Learning Distributions (Parametric Approach)

Aarti Singh

Machine Learning 10-701/15-781 Sept 12, 2012

Announcement

HW 1 is out – Due Sept 26

Your first consulting job

- A billionaire asks you a question:
 - He says: I have a coin, if I flip it, what's the probability it will fall with the head up?
 - You say: Please flip it a few times:

- You say: The probability is:
- He says: Why???
- You say: Because...

Bernoulli distribution

Data,
$$D=$$

$$D=\{X_i\}_{i=1}^n,\ X_i\in\{\mathrm{H},\mathrm{T}\}$$

- $P(Heads) = \theta$, $P(Tails) = 1-\theta$
- Flips are i.i.d.:
 - Independent events
 - Identically distributed according to Bernoulli distribution

Choose θ that maximizes the probability of observed data

Maximum Likelihood Estimation

Choose θ that maximizes the probability of observed data

$$\widehat{\theta}_{MLE} = \arg \max_{\theta} P(D \mid \theta)$$

MLE of probability of head:

$$\hat{\theta}_{MLE} = \frac{\alpha_H}{\alpha_H + \alpha_T}$$
 = 3/5 "Frequency of heads"

Number of heads Number of tails

Maximum Likelihood Estimation

Choose θ that maximizes the probability of observed data

$$\begin{split} \widehat{\theta}_{MLE} &= \arg\max_{\theta} \ P(D \mid \theta) \\ &= \arg\max_{\theta} \prod_{i=1}^{n} P(X_i | \theta) \quad \text{Independent draws} \\ &= \arg\max_{\theta} \ \prod_{i:X_i = H} \theta \prod_{i:X_i = T} (1 - \theta) \quad \text{Identically distributed} \\ &= \arg\max_{\theta} \ \theta^{\alpha_H} (1 - \theta)^{\alpha_T} \\ \hline J(\theta) \end{split}$$

Maximum Likelihood Estimation

Choose θ that maximizes the probability of observed data

$$\widehat{\theta}_{MLE} = \arg\max_{\theta} \ P(D \mid \theta)$$

$$= \arg\max_{\theta} \ \underline{\theta}^{\alpha_H} (1 - \theta)^{\alpha_T}$$
 $J(\theta)$

$$\frac{\partial J(\theta)}{\partial \theta}$$

$$\Big|_{\theta = \hat{\theta}_{\text{MLE}}} = 0$$

$$\alpha_H(1-\theta) - \alpha_T \theta|_{\theta=\hat{\theta}_{\text{MLE}}} = 0$$

$$\widehat{\theta}_{MLE} = \frac{\alpha_H}{\alpha_H + \alpha_T}$$

How many flips do I need?

$$\widehat{\theta}_{MLE} = \frac{\alpha_H}{\alpha_H + \alpha_T}$$

- Billionaire says: I flipped 3 heads and 2 tails.
- You say: $\theta = 3/5$, I can prove it!
- He says: What if I flipped 30 heads and 20 tails?
- You say: Same answer, I can prove it!
- He says: What's better?
- You say: Hmm... The more the merrier???
- He says: Is this why I am paying you the big bucks???

Simple bound (Hoeffding's inequality)

• For
$$n = \alpha_H + \alpha_T$$
, and $\widehat{\theta}_{MLE} = \frac{\alpha_H}{\alpha_H + \alpha_T}$

• Let θ^* be the true parameter, for any ϵ >0:

$$P(||\widehat{\theta} - \theta^*| \ge \epsilon) \le 2e^{-2n\epsilon^2}$$

PAC Learning

- PAC: Probably Approximate Correct
- Billionaire says: I want to know the coin parameter θ , within ϵ = 0.1, with probability at least 1- δ = 0.95. How many flips?

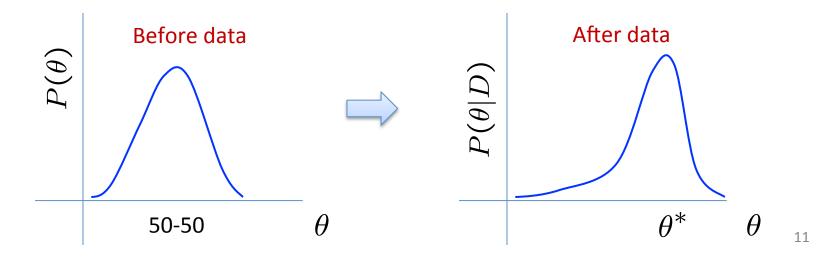
$$P(||\widehat{\theta} - \theta^*| \ge \epsilon) \le 2e^{-2n\epsilon^2}$$

Sample complexity

$$n \ge \frac{\ln(2/\delta)}{2\epsilon^2}$$

What about prior knowledge?

- Billionaire says: Wait, I know that the coin is "close" to 50-50. What can you do for me now?
- You say: I can learn it the Bayesian way...
- Rather than estimating a single θ , we obtain a distribution over possible values of θ



Bayesian Learning

Use Bayes rule:

$$P(\theta \mid \mathcal{D}) = \frac{P(\mathcal{D} \mid \theta)P(\theta)}{P(\mathcal{D})}$$

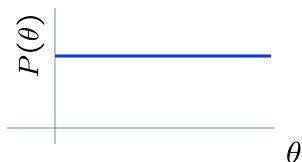
Or equivalently:

$$P(\theta \mid \mathcal{D}) \propto P(\mathcal{D} \mid \theta) P(\theta)$$
 posterior likelihood prior

Bayes, Thomas (1763) An essay towards solving a problem in the doctrine of chances. *Philosophical Transactions of the Royal Society of London*, 53:370-418

Prior distribution

- What about prior?
 - Represents expert knowledge (philosophical approach)
 - Simple posterior form (engineer's approach)
- Uninformative priors:
 - Uniform distribution



- Conjugate priors:
 - Closed-form representation of posterior
 - $P(\theta)$ and $P(\theta | D)$ have the same form

Conjugate Prior

• $P(\theta)$ and $P(\theta|D)$ have the same form

Eg. 1 Coin flip problem

Likelihood is ~ Binomial

$$P(\mathcal{D} \mid \theta) = \binom{n}{\alpha_H} \theta^{\alpha_H} (1 - \theta)^{\alpha_T}$$

If prior is Beta distribution,

$$P(\theta) = \frac{\theta^{\beta_H - 1} (1 - \theta)^{\beta_T - 1}}{B(\beta_H, \beta_T)} \sim Beta(\beta_H, \beta_T)$$

Then posterior is Beta distribution

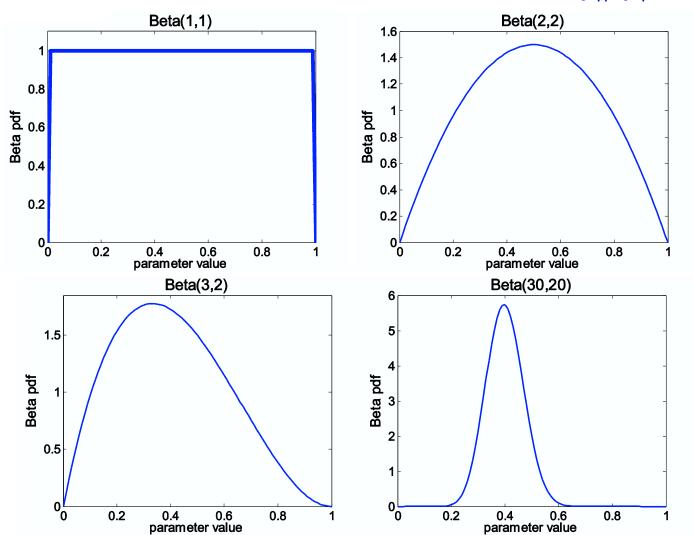
$$P(\theta|D) \sim Beta(\beta_H + \alpha_H, \beta_T + \alpha_T)$$

For Binomial, conjugate prior is Beta distribution.

Beta distribution

 $Beta(\beta_H, \beta_T)$

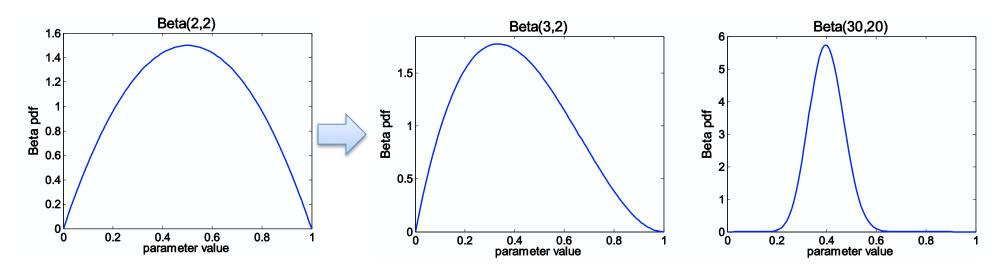
More concentrated as values of β_H , β_T increase



Beta conjugate prior

$$P(\theta) \sim Beta(\beta_H, \beta_T)$$

$$P(\theta) \sim Beta(\beta_H, \beta_T)$$
 $P(\theta|D) \sim Beta(\beta_H + \alpha_H, \beta_T + \alpha_T)$

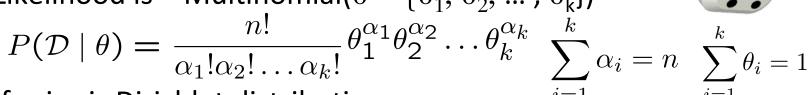


As
$$n = \alpha_H + \alpha_T$$
 increases

As we get more samples, effect of prior is "washed out"

Conjugate Prior

- $P(\theta)$ and $P(\theta \mid D)$ have the same form
- Eg. 2 Dice roll problem (6 outcomes instead of 2)



If prior is Dirichlet distribution,

$$P(\theta) = \frac{\prod_{i=1}^{k} \theta_i^{\beta_i - 1}}{B(\beta_1, \dots, \beta_k)} \sim \text{Dirichlet}(\beta_1, \dots, \beta_k)$$

Then posterior is Dirichlet distribution

$$P(\theta|D) \sim \text{Dirichlet}(\beta_1 + \alpha_1, \dots, \beta_k + \alpha_k)$$

For Multinomial, conjugate prior is Dirichlet distribution.

Maximum A Posteriori Estimation

Choose θ that maximizes a posterior probability

$$\widehat{\theta}_{MAP}$$
 = $\underset{\theta}{\operatorname{arg\,max}}$ $P(\theta \mid D)$
= $\underset{\theta}{\operatorname{arg\,max}}$ $P(D \mid \theta)P(\theta)$

MAP estimate of probability of head:

$$P(\theta|D) \sim Beta(\beta_H + \alpha_H, \beta_T + \alpha_T)$$

$$\widehat{\theta}_{MAP} = rac{lpha_H + eta_H - 1}{lpha_H + eta_H + lpha_T + eta_T - 2}$$
 Mode of Beta distribution

MLE vs. MAP

Maximum Likelihood estimation (MLE)

Choose value that maximizes the probability of observed data

$$\widehat{\theta}_{MLE} = \arg\max_{\theta} P(D|\theta)$$

Maximum a posteriori (MAP) estimation
 Choose value that is most probable given observed data and prior belief

$$\widehat{\theta}_{MAP} = \arg\max_{\theta} P(\theta|D)$$

$$= \arg\max_{\theta} P(D|\theta)P(\theta)$$

When is MAP same as MLE?

MLE vs. MAP

$$\widehat{\theta}_{MLE} = \frac{\alpha_H}{\alpha_H + \alpha_T}$$

What if we toss the coin too few times?

- You say: Probability next toss is a head = 0
- Billionaire says: You're fired! ...with prob 1 ©

$$\widehat{\theta}_{MAP} = \frac{\alpha_H + \beta_H - 1}{\alpha_H + \beta_H + \alpha_T + \beta_T - 2}$$

- Beta prior equivalent to extra coin flips
- As $n \rightarrow 1$, prior is "forgotten"
- But, for small sample size, prior is important!

Bayesians vs. Frequentists

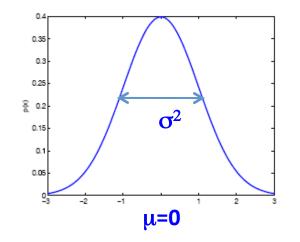
You are no good when sample is small

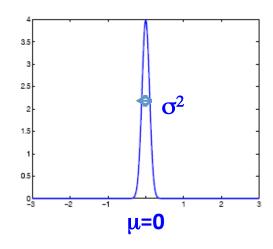
You give a different answer for different priors

What about continuous variables?

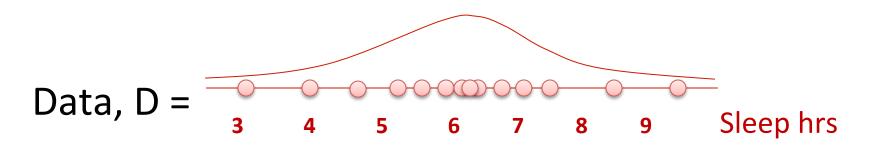
- Billionaire says: If I am measuring a continuous variable, what can you do for me?
- You say: Let me tell you about Gaussians...

$$P(x \mid \mu, \sigma) = \frac{1}{\sigma \sqrt{2\pi}} e^{\frac{-(x-\mu)^2}{2\sigma^2}} = N(\mu, \sigma^2)$$





Gaussian distribution



- Parameters: μ mean, σ^2 variance
- Sleep hrs are i.i.d.:
 - Independent events
 - Identically distributed according to Gaussian distribution

Properties of Gaussians

 affine transformation (multiplying by scalar and adding a constant)

$$-X \sim N(\mu,\sigma^2)$$

$$-Y = aX + b! Y \sim N(a\mu + b, a^2\sigma^2)$$

Sum of Gaussians

$$-X \sim N(\mu_x, \sigma_x^2)$$

$$-Y \sim N(\mu_{\rm v},\sigma^2_{\rm v})$$

$$-Z = X+Y ! Z \sim N(\mu_X + \mu_Y, \sigma^2_X + \sigma^2_Y)$$

MLE for Gaussian mean and variance

Choose $\theta = (\mu, \sigma^2)$ that maximizes the probability of observed data

$$\begin{split} \widehat{\theta}_{MLE} &= \arg\max_{\theta} \ P(D \mid \theta) \\ &= \arg\max_{\theta} \prod_{i=1}^n P(X_i | \theta) \quad \text{Independent draws} \\ &= \arg\max_{\theta} \prod_{i=1}^n \frac{1}{2\sigma^2} e^{-(X_i - \mu)^2/2\sigma^2} \quad \text{Identically distributed} \\ &= \arg\max_{\theta = (\mu, \sigma^2)} \frac{1}{2\sigma^2} e^{-\sum_{i=1}^n (X_i - \mu)^2/2\sigma^2} \end{split}$$

MLE for Gaussian mean and variance

$$\widehat{\mu}_{MLE} = \frac{1}{n} \sum_{i=1}^{n} x_i$$

$$\widehat{\sigma}_{MLE}^2 = \frac{1}{n} \sum_{i=1}^n (x_i - \widehat{\mu})^2$$

Note: MLE for the variance of a Gaussian is biased

- Expected result of estimation is **not** true parameter!
- Unbiased variance estimator:

$$\widehat{\sigma}_{unbiased}^2 = \frac{1}{n-1} \sum_{i=1}^n (x_i - \widehat{\mu})^2$$

MAP for Gaussian mean and variance

- Conjugate priors
 - Mean: Gaussian prior
 - Variance: Wishart Distribution

Prior for mean:

$$P(\mu \mid \eta, \lambda) = \frac{1}{\lambda \sqrt{2\pi}} e^{\frac{-(\mu - \eta)^2}{2\lambda^2}} = N(\eta, \lambda^2)$$

MAP for Gaussian Mean

$$\widehat{\mu}_{MLE} = \frac{1}{n} \sum_{i=1}^{n} x_i$$

$$\widehat{\mu}_{MAP} = \frac{\frac{1}{\sigma^2} \sum_{i=1}^{n} x_i + \frac{\eta}{\lambda^2}}{\frac{n}{\sigma^2} + \frac{1}{\lambda^2}} \quad \text{(Assuming known variance } \sigma^2\text{)}$$

Independent of σ^2 if $\lambda^2 = \sigma^2/s$

MAP under Gauss-Wishart prior - Recitation

What you should know...

- Learning parametric distributions: form known, parameters unknown
 - Bernoulli (θ , probability of flip)
 - Gaussian (μ , mean and σ^2 , variance)
- MLE
- MAP