Learning Theory II

Aarti Singh and Eric Xing

Machine Learning 10-701/15-781
Nov 7, 2012

Slides courtesy: Carlos Guestrin
Summary of PAC bounds for finite hypothesis spaces

With probability $\geq 1-\delta$,

1) For all $h \in H$ s.t. $\text{error}_{\text{train}}(h) = 0$,

$$\text{error}_{\text{true}}(h) \leq \varepsilon = \frac{\ln |H| + \ln \frac{1}{\delta}}{m}$$

2) For all $h \in H$

$$|\text{error}_{\text{true}}(h) - \text{error}_{\text{train}}(h)| \leq \varepsilon = \sqrt{\frac{\ln |H| + \ln \frac{1}{\delta}}{2m}}$$
What about continuous hypothesis spaces?

\[
\text{error}_{true}(h) \leq \text{error}_{train}(h) + \sqrt{\frac{\ln |H| + \ln \frac{2}{\delta}}{2m}}
\]

- Continuous hypothesis space:
 - \(|H| = \infty\)
 - Infinite variance???

- As with decision trees, complexity of hypothesis space only depends on maximum number of points that can be classified exactly (and not necessarily its size)!
How many points can a linear boundary classify exactly? (1-D)

2 pts

3 pts

There exists placement s.t. all labelings can be classified
How many points can a linear boundary classify exactly? (2-D)

There exists placement s.t. all labelings can be classified
How many points can a linear boundary classify exactly? (d-D)

- d+1 pts

How many parameters in linear Classifier in d-Dimensions?

\[w_0 + \sum_{i=1}^{d} w_i x_i \]

- d+1

There exists placement s.t. all labelings can be classified
PAC bound using VC dimension

• Number of training points that can be classified exactly is VC dimension!!
 – Measures relevant size of hypothesis space, as with decision trees with k leaves

\[\text{error}_{true}(h) \leq \text{error}_{train}(h) + 8 \sqrt{\frac{VC(H) \left(\ln \frac{m}{VC(H)} + 1 \right) + \ln \frac{\delta}{\delta}}{2m}} \]

Instead of \(\ln |H| \)
Shattering a set of points

Definition: a dichotomy of a set S is a partition of S into two disjoint subsets.

Definition: a set of instances S is shattered by hypothesis space H if and only if for every dichotomy of S there exists some hypothesis in H consistent with this dichotomy.

For all binary partitions of S into (S^+, S^-), there exists a classifier in H that classifies S^+ as positive and S^- as negative.
VC dimension

Definition: The Vapnik-Chervonenkis dimension, $VC(H)$, of hypothesis space H defined over instance space X is the size of the largest finite subset of X shattered by H. If arbitrarily large finite sets of X can be shattered by H, then $VC(H) \equiv \infty$.

- You pick set of points
- Adversary assigns labels
- You find a hypothesis in H consistent with the labels

If $VC(H) = k$, then for all $k+1$ points, there exists a labeling that cannot be shattered (can’t find a hypothesis in H consistent with it)
PAC bound using VC dimension

- Number of training points that can be classified exactly is VC dimension!!!
 - Measures relevant size of hypothesis space, as with decision trees with k leaves
 - Bound for infinite dimension hypothesis spaces:

\[
\text{w.p. } \geq 1-\delta
\]

\[
\text{error}_{\text{true}}(h) \leq \text{error}_{\text{train}}(h) + 8\sqrt{\frac{VC(H) \left(\ln \frac{m}{VC(H)} + 1 \right) + \ln \frac{8}{\delta}}{2m}}
\]

<table>
<thead>
<tr>
<th>linear classifiers</th>
<th>2D</th>
<th>large</th>
<th>small</th>
</tr>
</thead>
<tbody>
<tr>
<td>10,000 D</td>
<td>small</td>
<td>large</td>
<td></td>
</tr>
</tbody>
</table>
Examples of VC dimension

• Linear classifiers:
 – $\text{VC}(H) = d+1$, for d features plus constant term
Another VC dim. example - What can we shatter?

- What’s the VC dim. of decision stumps in 2d?

\[\text{VC}(H) \geq 3 \]
Another VC dim. example - What can’t we shatter?

• What’s the VC dim. of decision stumps in 2d?

If VC(H) = 3, then for all placements of 4 pts, there exists a labeling that can’t be shattered
Examples of VC dimension

• Linear classifiers:
 – $\text{VC}(H) = d+1$, for d features plus constant term

• Decision stumps: $\text{VC}(H) = d+1$ (3 if $d=2$)
Another VC dim. example - What can we shatter?

• What’s the VC dim. of axis parallel rectangles in 2d? \[\text{sign}(1 - 2^*\mathbf{1}_x \subseteq \text{rectangle}) \]

\[\text{VC}(H) \geq 3 \]
Another VC dim. example - What can’t we shatter?

• What’s the VC dim. of axis parallel rectangles in 2d? \(\text{sign}(1 - 2 \times 1_{x \in \text{rectangle}}) \)

• Some placement of 4 pts can’t be shattered

\[\text{VC}(H) \geq 4 \]
Another VC dim. example - What can’t we shatter?

- What’s the VC dim. of axis parallel rectangles in 2d?
 \[\text{sign}(1 - 2^*1_{x \in \text{rectangle}}) \]
 If \(\text{VC}(H) = 4 \), then for all placements of 5 pts, there exists a labeling that can’t be shattered.

4 collinear 2 in convex hull of other 3 1 in convex hull of other 4 pentagon
Examples of VC dimension

- **Linear classifiers:** \(VC(H) = d+1 \), for \(d \) features plus constant term

- **Decision stumps:** \(VC(H) = d+1 \)

- **Axis parallel rectangles:** \(VC(H) = 2d \) (4 if \(d=2 \))

- **1 Nearest Neighbor:** \(VC(H) = \infty \)
VC dimension and size of hypothesis space

• To be able to shatter m points, how many hypothesis do we need?
 \[2^m \text{ labelings} \iff |H| \geq 2^m \]

Given |H| hypothesis can hope to shatter max
m=\log_2 |H| points

\[VC(H) \leq \log_2 |H| \]

So VC bound is tighter.
Summary of PAC bounds

With probability $\geq 1-\delta$,

1) for all $h \in H$ s.t. $\text{error}_{\text{train}}(h) = 0$,
 \[
 \text{error}_{\text{true}}(h) \leq \varepsilon = \frac{\ln |H| + \ln \frac{1}{\delta}}{m}
 \]

2) for all $h \in H$,
 \[
 |\text{error}_{\text{true}}(h) - \text{error}_{\text{train}}(h)| \leq \varepsilon = \sqrt{\frac{\ln |H| + \ln \frac{1}{\delta}}{2m}}
 \]

3) for all $h \in H$,
 \[
 |\text{error}_{\text{true}}(h) - \text{error}_{\text{train}}(h)| \leq \varepsilon = 8\sqrt{\frac{\text{VC}(H) \left(\ln \frac{m}{\text{VC}(H)} + 1 \right) + \ln \frac{8}{\delta}}{2m}}
 \]

Finite hypothesis space

Infinite hypothesis space
Using PAC bound to pick a hypothesis

- **Empirical Risk Minimization (ERM)**

\[
\hat{h} = \arg \min_{h \in H} \text{error}_{\text{train}}(h)
\]

\[
\text{error}_{\text{true}}(\hat{h}) \leq \text{error}_{\text{train}}(\hat{h}) + \epsilon \quad w.p. \geq 1 - \delta
\]

\[
= \min_{h \in H} \text{error}_{\text{train}}(h) + \epsilon
\]

\[
\leq \min_{h \in H} \text{error}_{\text{true}}(h) + 2\epsilon
\]

- If training error is best possible in \(H \), then true error is also close to best possible in \(H \) (with high probability)
Using PAC bound for model selection

- **Structural Risk Minimization (SRM)**

 model spaces $H_1, H_2, \ldots, H_k, \ldots$ of increasing complexity

 \[|H_1| \leq |H_2| \leq \ldots \leq |H_k| \leq \ldots \quad \text{OR} \]

 \[VC(H_1) \leq VC(H_2) \leq \ldots \leq VC(H_k) \leq \ldots \]

 For each hypothesis space H_k, we know with probability $\geq 1-\delta_k$, for all $h \in H_k$

 \[\text{error}_{\text{true}}(h) \leq \text{error}_{\text{train}}(h) + \varepsilon(H_k) \quad \text{depends on } |H_k| \text{ or } VC(H_k) \]

 As complexity k increases, \text{error}_{\text{train}} goes down but $\varepsilon(H_k)$ goes up – *Bias variance tradeoff*
Using PAC bound for model selection

• Structural Risk Minimization (SRM)

ERM within each model space

\[\hat{h}_k = \arg\min_{h \in H_k} \text{error}_{\text{train}}(h) \]

Choose model space (minimize upper bound on true error)

\[\hat{k} = \arg\min_{k \geq 1} \{ \text{error}_{\text{train}}(\hat{h}_k) + \epsilon(H_k) \} \]

Final hypothesis

\[\hat{h} = \hat{h}_{\hat{k}} \]
Using PAC bound for model selection

- **Structural Risk Minimization (SRM)**

 \[\hat{k} = \arg \min_{k \geq 1} \{ \text{error}_{\text{train}}(\hat{h}_k) + \varepsilon(H_k) \} \]

 \[C(h) = \varepsilon(H_k) \text{ - large for complex models} \]

 \[\text{High probability Upper bound on true risk} \]

 \[\text{Prediction Error} \]

 \[\text{empirical risk} \]

 \[\text{underfitting} \quad \text{Best Model} \quad \text{overfitting} \]

 \[\text{Complexity} \]
Using PAC bound for model selection

- How good is the final hypothesis picked by SRM relative to best hypothesis in the best class k^*?

$$\text{error}_{true}(\hat{h}) = \text{error}_{true}(\hat{h}^*_k)$$

$$\leq \text{error}_{train}(\hat{h}^*_k) + \epsilon(H^*_k)$$

$$= \min_k \{ \text{error}_{train}(h_k) + \epsilon(H_k) \}$$

$$= \min_k \{ \min_{h \in H_k} \text{error}_{train}(h) + \epsilon(H_k) \}$$

$$\leq \min_k \{ \min_{h \in H_k} \text{error}_{true}(h) + 2\epsilon(H_k) \}$$

w.p. $\geq 1 - \delta$

$$\delta = \sum_k \delta_k = \min_{h \in H_{k^*}} \text{error}_{true}(h) + 2\epsilon(H_{k^*})$$
Using PAC bound for model selection

- What if we picked the hypothesis using ERM over the union of all spaces $U_k H_k$?

$$
\hat{h} = \arg \min_{h \in H_{1,\ldots,k}} \text{error}_{\text{train}}(h)
$$
What you need to know

- PAC bounds on true error in terms of empirical/training error and complexity of hypothesis space
- Complexity of the classifier depends on number of points that can be classified exactly
 - Finite case – Number of hypothesis
 - Infinite case – VC dimension
- Bias-Variance tradeoff in learning theory
- Empirical and Structural Risk Minimization
- Other bounds – Margin based, Mistake bounds, ...
- But often bounds too loose in practice