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Announcement

* HW 1 is out — Due Sept 26



Your first consulting job

* A billionaire asks you a question:

— He says: | have a coin, if | flip it, what’s the probability it
will fall with the head up?

— You say: Please flip it a few times:

5 s
— You say: The probability is:

— He says: Why??? 3/5
— You say: Because...



Bernoulli distribution

 P(Heads) =0, P(Tails) =1-6

* Flipsarei.i.d.:
— Independent events
— ldentically distributed according to Bernoulli distribution

Choose 0 that maximizes the probability of observed data




Maximum Likelihood Estimation

Choose O that maximizes the probability of observed data

Ovirp = argm@ax P(D | 0)

MLE of probability of head:

éMLE = =3/5 "Frequency of heads"
g —|— o

/ \

Number of heads Number of tails



Maximum Likelihood Estimation

Choose O that maximizes the probability of observed data
Ovirp = arg max  P(D | )

= arg maX H P X; ‘(9) Independent draws

= arg maX H H 1 — 6’ |dentically

i X=H i:X,=T distributed

= arg max OvH (1 — 0)*T

J(0)




Maximum Likelihood Estimation

Choose O that maximizes the probability of observed data

Ovirp = arg m@ax P(D | 0)
= arg max 0% (1 —0)"
J (6)
0J(0) F—
06 0=0nLE




How many flips do | need?

1
ap + ar

OviLE =

Billionaire says: | flipped 3 heads and 2 tails.

You say: 0 = 3/5, | can prove it!

He says: What if | flipped 30 heads and 20 tails?

You say: Same answer, | can prove it!

He says: What’s better?

You say: Hmm... The more the merrier???

He says: Is this why | am paying you the big bucks???
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Slmple bound (Hoeffding’s inequality)

apy
o+ ar

* Forn=oy+o,, and 0,5 =

* Let 0" be the true parameter, for any £>0:

P(6—0%|>e) < 2e2n€



PAC Learning

 PAC: Probably Approximate Correct

* Billionaire says: | want to know the coin parameter 0,
within € = 0.1, with probability at least 1-0 = 0.95.

How many flips?

P(|§—0"|>¢) < 2e2ne

Sample complexity
In(2
_~ In(2/9)
22
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What about prior knowledge?

Billionaire says: Wait, | know that the coin is “close” to
50-50. What can you do for me now?

You say: | can learn it the Bayesian way...

Rather than estimating a single 0, we obtain a
distribution over possible values of 0

Before data After data

=

P(6)

P(0|D)

50-50 0 0* 0
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Bayesian Learning

* Use Bayes rule:

PO | D) =

* Or equivalently:

P(D | 6)P(6)

P(D)

PO | D) « P(D|0)P(H)

posterior

likelihood prior

Bayes, Thomas (1763) An essay
towards solving a problem in the
doctrine of chances. Philosophical
Transactions of the Royal Society of
London, 53:370-418
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Prior distribution

 What about prior?

— Represents expert knowledge (philosophical approach)
— Simple posterior form (engineer’s approach)

* Uninformative priors:

>
— Uniform distribution R

* Conjugate priors: 0
— Closed-form representation of posterior
— P(0) and P(6|D) have the same form
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Conjugate Prior
 P(0) and P(0|D) have the same form
Eg. 1 Coin flip problem

Likelihood is ~ Binomial
P(D[0) = ( )9“!{(1 —0)°T

n
QU
If prior is Beta distribution,
6Pn—1(1 — 9)Pr—1

BB, Br)

Then posterior is Beta distribution
P(0|D) ~ Beta(By + ay, fr + ar)

P(0) = ~ Beta(Bg, Br)

For Binomial, conjugate prior is Beta distribution.
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Beta(Bg, Br)

Beta distribution
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Y
0.8
5
Q 0.6
8
A
04
0.2
0 L L L L
0 0.2 04 0.6 0.8
parameter value
Beta(3,2)
1.5¢
[Ti—-
©
e 1
8
®
o
0.5+
0

0.2 04 0.6 0.8
parameter value

1.6

14
1.2¢

More concentrated as values of 3, B; increase
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Beta conjugate prior

P(@) ~ Beta,(BH, 5T) P((9|D) ~ Beta(BH —|— o, 5T —|— OéT)
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Asn=o,+ 0
increases

As we get more samples, effect of prior is “washed out”
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Conjugate Prior

 P(B) and P(0|D) have the same form

Eg. 2 Dice roll problem (6 outcomes instead of 2) [ W
Likelihood is ~ Multinomial(6 = {6, 6,, ..., 6,}) ..‘,.
n! Q1 nO o k

— 0516052 ...0,.% i
P(D10) allag! . ap! T2 g Za@-:n > 0=

If prior is Dirichlet distribution, =1 =1

[, 6)i? .
PO) = =" ~ Dirichlet(3q,..., 8%)
B(B1, -, By) S

Then posterior is Dirichlet distribution
P(6|D) ~ Dirichlet(81 + a1, ..., 08 + ax)

For Multinomial, conjugate prior is Dirichlet distribution.
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Maximum A Posteriori Estimation

Choose 0 that maximizes a posterior probability
Orjap = arg m@ax P(O| D)
= arg m@ax P(D|0)P(0)

MAP estimate of probability of head:
P(0|D) ~ Beta(By + ang, Br + ar)

ap + By —1 Mode of Beta
ag + By + ap+ By — 2  distribution
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Oprap =




MLE vs. MAP

e Maximum Likelihood estimation (MLE)

Choose value that maximizes the probability of observed data

Orir = arg m@ax P(D|0)

e Maximum a posteriori (MAP) estimation

Choose value that is most probable given observed data and
prior belief
Oy ap = arg mgx P(6|D)

= arg meax P(DI|0)P(0)

When is MAP same as MLE?
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MLE vs. MAP

021
ap + ar

OvLe =

What if we toss the coin too few times?
* You say: Probability next toss isa head =0
* Billionaire says: You're fired! ..with prob 1 ©

ag+ By —1
ag + By +ar+ Br—2

Orpiap =

* Beta prior equivalent to extra coin flips
* Asn — 1, prior is “forgotten”
* But, for small sample size, prior is important! 20



Bayesians vs. Frequentists

You are no
good when
sample is

You give a
different
answer for
different
priors
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What about continuous variables?

* Billionaire says: If | am measuring a continuous
variable, what can you do for me?

* You say: Let me tell you about Gaussians...

1 (@2
P(x | p,o0) = e 20°  =Nwo?)

o\ 2T
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T  u=0



Gaussian distribution

/\

T O0—0—0000000—0—20
Data, D = 4 5 6 7 8 9 Sleep hrs

* Parameters: w— mean, 0% - variance

* Sleep hrs are i.i.d.:
— Independent events

— ldentically distributed according to Gaussian
distribution
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Properties of Gaussians

e affine transformation (multiplying by scalar
and adding a constant)

- X"~ N(MIOZ)
—Y=aX+b!Y~N(au+b,a’c?)

* Sum of Gaussians
— X" N(MXIOZX)
—-Y" N(MY'OZY)
—7=X+Y!Z~ N(Mx"’MY/ 02X+GZY)
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MLE for Gaussian mean and variance

Choose 0= (u,0?) that maximizes the probability of observed data

Ovire = argm@ax P(D | 0)

mn
= arg m@ax H P(X;|0) Independent draws

1=1
— 1 (x,_u)?/202> 'dentically
= arg max — e i .
5 6 HQO-Q distributed
=1
1 n ) 2 2
— arg Imax —26_21::1()(%—#) /20

0=(11,02) 20
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MLE for Gaussian mean and variance

1 mn
AVLE = — Y X
"i=1
D 1 & N2
OMLE — ;Z(%‘—.W
i=1

Note: MLE for the variance of a Gaussian is biased

— Expected result of estimation is not true parameter!
— Unbiased variance estimator:

1 n
~2 _ ~\2
Tunbiased — o Z (xz — ,UJ)
1=1
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MAP for Gaussian mean and variance

* Conjugate priors
— Mean: Gaussian prior
— Variance: Wishart Distribution

* Prior for mean:

1 —(u=1)?
P(u|n,A) = e 22 =NMn,M)

AV 27
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MAP for Gaussian Mean

1 n
MMLE — _Z £Lg

mn.__

1=1

1 . Ui
~ g2 ?:1 xz_l_ﬁ (Assuming known
MMAP — n , 1 variance o?)

g2 1 )2

Independent of o7 if
A =02/s

MAP under Gauss-Wishart prior - Recitation
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What you should know...

e Learning parametric distributions: form known,
parameters unknown

— Bernoulli (0, probability of flip)

— Gaussian (u, mean and o7, variance)
* MLE

*+ MAP
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