1 Multinomial Distribution

Given some integer $k > 1$, let Θ be the set of vectors $\theta = (\theta_1, ..., \theta_k)$ satisfying $\theta_i \geq 0$ and $\sum_{i=1}^{k} \theta_i = 1$. For any $\theta \in \Theta$ we define the probability mass function

$$p_\theta(x) = \begin{cases} \prod_{i=1}^{k} \theta_i^{I(x=i)} & \text{for } x \in \{1, 2, ..., k\} \\ 0 & \text{o.w.} \end{cases}$$

Given n observations $X_1, ..., X_n \in \{1, ..., k\}$, we would like to derive the maximum likelihood estimate for the parameter θ under this model.

First, let’s write down the likelihood of the data for some $\theta \in \Theta$ (recall that we have assumed $X_1, ..., X_n \in \{1, ..., k\}$, since otherwise there is no meaningful solution):

$$L(\theta; X_1, ..., X_n) = \prod_{j=1}^{n} p_\theta(X_j) = \prod_{j=1}^{n} \prod_{i=1}^{k} \theta_i^{I(X_j=i)} = \prod_{i=1}^{k} \prod_{j=1}^{n} \theta_i^{I(X_j=i)} = \prod_{i=1}^{k} \theta_i^{S_i}$$

where, for brevity, we have defined $S_i = \sum_{j=1}^{n} I(X_j = i)$. Our goal is to maximize L with respect to θ, subject to the constraint that $\theta \in \Theta$. Equivalently, we can maximize the log likelihood:

$$\log L(\theta; X_1, ..., X_n) = \sum_{i=1}^{k} S_i \log \theta_i.$$

Introducing a Lagrange multiplier for the constraint $\sum_{i=1}^{k} \theta_i = 1$, we have

$$\Lambda(\theta, \lambda) = \sum_{i=1}^{k} S_i \log \theta_i + \lambda \left(\sum_{i=1}^{k} \theta_i - 1 \right).$$
Differentiating with respect to θ_i and λ, for each $i = 1, \ldots, k$ we have

$$\frac{\partial \Lambda}{\partial \theta_i} = S_i \theta_i + \lambda$$

and $\frac{\partial \Lambda}{\partial \lambda} = \sum_{i=1}^{k} \theta_i - 1$. Setting the latter partial derivative to 0 gives back the original constraint $\sum_{i=1}^{k} \theta_i = 1$, as expected. Also for $i = 1, \ldots, k$,

$$\frac{\partial \Lambda}{\partial \theta_i} = 0 \Rightarrow \frac{S_i}{\theta_i} = -\lambda \Rightarrow \hat{\theta}_i = \frac{S_i}{-\lambda}. \tag{1}$$

By definition of S_i we have

$$\sum_{i=1}^{k} \frac{S_i}{-\lambda} = \frac{\sum_{i=1}^{k} S_i}{-\lambda} = \frac{n}{-\lambda}$$

which implies that in order for the summation constraint on θ_i to be satisfied, we require $\frac{n}{\lambda} = 1$, i.e. $\lambda = -n$.

Plugging this value for λ into (1),

$$\hat{\theta}_i = \frac{S_i}{n} = \frac{1}{n} \sum_{j=1}^{n} X_j$$

i.e. the maximum likelihood estimates for the elements of θ are simply the intuitively obvious estimators – the empirical means.

2 Multivariate Normal (unknown mean and variance)

The PDF of the multivariate normal in d dimensions is

$$p(x; \mu, \Sigma) = \frac{1}{(2\pi)^{d/2} \lvert \Sigma \rvert^{1/2}} \exp \left\{ -\frac{1}{2} (x - \mu)^T \Sigma^{-1} (x - \mu) \right\}$$

where the parameters are the mean vector $\mu \in \mathbb{R}^d$, and the covariance matrix $\Sigma \in \mathbb{R}^{d \times d}$, which must be symmetric positive definite.

2.1 MLE

The likelihood function given $X_1, \ldots, X_n \in \mathbb{R}^d$ is

$$L(\mu, \Sigma; X_1, \ldots, X_n) = c_1 |\Sigma|^{-n/2} \prod_{i=1}^{n} \exp \left\{ -\frac{1}{2} (X_i - \mu)^T \Sigma^{-1} (X_i - \mu) \right\}$$

$$= c_1 |\Sigma|^{-n/2} \exp \left\{ -\frac{1}{2} \sum_{i=1}^{n} (X_i - \mu)^T \Sigma^{-1} (X_i - \mu) \right\}$$
where $c_1 = (2\pi)^{-nd/2}$ is a constant independent of the data and parameters and can be ignored. The log likelihood is
\[
\log L(\mu, \Sigma; X_1, ..., X_n) = -\frac{n}{2} \log |\Sigma| - \frac{1}{2} \left(\sum_{i=1}^{n} (X_i - \mu)^T \Sigma^{-1} (X_i - \mu) \right) + c_2
\]
where c_2 is another inconsequential constant.

It is easiest to first maximize this with respect to μ. The corresponding partial derivative is
\[
\frac{\partial}{\partial \mu} \log L = -\n \sum_{i=1}^{n} \Sigma^{-1} (X_i - \mu)
\]
\[
= -\Sigma^{-1} \sum_{i=1}^{n} (X_i - \mu)
\]
\[
= n\Sigma^{-1} \left(\mu - \frac{1}{n} \sum_{i=1}^{n} X_i \right)
\]
which implies
\[
\hat{\mu} = \frac{1}{n} \sum_{i=1}^{n} X_i.
\]

The partial derivative of the log likelihood with respect to Σ is
\[
\frac{\partial}{\partial \Sigma} \log L = -\frac{n}{2} \frac{1}{|\Sigma|} |\Sigma|^{-1} - \frac{1}{2} \left(\sum_{i=1}^{n} -\Sigma^{-1} (X_i - \mu)(X_i - \mu)^T \Sigma^{-1} \right)
\]
\[
= -\frac{n}{2} \Sigma^{-1} + \frac{1}{2} \Sigma^{-1} \left(\sum_{i=1}^{n} (X_i - \mu)(X_i - \mu)^T \right) \Sigma^{-1}.
\]
Equating this to 0 and plugging in the estimate $\hat{\mu}$, we see that the estimator $\hat{\Sigma}$ must solve the equation
\[
n \hat{\Sigma}^{-1} = \hat{\Sigma}^{-1} \left(\sum_{i=1}^{n} (X_i - \hat{\mu})(X_i - \hat{\mu})^T \right) \hat{\Sigma}^{-1}.
\]
It is easy to see that a solution for $\hat{\Sigma}$ is
\[
\hat{\Sigma} = \frac{1}{n} \sum_{i=1}^{n} (X_i - \hat{\mu})(X_i - \hat{\mu})^T,
\]
which is known as the sample covariance matrix.

2.2 MAP under the conjugate prior

The conjugate prior for the mean and covariance of a multivariate normal is sometimes called the Normal-inverse-Wishart distribution and has the density
\[
f(\mu, \Sigma | \mu_0, \beta, \Psi, \nu) = p(\mu | \mu_0, \beta \Sigma) w(\Sigma | \Psi, \nu)
\]
where \(p \) is the density of the multivariate normal distribution, and \(w \) is the density of the inverse-Wishart distribution given by

\[
w(\Sigma|\Psi, \nu) = \frac{|\Psi|^{\nu/2}}{2^{\nu d/2} \Gamma_d \left(\frac{\nu}{2} \right)} |\Sigma|^{-(\nu + d + 1)/2} \exp \left\{ -\frac{1}{2} \text{Tr}(\Psi \Sigma^{-1}) \right\}
\]

where \(\Gamma_d \) is the multivariate Gamma function, and \(\text{Tr}(\cdot) \) denotes the trace of a matrix. The parameters of the Normal-inverse-Wishart are \(\mu_0 \in \mathbb{R}^d, \beta \in \mathbb{R}^+, \Psi \in \mathbb{R}^{d \times d} \) positive definite, and \(\nu \in \mathbb{R} \) with \(\nu > d - 1 \). We need to

1. calculate the posterior distribution of \(\mu \) and \(\Sigma \) assuming this prior and \(n \) observations \(X_1, ..., X_n \in \mathbb{R}^d \);
2. convince ourselves that the posterior is indeed a Normal-inverse-Wishart distribution and find its parameters;
3. and finally find the values for \(\mu \) and \(\Sigma \) that maximize the posterior distribution.

2.2.1 Calculating the posterior distribution

We have

\[
f(\mu, \Sigma|\mu_0, \beta, \Psi, \nu, X_1, ..., X_n) \propto \left(\prod_{i=1}^{n} p(X_i|\mu, \Sigma) \right) f(\mu, \Sigma|\mu_0, \beta, \Psi, \nu)
\]

where we omit the term in the denominator which is a finite, non-zero constant that doesn’t depend on \(\mu \) or \(\Sigma \), since any such term does not affect the shape of the posterior distribution and only factors in the normalizing constant that ensures the posterior integrates to 1. Continuing from above,

\[
f(\mu, \Sigma|\mu_0, \beta, \Psi, \nu, X_1, ..., X_n) \propto \left(\prod_{i=1}^{n} \frac{1}{(2\pi)^{d/2} |\Sigma|^{1/2}} \exp \left\{ -\frac{1}{2} (X_i - \mu)^T \Sigma^{-1} (X_i - \mu) \right\} \right) \times
\]

\[
\frac{1}{(2\pi)^{d/2} \beta \Sigma^{1/2}} \exp \left\{ -\frac{1}{2} (\mu - \mu_0)^T (\beta \Sigma)^{-1} (\mu - \mu_0) \right\} \times
\]

\[
\frac{|\Psi|^{\nu/2}}{2^{\nu d/2} \Gamma_d \left(\frac{\nu}{2} \right)} |\Sigma|^{-(\nu + d + 1)/2} \exp \left\{ -\frac{1}{2} \text{Tr}(\Psi \Sigma^{-1}) \right\}
\]

\[
\propto \exp \left\{ -\frac{1}{2} \sum_{i=1}^{n} (X_i - \mu)^T \Sigma^{-1} (X_i - \mu) \right\} \times
\]

\[
\exp \left\{ -\frac{1}{2} (\mu - \mu_0)^T (\beta \Sigma)^{-1} (\mu - \mu_0) \right\} \times
\]

\[
|\Sigma|^{-(\nu + n + d + 2)/2} \exp \left\{ -\frac{1}{2} \text{Tr}(\Psi \Sigma^{-1}) \right\}.
\]

While messy, this fully defines the posterior distribution.
2.2.2 The posterior is a Normal-inverse-Wishart distribution

Our goal now is to find $\mu_0', \beta', \Psi', \nu'$ such that (4) looks like a Normal-inverse-Wishart density with those parameters. First we write out explicitly the form of the Normal-inverse-Wishart density, up to constants, for these as of yet unknown parameters:

$$f(\mu, \Sigma|\mu_0', \beta', \Psi', \nu') \propto \exp \left\{ -\frac{1}{2} \left(\mu - \mu_0' \right)^T (\beta' \Sigma)^{-1} (\mu - \mu_0') \right\} \times |\Sigma|^{-\left(\nu' + d + 2\right)/2} \exp \left\{ -\frac{1}{2} \text{Tr}(\Psi' \Sigma^{-1}) \right\}.$$ (5)

It is immediately clear that the only value ν' can take to satisfy $f(\mu, \Sigma|\mu_0, \beta, \Psi, \nu, X_1, ..., X_n) = f(\mu, \Sigma|\mu_0', \beta', \Psi', \nu')$ is

$$\nu' = \nu + d.$$

Furthermore we see that for this value of ν' the term involving $|\Sigma|$ in (4) is accounted for in (5). So now we only need find μ_0', β', Ψ' such that

$$\exp \left\{ -\frac{1}{2} \left(\mu - \mu_0' \right)^T (\beta' \Sigma)^{-1} (\mu - \mu_0') \right\} \times \exp \left\{ -\frac{1}{2} \text{Tr}(\Psi' \Sigma^{-1}) \right\}$$ (6)

is equal to

$$\exp \left\{ -\frac{1}{2} \left(\mu - \mu_0' \right)^T (\beta' \Sigma)^{-1} (\mu - \mu_0') \right\} \exp \left\{ -\frac{1}{2} \text{Tr}(\Psi' \Sigma^{-1}) \right\}$$ (7)

up to a multiplicative constant independent of μ and Σ (note that the terms involving $|\Sigma|$ are already equalized and needn’t be considered any more).

By taking the log of each quantity and multiplying by -2, we see that the above problem is equivalent to finding μ_0', β', Ψ' such that

$$\sum_{i=1}^n (X_i - \mu)^T \Sigma^{-1} (X_i - \mu) + (\mu - \mu_0)^T (\beta \Sigma)^{-1} (\mu - \mu_0) + \text{Tr}(\Psi \Sigma^{-1})$$ (8)

is equal to

$$(\mu - \mu_0')^T (\beta' \Sigma)^{-1} (\mu - \mu_0') + \text{Tr}(\Psi' \Sigma^{-1})$$ (9)

up to an additive constant independent of μ and Σ.

Defining $S = \sum_{i=1}^n X_i$, we can rewrite (8) as

$$\sum_{i=1}^n (X_i - \mu)^T \Sigma^{-1} (X_i - \mu) + (\mu - \mu_0)^T (\beta \Sigma)^{-1} (\mu - \mu_0) + \text{Tr}(\Psi \Sigma^{-1})$$

$$= \frac{1}{\beta} \mu^T \Sigma^{-1} \mu - 2 \frac{1}{\beta} \mu^T \Sigma^{-1} \mu_0 + \frac{1}{\beta} \mu_0^T \Sigma^{-1} \mu_0 +$$

$$+ \sum_{i=1}^n X_i^T \Sigma^{-1} X_i - 2 \mu^T \Sigma^{-1} S + n \mu^T \Sigma^{-1} \mu + \text{Tr}(\Psi \Sigma^{-1})$$

$$= \left(\frac{1}{\beta} + n \right) \mu^T \Sigma^{-1} \mu - 2 \mu^T \Sigma^{-1} \left(\frac{1}{\beta} \mu_0 + S \right) +$$

$$+ \frac{1}{\beta} \mu_0^T \Sigma^{-1} \mu_0 + \sum_{i=1}^n X_i^T \Sigma^{-1} X_i + \text{Tr}(\Psi \Sigma^{-1}).$$ (10)
Notice each appearance of \(\mu \) is now in the two terms on line (10), which look like the first two terms of the expansion of a quadratic form similar to the first term in (9). In order to “complete the square”, we must set

\[
\beta' = \frac{1}{\beta' + n}
\]

so that the first term on line (10) is equal to the quadratic term (in \(\mu \)) from the expansion of \((\mu - \mu'_0)(\beta' \Sigma)^{-1}(\mu - \mu'_0)\). The linear term in \(\mu \) on line (10) now implies that we must set

\[
\mu'_0 = \beta' \left(\frac{1}{\beta} \mu_0 + S \right) = \frac{1}{\beta' + n} \mu_0 + S.
\]

Continuing from line (11) we have

\[
\left(\frac{1}{\beta} + n \right) \mu^T \Sigma^{-1} \mu - 2 \mu^T \Sigma^{-1} \left(\frac{1}{\beta} \mu_0 + S \right) + \frac{1}{\beta} \mu_0^T \Sigma^{-1} \mu_0 + \sum_{i=1}^{n} X_i^T \Sigma^{-1} X_i + \text{Tr}(\Psi \Sigma^{-1}) =
\]

\[
= \mu^T (\beta' \Sigma)^{-1} \mu - 2 \mu^T (\beta' \Sigma)^{-1} \mu_0' + \mu_0'^T (\beta' \Sigma)^{-1} \mu_0' - \mu_0'^T (\beta' \Sigma)^{-1} \mu_0' +
\]

\[
+ \frac{1}{\beta} \mu_0^T \Sigma^{-1} \mu_0 + \sum_{i=1}^{n} X_i^T \Sigma^{-1} X_i + \text{Tr}(\Psi \Sigma^{-1}) =
\]

\[
= (\mu - \mu'_0)^T (\beta' \Sigma)^{-1} (\mu - \mu'_0) - \mu_0'^T (\beta' \Sigma)^{-1} \mu_0' + \frac{1}{\beta} \mu_0^T \Sigma^{-1} \mu_0 + \sum_{i=1}^{n} X_i^T \Sigma^{-1} X_i + \text{Tr}(\Psi \Sigma^{-1})
\]

and since the \((\mu - \mu'_0)(\beta' \Sigma)^{-1}(\mu - \mu'_0)\) term is completed we can drop it from the last line and from (9). I.e. we now only need find \(\Psi' \) such that

\[
- \mu_0'^T (\beta' \Sigma)^{-1} \mu_0' + \frac{1}{\beta} \mu_0^T \Sigma^{-1} \mu_0 + \sum_{i=1}^{n} X_i^T \Sigma^{-1} X_i + \text{Tr}(\Psi \Sigma^{-1})
\]

equals

\[
\text{Tr}(\Psi' \Sigma^{-1})
\]

up to constants.

Continuing from (12):

\[
- \text{Tr}(\mu_0'^T (\beta' \Sigma)^{-1} \mu_0') + \text{Tr} \left(\frac{1}{\beta} \mu_0^T \Sigma^{-1} \mu_0 \right) + \sum_{i=1}^{n} \text{Tr}(X_i^T \Sigma^{-1} X_i) + \text{Tr}(\Psi \Sigma^{-1}) =
\]

\[
= - \text{Tr} \left(\frac{1}{\beta} \mu_0'^T \mu_0 T \Sigma^{-1} \right) + \text{Tr} \left(\frac{1}{\beta} \mu_0 \mu_0^T \Sigma^{-1} \right) + \sum_{i=1}^{n} \text{Tr}(X_i X_i^T \Sigma^{-1}) + \text{Tr}(\Psi \Sigma^{-1}) =
\]

\[
= \text{Tr} \left(\left[\Psi + \frac{1}{\beta} \mu_0 \mu_0^T + \sum_{i=1}^{n} X_i X_i^T - \frac{1}{\beta} \mu_0^T \mu_0 \right] \Sigma^{-1} \right)
\]

so we set

\[
\Psi' = \Psi + \frac{1}{\beta} \mu_0 \mu_0^T + \sum_{i=1}^{n} X_i X_i^T - \frac{1}{\beta} \mu_0^T \mu_0^T.
\]

After simplifying this a bit, you should be able to recognize the empirical means and covariance matrix:

\[
\Psi' = \Psi + \sum_{i=1}^{n} \left(X_i - \frac{1}{n} S \right) \left(X_i - \frac{1}{n} S \right)^T + \frac{n}{\beta + n} \left(\frac{1}{n} S - \mu_0 \right) \left(\frac{1}{n} S - \mu_0 \right)^T.
\]
2.2.3 Maximizing the posterior

In the last section we showed that the posterior distribution of μ and Σ after n observations under a Normal-inverse-Wishart distribution is again a Normal-inverse-Wishart distribution with parameters

$$
\mu'_0 = \frac{1}{\beta} \mu_0 + \frac{1}{\beta + n} S,
$$

$$
\beta' = \frac{1}{\beta + n},
$$

$$
\Psi' = \Psi + \sum_{i=1}^{n} \left(X_i - \frac{1}{n} S \right) \left(X_i - \frac{1}{n} S \right)^T + \frac{n}{\beta + n} \left(\frac{1}{n} S - \mu_0 \right) \left(\frac{1}{n} S - \mu_0 \right)^T,
$$

and

$$
\nu' = \nu + d,
$$

where $S = \sum_{i=1}^{n} X_i$. Recall that the density of this distribution is

$$
f(\mu, \Sigma | \mu'_0, \beta', \Psi', \nu') = p(\mu | \mu'_0, \beta' \Sigma) w(\Sigma | \Psi', \nu')
$$

(14)

where p is the density of the multivariate normal distribution, and w is the density of the inverse-Wishart distribution given by

$$
w(\Sigma | \Psi', \nu') = \frac{|\Psi'|^{\nu'/2}}{2^{d \nu'/2} \Gamma_d(\frac{\nu'}{2})} |\Sigma|^{-(\nu'+d+1)/2} \exp \left\{ -\frac{1}{2} \text{Tr}(\Psi' \Sigma^{-1}) \right\}.
$$

Since μ only appears in the first term on the right hand side of 14, it is obvious that the value of μ that maximizes the posterior is also the value that maximizes $p(\mu | \mu'_0, \beta' \Sigma)$, which, of course, is μ'_0:

$$
\hat{\mu} = \frac{1}{\beta} \mu_0 + \frac{1}{\beta + n} S.
$$

We can think of this quantity as the maximum likelihood estimator for the mean of the normal distribution if, along with $X_1, ..., X_n$, we had also observed $1/\beta$-many samples, all equal to μ_0.

Maximizing the posterior with respect to Σ is equivalent to minimizing

$$
J(\Sigma) = (\nu' + d + 2) \log |\Sigma| + (\hat{\mu} - \mu'_0)^T (\beta' \Sigma)^{-1} (\hat{\mu} - \mu'_0) + \text{Tr}(\Psi' \Sigma^{-1})
$$

(15)

where we have plugged in the MAP value for μ;

$$
\frac{\partial J}{\partial \Sigma} = (\nu' + d + 2) \Sigma^{-1} - \frac{1}{\beta} \Sigma^{-1} (\hat{\mu} - \mu'_0) (\hat{\mu} - \mu'_0)^T \Sigma^{-1} - \Sigma^{-1} \Psi' \Sigma^{-1}
$$

(16)

and the maximizer is

$$
\hat{\Sigma} = \frac{1}{\beta'(\nu' + d + 2)} (\hat{\mu} - \mu'_0) (\hat{\mu} - \mu'_0)^T + \frac{1}{\nu' + d + 2} \Psi'.
$$

(17)