Computational Learning Theory and Model Selection

Bin Zhao

binzhao@andrew.cmu.edu

Outline

- True vs. Empirical Risk
- Learning Theory
 - The case of finite H
 - The case of infinite H: VC dimension

Outline

- True vs. Empirical Risk
- Learning Theory
 - The case of finite H
 - The case of infinite H: VC dimension

True vs. Empirical Risk

True Risk: Target performance measure

Classification – Probability of misclassification $P(f(X) \neq Y)$

Regression – Mean Squared Error $\mathbb{E}[(f(X) - Y)^2]$

Also known as "Generalization Error" – performance on a random test point (X,Y)

Empirical Risk: Performance on training data

Classification – Proportion of misclassified examples $\frac{1}{n}\sum_{i=1}^n 1_{f(X_i) \neq Y_i}$

Regression – Average Squared Error $\frac{1}{n}\sum_{i=1}^n (f(X_i)-Y_i)^2$

Overfitting

 If we allow very complicated predictors, we could overfit the training data

Model Space with Increasing Complexity

- Nearest-Neighbor classifiers with varying neighborhood sizes k = 1,2,3,...
 - Small neighborhood => Higher complexity
- Decision Trees with depth k or with k leaves
 - Higher depth/ More # leaves => Higher complexity
- Regression with polynomials of order k = 0, 1,
 2, ...
 - Higher degree => Higher complexity

Effect of Model Complexity

Behavior of True Risk

Want predictor based on training data \widehat{f}_n to be as good as optimal predictor f^*

Excess Risk
$$E\left[R(\widehat{f_n})\right] - R^* = \underbrace{\left(E[R(\widehat{f_n})] - \inf_{f \in \mathcal{F}} R(f)\right)}_{\text{estimation error}} + \underbrace{\left(\inf_{f \in \mathcal{F}} R(f) - R^*\right)}_{\text{approximation error}} + \underbrace{\left(\inf_{f \in \mathcal{F}} R(f) - R^*\right)}_{\text{of training data}} + \underbrace{\left(\inf_{f \in \mathcal{F}} R(f) - R^*\right)}_{\text{approximation error}} + \underbrace{\left(\inf_{f \in \mathcal{F}} R(f) - R^*\right)}_{\text{of model class}}$$

Behavior of True Risk

$$E\left[R(\widehat{f}_n)\right] - R^* = \underbrace{\left(E[R(\widehat{f}_n)] - \inf_{f \in \mathcal{F}} R(f)\right)}_{\text{estimation error}} + \underbrace{\left(\inf_{f \in \mathcal{F}} R(f) - R^*\right)}_{\text{approximation error}}$$

Outline

- True vs. Empirical Risk
- Learning Theory
 - The case of finite H
 - The case of infinite H: VC dimension

Preliminaries

- Hypothesis Class H
 - We define the hypothesis class H used by a learning algorithm to be the set of all classifiers considered by it
 - Linear classification: classifier whose decision boundary is linear
 - Neural networks: classifier representable by some NN architecture (remember HW 1 question on NN?)
- Empirical Risk Minimization

$$\hat{\varepsilon}(h) = \frac{1}{m} \sum_{i=1}^{m} 1\{h(x^{(i)}) \neq y^{(i)}\} \qquad \hat{h} = \arg\min_{h \in \mathcal{H}} \hat{\varepsilon}(h)$$

Preliminaries

Lemma. (The union bound). Let A_1, A_2, \ldots, A_k be k different events (that may not be independent). Then

$$P(A_1 \cup \cdots \cup A_k) \le P(A_1) + \ldots + P(A_k).$$

Lemma. (Hoeffding inequality) Let Z_1, \ldots, Z_m be m independent and identically distributed (iid) random variables drawn from a Bernoulli(ϕ) distribution. I.e., $P(Z_i = 1) = \phi$, and $P(Z_i = 0) = 1 - \phi$. Let $\hat{\phi} = (1/m) \sum_{i=1}^m Z_i$ be the mean of these random variables, and let any $\gamma > 0$ be fixed. Then

$$P(|\phi - \hat{\phi}| > \gamma) \le 2\exp(-2\gamma^2 m)$$

Using just these two lemmas, we will be able to prove some of the deepest and most important results in learning theory

Finite Hypothesis Space

Theorem. Let $|\mathcal{H}| = k$, and let any m, δ be fixed. Then with probability at least $1 - \delta$, we have that

$$\varepsilon(\hat{h}) \le \left(\min_{h \in \mathcal{H}} \varepsilon(h)\right) + 2\sqrt{\frac{1}{2m}\log\frac{2k}{\delta}}.$$

Infinite Hypothesis Space

 Many hypothesis class, including any parameterized by real numbers (like linear classification) actually contain an infinite number of functions

Theorem. Let \mathcal{H} be given, and let $d = VC(\mathcal{H})$. Then with probability at least $1 - \delta$, we have that for all $h \in \mathcal{H}$,

$$\varepsilon(\hat{h}) \le \varepsilon(h^*) + O\left(\sqrt{\frac{d}{m}\log\frac{m}{d} + \frac{1}{m}\log\frac{1}{\delta}}\right)$$

Recall for finite hypothesis space

$$\varepsilon(\hat{h}) \le \left(\min_{h \in \mathcal{H}} \varepsilon(h)\right) + 2\sqrt{\frac{1}{2m}\log\frac{2k}{\delta}}$$

VC(H) is like a substitute for k=|H|

Vapnik-Chervonenkis Dimension

- A measure of the "power" or the "complexity" of the hypothesis space
 - Higher VC dimension implies a more "expressive" hypothesis space
- **Shattering**: A set of N points is shattered if there exists a hypothesis that is consistent with **every** classification of the N points

VC Dimension

 Def: The maximum number of data points that can be "shattered"

If VC Dimension = d then:

- There exists a set of d points that can be shattered
- There does not exist a set of d+1 points that can be shattered. (or all sets of d+1 points cannot be shattered)

VC Dimension of Linear Classifier

- $d \ge 2$?
 - Yes: find a set of data points that can be shattered
- d>=3?
 - Yes
- d > = 4?
 - No: need to show there does not exist any data set with 4 points that can be shattered

VC Dimension: Key

If VC Dimension = d then:

- There exists a set of d points that can be shattered
- There does not exist a set of d+1 points that can be shattered. (or all sets of d+1 points cannot be shattered)

Thank you