 
A 

C I 

F yes no yes 

yes no 

A age > 26 

I income > 40K 

C citizen 

F female 

1 (yes) 0 

(no) 

• Internal nodes 

correspond to attributes 

(features) 

• Leafs correspond to 

classification outcome 

• edges denote 

assignment 

1 0 1 

1 

0 

0 



Netflix 



Dataset 
Attributes (features) Label 

Movie Type Length Director Famous actors Liked? 

m1 Comedy Short Adamson No Yes 

m2 Animated Short Lasseter  No No 

m3 Drama Medium Adamson No Yes 

m4 animated long Lasseter Yes No 

m5 Comedy Long Lasseter Yes No 

m6 Drama Medium Singer  Yes Yes 

m7 animated Short Singer No Yes 

m8 Comedy Long Adamson Yes Yes 

m9 Drama Medium Lasseter  No Yes 



Building a decision tree 

Function BuildTree(n,A)    // n: samples (rows), A: attributes 

   If empty(A) or all n(L) are the same 

       status = leaf 

       class = most common class in n(L) 

   else 

       status = internal 

       a  bestAttribute(n,A) 

       LeftNode = BuildTree(n(a=1), A \ {a})   

       RightNode = BuildTree(n(a=0), A \ {a}) 

    end 

end 



Building a decision tree 

Function BuildTree(n,A)    // n: samples (rows), A: attributes 

   If empty(A) or all n(L) are the same 

       status = leaf 

       class = most common class in n(L) 

   else 

       status = internal 

       a  bestAttribute(n,A) 

       LeftNode = BuildTree(n(a=1), A \ {a})   

       RightNode = BuildTree(n(a=0), A \ {a}) 

    end 

end 

n(L): Labels for samples in 

this set   

We will discuss this function 

next   

Recursive calls to create left 

and right subtrees, n(a=1) is 

the set of samples in n for 

which the attribute a is 1 



Identifying ‘bestAttribute’ 

• There are many possible ways to select the best 

attribute for a given set. 

• We will discuss one possible way which is based on 

information theory and generalizes well to non binary 

variables 

 



Entropy 

• Quantifies the amount of uncertainty 

associated with a specific probability 

distribution 

• The higher the entropy, the less 

confident we are in the outcome 

• Definition 

Claude Shannon (1916 – 

2001), most of the work was 

done in Bell labs 
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Entropy 

• Definition 

 

 

• So, if P(X=1) = 1 then 

 

 

 

• If P(X=1) = .5 then 
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Interpreting entropy  
• Entropy can be interpreted from an information 

standpoint 

• Assume both sender and receiver know the distribution. 
How many bits, on average, would it take to transmit one 
value? 

• If P(X=1) = 1 then the answer is 0 (we don’t need to 
transmit anything) 

• If P(X=1) = .5 then the answer is 1 (either values is 
equally likely) 

• If 0<P(X=1)<.5 or 0.5<P(X=1)<1 then the answer is 
between 0 and 1 

    - Why? 

 



Expected bits per symbol 

• Assume P(X=1) = 0.8 

• Then P(11) = 0.64, P(10)=P(01)=.16 and P(00)=.04 

• Lets define the following code 
    - For 11 we send 0 

    - For 10 we send 10 

    - For 01 we send 110 

    - For 00 we send 1110 

 



Expected bits per symbol 

• Assume P(X=1) = 0.8 

• Then P(11) = 0.64, P(10)=P(01)=.16 and P(00)=.04 

• Lets define the following code 
    - For 11 we send 0 

    - For 10 we send 10 

    - For 01 we send 110 

    - For 00 we send 1110 

• What is the expected bits / symbol? 

(.64*1+.16*2+.16*3+.04*4)/2 = 0.8 

• Entropy (lower bound) H(X)=0.7219 

so: 01001101110001101110 

can be broken to: 01 00 11 01 11 00 01 10 11 10 

which is: 110 1110 0 110 0 1110 110 10 0 10  



Conditional entropy 

Movie 

length 

Liked? 

Short Yes 

Short No 

Medium Yes 

long No 

Long No 

Medium Yes 

Short Yes 

Long Yes 

Medium Yes 

• Entropy measures the uncertainty in a 

specific distribution 

• What if both sender and receiver know 

something about the transmission? 

• For example, say I want to send the label 

(liked) when the length is known 

• This becomes a conditional entropy 

problem: H(Li | Le=v)  

Is the entropy of Liked among movies with 

length v   



Conditional entropy: Examples for 

specific values 
Movie 

length 

Liked? 

Short Yes 

Short No 

Medium Yes 

long No 

Long No 

Medium Yes 

Short Yes 

Long Yes 

Medium Yes 

Lets compute H(Li | Le=v)  

1. H(Li | Le = S) = .92 



Conditional entropy: Examples for 

specific values 
Movie 

length 

Liked? 

Short Yes 

Short No 

Medium Yes 

long No 

Long No 

Medium Yes 

Short Yes 

Long Yes 

Medium Yes 

Lets compute H(Li | Le=v)  

1. H(Li | Le = S) = .92 

2. H(Li | Le = M) = 0 

3. H(Li | Le = L) = .92 



Conditional entropy 

Movie 

length 

Liked? 

Short Yes 

Short No 

Medium Yes 

long No 

Long No 

Medium Yes 

Short Yes 

Long Yes 

Medium Yes 

• We can generalize the conditional entropy 

idea to determine H( Li | Le) 

• That is, what is the expected number of 

bits we need to transmit if both sides know 

the value of Le for each of the records 

(samples) 

• Definition:  
i
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We explained how to compute this in 

the previous slides 



Conditional entropy: Example 

Movie 

length 

Liked? 

Short Yes 

Short No 

Medium Yes 

long No 

Long No 

Medium Yes 

Short Yes 

Long Yes 

Medium Yes 

• Lets compute H( Li | Le) 

H( Li | Le) = P( Le = S)  H( Li | Le=S)+  

                      P( Le = M) H( Li | Le=M)+  

                      P( Le = L)  H( Li | Le=L) = 

                      1/3*.92+1/3*0+1/3*.92 = 

                      0.61 

 
i
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we already computed:  

H(Li | Le = S) = .92 

H(Li | Le = M) = 0 

H(Li | Le = L) = .92 



Information gain 

• How much do we gain (in terms of reduction in entropy) 

from knowing one of the attributes 

• In other words, what is the reduction in entropy from this 

knowledge 

• Definition: IG(Y|X)* = H(Y)-H(Y|X) 

*IG(X|Y) is always ≥ 0 

Proof: Jensen inequality 



Where we are 

• We were looking for a good criteria for selecting the best 

attribute for a node split 

• We defined the entropy, conditional entropy and 

information gain 

• We will now use information gain as our criteria for a 

good split 

• That is, BestAttribute will return the attribute that 

maximizes the information gain at each node 



Building a decision tree 

Function BuildTree(n,A)    // n: samples (rows), A: attributes 

   If empty(A) or all n(L) are the same 

       status = leaf 

       class = most common class in n(L) 

   else 

       status = internal 

       a  bestAttribute(n,A) 

       LeftNode = BuildTree(n(a=1), A \ {a})   

       RightNode = BuildTree(n(a=0), A \ {a}) 

    end 

end 

Based on information gain 



Example: Root attribute 

P(Li=yes) = 2/3 

H(Li) = .91 

H(Li | T) = 

H(Li | Le) = 

H(Li | D) = 

H(Li | F) =  

Movie Type Length Director Famous 

actors 

Liked

? 

m1 Comedy Short Adamson No Yes 

m2 Animated Short Lasseter  No No 

m3 Drama Medium Adamson No Yes 

m4 animated long Lasseter Yes No 

m5 Comedy Long Lasseter Yes No 

m6 Drama Medium Singer  Yes Yes 

M7 animated Short Singer No Yes 

m8 Comedy Long Adamson Yes Yes 

m9 Drama Medium Lasseter  No Yes 



Example: Root attribute 

Movie Type Length Director Famous 

actors 

Liked

? 

m1 Comedy Short Adamson No Yes 

m2 Animated Short Lasseter  No No 

m3 Drama Medium Adamson No Yes 

m4 animated long Lasseter Yes No 

m5 Comedy Long Lasseter Yes No 

m6 Drama Medium Singer  Yes Yes 

M7 animated Short Singer No Yes 

m8 Comedy Long Adamson Yes Yes 

m9 Drama Medium Lasseter  No Yes 

P(Li=yes) = 2/3 

H(Li) = .91 

H(Li | T) = 0.61 

H(Li | Le) = 0.61 

H(Li | D) = 0.36 

H(Li | F) = 0.85 



Example: Root attribute 

Movie Type Length Director Famous 

actors 

Liked

? 

m1 Comedy Short Adamson No Yes 

m2 Animated Short Lasseter  No No 

m3 Drama Medium Adamson No Yes 

m4 animated long Lasseter Yes No 

m5 Comedy Long Lasseter Yes No 

m6 Drama Medium Singer  Yes Yes 

M7 animated Short Singer No Yes 

m8 Comedy Long Adamson Yes Yes 

m9 Drama Medium Lasseter  No Yes 

P(Li=yes) = 2/3 

H(Li) = .91 

H(Li | T) = 0.61 

H(Li | Le) = 0.61 

H(Li | D) = 0.36 

H(Li | F) = 0.85 

 

IG(Li | T) = .91-.61 = 0.3 

IG(Li | Le) = .91-.61 = 0.3 

IG(Li | D) = .91-.36 = 0.55 

IG(Li | Le) = .91-.85 = 0.06 



Example: Root attribute 

Movie Type Length Director Famous 

actors 

Liked

? 

m1 Comedy Short Adamson No Yes 

m2 Animated Short Lasseter  No No 

m3 Drama Medium Adamson No Yes 

m4 animated long Lasseter Yes No 

m5 Comedy Long Lasseter Yes No 

m6 Drama Medium Singer  Yes Yes 

M7 animated Short Singer No Yes 

m8 Comedy Long Adamson Yes Yes 

m9 Drama Medium Lasseter  No Yes 

P(Li=yes) = 2/3 

H(Li) = .91 

H(Li | T) = 0.61 

H(Li | Le) = 0.61 

H(Li | D) = 0.36 

H(Li | F) = 0.85 

 

IG(Li | T) = .91-.61 = 0.3 

IG(Li | Le) = .91-.61 = 0.3 

IG(Li | D) = .91-.36 = 0.55 

IG(Li | Le) = .91-.85 = 0.06 



Building a tree 

Movie Type Length Director Famous 

actors 

Liked

? 

m1 Comedy Short Adamson No Yes 

m2 Animated Short Lasseter  No No 

m3 Drama Medium Adamson No Yes 

m4 animated long Lasseter Yes No 

m5 Comedy Long Lasseter Yes No 

m6 Drama Medium Singer  Yes Yes 

M7 animated Short Singer No Yes 

m8 Comedy Long Adamson Yes Yes 

m9 Drama Medium Lasseter  No Yes 

D 

Adamson 

Singer 
Lasseter 

yes yes 



Building a tree 

Movie Type Length Director Famous 

actors 

Liked

? 

m2 Animated Short Lasseter  No No 

m4 animated Long Lasseter Yes No 

m5 Comedy Long Lasseter Yes No 

m9 Drama Medium Lasseter  No Yes 

D 

Adamson 

Singer 
Lasseter 

yes yes 

We only need to focus on the records (samples) 

associated with this node 



Building a tree 

Movie Type Length Famous 

actors 

Liked

? 

m2 Animated Short No No 

m4 animated Long Yes No 

m5 Comedy Long Yes No 

m9 Drama Medium No Yes 

D 

Adamson 

Singer 
Lasseter 

yes yes 

P(Li=yes) = 1/4   H(Li) = .81 

H(Li | T) = 0 

H(Li | Le) = 0 

H(Li | F) = 0.5 

We eliminated the 

‘director’ attribute. All 

samples have the same 

director  



Building a tree 

Movie Type Length Famous 

actors 

Liked

? 

m2 Animated Short No No 

m4 animated long Yes No 

m5 Comedy Long Yes No 

m9 Drama Medium No Yes 

D 

Adamson 

Singer 
Lasseter 

yes yes 

P(Li=yes) = 1/4   H(Li) = .81 

H(Li | T) = 0        IG(Li | T) = 0.81 

H(Li | Le) = 0      IG(Li | Le) = 0.81 

H(Li | F) = 0.5     IG(Li | F) = .31 



Building a tree 

Movie Type Length Famous 

actors 

Liked

? 

m2 Animated Short No No 

m4 animated long Yes No 

m5 Comedy Long Yes No 

m9 Drama Medium No Yes 

D 

Adamson 

Singer 
Lasseter 

yes yes T 

animated 

comedy 
drama 

no no yes 



Final tree 

D 

Adamson 

Singer 
Lasseter 

yes yes T 

animated 

comedy 
drama 

no no yes 

Movie Type Length Director Famous 

actors 

Liked

? 

m1 Comedy Short Adamson No Yes 

m2 Animated Short Lasseter  No No 

m3 Drama Medium Adamson No Yes 

m4 animated long Lasseter Yes No 

m5 Comedy Long Lasseter Yes No 

m6 Drama Medium Singer  Yes Yes 

M7 animated Short Singer No Yes 

m8 Comedy Long Adamson Yes Yes 

m9 Drama Medium Lasseter  No Yes 



Additional points 

• The algorithm we gave reaches homogonous nodes (or 

runs out of attributes) 

• This is dangerous: For datasets with many (non relevant) 

attributes the algorithm will continue to split nodes 

• This will lead to overfitting! 



Avoiding overfitting: Tree pruning 

• Split data into train and test set 

• Build tree using training set 

     - For all internal nodes (starting at the root) 

        - remove sub tree rooted at node 

        - assign class to be the most common among training set 

        - check test data error 

             - if error is lower, keep change 

             - otherwise restore subtree, repeat for all nodes in 

subtree 



Continuous values 

• Either use threshold to turn into binary or discretize 

• Its possible to compute information gain for all possible 

tresholds (there are a finite number of training samples) 

• Harder if we wish to assign more than two values (can 

be done recursively) 

 



The ‘best’ classifier 

• There has been a lot of interest lately in decision trees. 

• They are quite robust, intuitive and, surprisingly, very 

accurate 



Ranking classifiers 

Rich Caruana & Alexandru Niculescu-Mizil, An Empirical Comparison of Supervised 

Learning Algorithms, ICML 2006 

 

Top 8 are all 

based on 

various 

extensions of 

decision trees 



Important points 

• Discriminative classifiers  

• Entropy 

• Information gain 

• Building decision trees  



Random forest 
• A collection of decision trees 

• For each tree we select a subset of the attributes 

(recommended square root of |A|) and build tree using 

just these attributes 

• An input sample is classified using majority voting  
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