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True vs. Empirical Risk

True Risk: Target performance measure

Classification — Probability of misclassification P(f(X) #Y)

Regression — Mean Squared Error E[(f(X) — Y)?]

Also known as “Generalization Error” — performance on a random test point (X,Y)

Empirical Risk: Performance on training data

i)
Classification — Proportion of misclassified examples - Z ].f(Xi)#Y;:

mn
Regression — Average Squared Error l Z (f(X%) — YE)Q

* Slide from Aarti Singh



Overfitting

* |f we allow very complicated predictors, we
could overfit the training data
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Model Space with Increasing Complexity

* Nearest-Neighbor classifiers with varying
neighborhood sizes k=1,2,3,...
— Small neighborhood => Higher complexity

* Decision Trees with depth k or with k leaves
— Higher depth/ More # leaves => Higher complexity

* Regression with polynomials of order k=0, 1,
2, ...

— Higher degree => Higher complexity



Effect of Model Complexity
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Behavior of True Risk

Want predictor based on training data fn to be as good as optimal predictor f*

Excess Risk E [R(f,, )] ~ R = (E[R('f,,)] L };;;12(}')) + (fi;_lgr R(f) - R‘)
est inmt:.m error appn_»xim:;tiun error
finite sample size Due to r'_ar.ldomness Due to restriction
+ noise of fraining data of model class
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Behavior of True Risk

B[R] - R = (E[R(ﬁ,)]— fig;mf>)+ (fig;mn—ﬂ*)
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Preliminaries

* Hypothesis Class H

— We define the hypothesis class H used by a
learning algorithm to be the set of all classifiers
considered by it

* Linear classification: classifier whose decision boundary
is linear

* Neural networks: classifier representable by some NN
architecture (remember HW 1 question on NN?)

 Empirical Risk Minimization

-~ heH

1 — . . . |
c(h) = — 1 h(z® 3y h = argmin c(h
() m; {h(z™) #y™} | (1)



Preliminaries

Lemma. (The union bound). Let Ay, A, ..., Ax be k different events (that
may not be independent). Then

P(A;U---UAg) < P(A)) +...+ P(Ay).

Lemma. (Hoeffding inequality) Let Z;,..., Z,, be m independent and iden-
tically distributed (iid) random variables drawn from a Bernoulli(¢) distri-

bution. Le., P(Z; =1)=¢, and P(Z; =0) =1 —¢. Let o = (1/m)> 1", Z;
be the mean of these random variables, and let any v > 0 be fixed. Then

P(l¢— 3| > 7) < 2exp(=297m)

Using just these two lemmas, we will be able to prove some of the
deepest and most important results in learning theory



Finite Hypothesis Space

Theorem. Let |H| =k, and let any m, ¢ be fixed. Then with probability at
least 1 — 0, we have that

- 1 2k
c(h) < ine(h 24/ — log —.
(h) < (1}}&1}11} (?)) i 2m Ve 0



Infinite Hypothesis Space

* Many hypothesis class, including any parameterized by real
numbers (like linear classification) actually contain an infinite
number of functions

Theorem. Let ‘H be given, and let d = VC('H). Then with probability at
least 1 — o, we have that for all h € 'H,

(h g h + () ( —1{)‘- E —1{}1_ l)
m 2 m 0

* Recall for finite hypothesis space

=(h) < -(h) | +2 L g 28
e(h) < 1}.}&1}11} 1) 2 0g

2m )

— VC(H) is like a substitute for k=|H|



Vapnik-Chervonenkis Dimension

* A measure of the “power” or the “complexity”
of the hypothesis space
— Higher VC dimension implies a more “expressive”
hypothesis space

* Shattering: A set of N points is shattered if
there exists a hypothesis that is consistent
with every classification of the N points



VC Dimension

 Def: The maximum number of data points that
can be “shattered”

If VC Dimension = d then:

1. There exists a set of d points that can be
shattered

2. There does not exist a set of d+1 points that
can be shattered. (or all sets of d+1 points
cannot be shattered)




VC Dimension of Linear Classifier

o d>=27

— Yes: find a set of data points that can be shattered
e d>=37

— Yes
o d>=47

— No: need to show there does not exist any data
set with 4 points that can be shattered



VC Dimension: Key

If VC Dimension = d then:

1. There exists a set of d points that can be
shattered

2. There does not exist a set of d+1 points that
can be shattered. (or all sets of d+1 points
cannot be shattered)



Thank you



