1 VC dimension (20 Points) (Xun)

1. We first show \(H \) can shatter \(n + 1 \) points. Let \(S = \{x_i\}_{i=0}^n \) and \(y_i \in \{-1, 1\} \) be the label of \(x_i \). If we can place \(S \) such that \(y_i(a^\top x_i + b) \geq 0 \) holds for all \(y_i \), then \(S \) can be shattered by \(H \). Let \(x_0 = 0 \) and \(x_i \) be the unit vector on the \(i \)-th coordinate. Take \(b = y_0/2 \) and \(a_i = y_i \). Then

\[
y_0 \cdot (0 + b) = \frac{1}{2} y_0^2 \geq 0 \quad (1)
\]
\[
y_1 \cdot (y_1 + b) = y_1^2 + \frac{1}{2} y_0 y_1 \geq 0 \quad (2)
\]
\[
\vdots
\]
\[
y_n \cdot (y_n + b) = y_n^2 + \frac{1}{2} y_0 y_n \geq 0 \quad (3)
\]

always hold. Therefore \(\text{VCdim}(H) \geq n + 1 \).

Now let \(S \) contain \(n + 2 \) points, we show \(H \) cannot shatter \(S \). Let \(P = \{x : a^\top x + b \geq 0\} \) be the halfspace defined by \(h \in H \). Notice that \(S \subseteq P \implies \text{conv}(S) \subseteq P \), since

\[
a^\top \left(\sum_{i=1}^k \alpha_i x_i \right) + b = \sum_{i=1}^k \alpha_i (a^\top x_i + b) \geq 0. \quad (4)
\]

Similar for the opposite halfspace \(P^c \). Suppose \(H \) can shatter \(S \). Now \(H \) can separate any disjoint subsets \(S_1 \) and \(S_2 \) such that \(S_1 \subseteq P \) and \(S_2 \subseteq P^c \). By the claim above, this implies \(\text{conv}(S_1) \subseteq P \) and \(\text{conv}(S_2) \subseteq P^c \). However by Radon’s theorem there exist \(S_1 \) and \(S_2 \) whose convex hulls intersect. This is a contradiction. Hence \(\text{VCdim}(H) \leq n + 1 \).

2. We first show that \(H \) in \(\mathbb{R}^n \) can shatter \(2n \) points. Pick points \(S = \{x_i, x'_i\}_{i=1}^n \), where \(x_i = e_i, x'_i = -e_i \) and \(e_i \) is the unit vector at the \(i \)-th coordinate. Let the corresponding labels be \(L = \{y_i, y'_i\}_{i=1}^n \). \(H \) can shatter \(S \) if the following can be satisfied for some small \(\epsilon > 0 \):

\[
a_i = \begin{cases}
-1 - \epsilon & \text{if } y'_i = 1 \\
-1 + \epsilon & \text{if } y'_i = -1,
\end{cases} \quad b_i = \begin{cases}
1 + \epsilon & \text{if } y_i = 1 \\
1 - \epsilon & \text{if } y_i = -1.
\end{cases} \quad (5)
\]

Clearly this is achievable, for instance by taking \(a_i = -1 - y'_i \epsilon \) and \(b_i = 1 + y_i \epsilon \).

Now show that \(H \) in \(\mathbb{R}^n \) cannot shatter \(2n + 1 \) points. Given any placement of \(2n + 1 \) points, let \(x_i^\text{min} \) and \(x_i^\text{max} \) be the points that have minimum and maximum value along the \(i \)-th coordinate. There are at most \(2n \) such points in \(\mathbb{R}^n \), since some points might be the extremum along multiple coordinates. Then there are at least \(1 \) point left inside the box created by the extremum points. If the internal points are labeled negative and all others are positive, then \(H \) cannot realize this labeling. Thus \(H \) in \(\mathbb{R}^n \) cannot shatter \(2n + 1 \) points.

2 AdaBoost (30 Points) (Xun)

1. Define the correct set \(C = \{i : y_i h_t(x_i) \geq 0\} \) and the mistake set \(M = \{i : y_i h_t(x_i) < 0\} \).

\[
Z_t = \sum_{i=1}^m D_t(i) e^{-\alpha_i y_i h_i(x_i)} = \sum_{i \in C} D_t(i) e^{-\alpha_i} + \sum_{i \in M} D_t(i) e^{\alpha_i} = (1 - \epsilon_t) \cdot e^{-\alpha_t} + \epsilon_t \cdot e^{\alpha_t}. \quad (6)
\]
\[
\text{err}_{D_{t+1}}(h_t) = \sum_{i=1}^m D_{t+1}(i) 1_{y_i \neq h_t(x_i)} = \sum_{i \in M} \frac{D_t(i)}{Z_t} e^{\alpha_t} = \epsilon_t \cdot \frac{1}{2 \epsilon_t} = \frac{1}{2}. \quad (7)
\]
2. Expand $D_t(i)$ recursively.

$$D_{T+1}(i) = \frac{D_T(i)}{Z_T} e^{-\alpha_T y_i h_T(x_i)}$$

$$= \frac{D_{T-1}(i)}{Z_{T-1}} e^{-\alpha_{T-1} y_i h_{T-1}(x_i)} \cdot \frac{1}{Z_T} e^{-\alpha_T y_i h_T(x_i)}$$

$$= \frac{D_1(i)}{\prod_{t=1}^T Z_t} e^{-\sum_{t=1}^T \alpha_t y_i h_t(x_i)}$$

$$= \frac{1}{m \cdot \prod_{t=1}^T Z_t} e^{-y_i f(x_i)}.$$

3. Make use of the fact that exponential loss upper bounds the 0-1 loss: $1_{\{x<0\}} \leq e^{-x}$.

$$\text{err}_S(H) = \frac{1}{m} \sum_{i=1}^m 1_{y_i f(x_i)<0} \leq \frac{1}{m} \sum_{i=1}^m e^{-y_i f(x_i)} = \sum_{i=1}^m D_{T+1}(i) \prod_{t=1}^T Z_t = \prod_{t=1}^T Z_t.$$ (13)

4. Make use of the fact that $1-x \leq e^{-x}$.

$$\prod_{t=1}^T Z_t = \prod_{t=1}^T 2\sqrt{\epsilon_t (1-\epsilon_t)} = \prod_{t=1}^T \sqrt{1-4\gamma_t^2} \leq \prod_{t=1}^T e^{-2\gamma_t} = e^{-2\sum_{t=1}^T \gamma_t^2}.$$ (14)

5. From the result above, $\text{err}_S(H) \leq e^{-2\sum_{t=1}^T \gamma_t^2} \leq e^{-2T\gamma^2}$ $\xrightarrow{T \to \infty} 0$. Therefore

$$e^{-2T\gamma^2} \leq \varepsilon \implies T \geq \frac{1}{2\gamma^2} \log \frac{1}{\varepsilon},$$ (15)

hence we need $T = O(\frac{1}{\gamma^2} \log \frac{1}{\varepsilon})$.

6. See Table 1 and Figure 1. The red, green, and blue regions are the halfspaces defined by h_1, h_2, and h_3. The code is available on the course website.

<table>
<thead>
<tr>
<th>t</th>
<th>ϵ_t</th>
<th>α_t</th>
<th>$D_t(1)$</th>
<th>$D_t(2)$</th>
<th>$D_t(3)$</th>
<th>$D_t(4)$</th>
<th>$D_t(5)$</th>
<th>$D_t(6)$</th>
<th>$D_t(7)$</th>
<th>$D_t(8)$</th>
<th>$D_t(9)$</th>
<th>$\text{err}_S(H)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.222</td>
<td>0.626</td>
<td>0.111</td>
<td>0.111</td>
<td>0.111</td>
<td>0.111</td>
<td>0.111</td>
<td>0.111</td>
<td>0.111</td>
<td>0.111</td>
<td>0.111</td>
<td>0.222</td>
</tr>
<tr>
<td>2</td>
<td>0.143</td>
<td>0.896</td>
<td>0.071</td>
<td>0.071</td>
<td>0.071</td>
<td>0.071</td>
<td>0.071</td>
<td>0.071</td>
<td>0.071</td>
<td>0.250</td>
<td>0.250</td>
<td>0.222</td>
</tr>
<tr>
<td>3</td>
<td>0.125</td>
<td>0.973</td>
<td>0.042</td>
<td>0.042</td>
<td>0.042</td>
<td>0.250</td>
<td>0.250</td>
<td>0.042</td>
<td>0.042</td>
<td>0.146</td>
<td>0.146</td>
<td>0.000</td>
</tr>
</tbody>
</table>

Table 1: AdaBoost results
3 Gaussian Mixture Model

1

\[E[x] = \int xp(x)dx \]
\[= \int x \sum_{k=1}^{K} \pi_k \mathcal{N}(x | \mu_k, \Sigma_k) dx \]
\[= \sum_{k=1}^{K} \pi_k \int x \mathcal{N}(x | \mu_k, \Sigma_k) dx \]
\[= \sum_{k=1}^{K} \pi_k \mu_k \tag{16} \]

2

\[\text{Cov}[x] = \mathbb{E}[xx^T] - \mathbb{E}[x]\mathbb{E}[x]^T \]
\[= \int xx^T \sum_{k=1}^{K} \pi_k \mathcal{N}(x | \mu_k, \Sigma_k) dx - \mathbb{E}[x]\mathbb{E}[x]^T \]
\[= \sum_{k=1}^{K} \pi_k \int xx^T \mathcal{N}(x | \mu_k, \Sigma_k) dx - \mathbb{E}[x]\mathbb{E}[x]^T \]
\[= \sum_{k=1}^{K} \pi_k \mathbb{E}_k[xx^T] - \mathbb{E}[x]\mathbb{E}[x]^T \]
\[= \sum_{k=1}^{K} \pi_k (\Sigma_k + \mu_k \mu_k^T) - \mathbb{E}[x]\mathbb{E}[x]^T \tag{17} \]

where I denote \[\mathbb{E}_k[x] = \int x \mathcal{N}(x | \mu_k, \Sigma_k) dx. \]
4 K-means

4.1 Proof:
\[\sum_{x \in X} \|x - s\|^2 - \sum_{x \in X} \|x - \bar{x}\|^2 = \sum_{x \in X} (2x - s)(\bar{x} - s) \]
\[= |X|(2\bar{x} - s)(\bar{x} - s) \]
\[= |X| \cdot \|\bar{x} - s\|^2 \] \hspace{1cm} (18)

2 Proof:
\[\sum_{i=1}^{n_k} \sum_{j=1}^{n_k} \|x_{ki} - x_{kj}\|^2 \]
\[= \sum_{i=1}^{n_k} \left(\sum_{j=1}^{n_k} \|x_{kj} - \mu_k\|^2 + n_k \|\mu_k - x_{ki}\|^2 \right) \]
\[= n_k \sum_{j=1}^{n_k} \|x_{kj} - \mu_k\|^2 + \sum_{i=1}^{n_k} n_k \|\mu_k - x_{ki}\|^2 \]
\[= 2n_k \sum_{i=1}^{n_k} \|\mu_k - x_{ki}\|^2 \]

Therefore,
\[\sum_{i=1}^{K} \frac{1}{n_k} \sum_{i=1}^{n_k} \sum_{j=1}^{n_k} \|x_{ki} - x_{kj}\|^2 \]
\[= 2 \sum_{i=1}^{K} \sum_{i=1}^{n_k} \|\mu_k - x_{ki}\|^2 \] \hspace{1cm} (20)

Proved.

3 In Step 1, as we fix the centroids, when we reassign the class memberships, every point \(x_i\) will find its new nearest centers, thus decreases the objective \(\omega\). In Step 2, we fix the class memberships and re-estimate the class centers. With Lemma 1 we know by replacing the old center with a new center we will decrease the objective.

4 if \(K > n\), we just set the centers as the points themselves which will give us a zero objective. if \(K < n\), we create a new cluster by picking any point \(x\) in the dataset which is not a center, and let \(x\) be the center. Denote the new memberships as \(f'\) and \(\mathcal{U}_{K+1} = \mathcal{U}_K + \{x\}\), then
\[\Omega(K) \geq \omega(\mathcal{U}_{K+1}, f'; \mathcal{X}) \geq \Omega(K + 1) \] \hspace{1cm} (21)
Proved.
Since there are at most k^n assignments of points to cluster centres, the above objective can only achieve one of k^n different values and one of k^n different assignments. Therefore, it has to terminate in a finite number of steps as the objective is non-increasing.

4.2

1

See the code.

2

min objective: $2.0614e+09$. See the objective v.s. iterations in Fig.2. Some runs converged, but some not due to randomness. The mean faces are visualized as in Fig.3.

3

See the code. See the objective v.s. iterations in Fig.4. Most converged. The mean faces are visualized as in Fig.5. With Kmeans++, the objectives converged faster and better.
Figure 3: The mean faces of kmeans.

Figure 4: The objective v.s. iterations for kmeans++.
Figure 5: The mean faces of kmeans++.