Midterm Review

Nan Li

2011.10.24
Things to Think about…

• How to train it?
 • What is the objective function?
 • Which algorithm could be used?
 • E.g. Gradient descent, EM
 • Optimality?

• What are the assumptions?
 • Linear boundary?

• What are the pros and cons comparing with other algorithms?
Decision Tree

- Input: a vector of attributes
- Output: a class, e.g. cheating or not
- Express any function of the input variables
- Overfitting
- Prefer compact tree
- Learning:
 - Greedily select the most informative attribute
 - Information gain

\[
GAIN_{split} = \text{Entropy}(p) - \left(\frac{1}{k} \sum_{i=1}^{k} \frac{n_i}{n} \text{Entropy}(i) \right)
\]

Parent Node, p is split into k partitions; n_i is number of records in partition i
K-Nearest Neighbour

- Learning is just storing all training examples
- Bayes classifier is the best classifier which minimizes the probability of classification error
- The error-rate of 1NN is less than twice the Bayes error – Error rate of classifier knowing model of generated data
 - What if the density estimates converge to the true densities?
Naïve Bayes

- Generative
 - Model $P(X, Y)$
- $P(Y|X) = P(X|Y)P(Y)/P(X)$
- Conditional Independence Assumption
 - $P(X_1, X_2 \ldots X_n|Y) = P(X_1|Y)P(X_2|Y)\ldots P(X_n|Y)$
- Why do we want to make this assumption?
- Training:
 - MLE
- Connection to logistic regression
Logistic Regression

- Discriminative
 - Directly model $P(Y|X)$

The condition distribution: a Bernoulli

$$p(y | x) = \mu(x)^y (1 - \mu(x))^{1-y}$$

where μ is a logistic function

$$\mu(x) = \frac{1}{1 + e^{-\theta^T x}}$$

- Training:
 - MCLE
 - Gradient ascent
 - Concave -> Global optimum

- Linear decision boundary
Naïve Bayes vs Logistic Regression

- When model assumptions correct
 - NB = LR

- When model assumptions incorrect
 - LR is less biased

- Convergence rate
 - NB order log m (m = # attributes in X)
 - LR order m
Linear Regression

- Assume that Y (target) is a linear function of X (features)
 \[\hat{y} = \theta_0 + \theta_1 x^1 + \theta_2 x^2 + \ldots + \theta_k x^k \]
- Can be with non-linear basis functions

- Training
 - Least Mean Square (LMS)
 \[J(\theta) = \frac{1}{2} \sum_{i=1}^{n} (x_i^T \theta - y_i)^2 \]
 1. Gradient descent, global optimum
 2. Set derivative to zero
 \[\theta^* = (X^T X)^{-1} X^T \bar{y} \]
- Equivalence of LMS and MLE
Ridge Regression vs Lasso

$$\min_{\beta} (X\beta - Y)^T (X\beta - Y) + \lambda \text{pen}(\beta) = \min_{\beta} J(\beta) + \lambda \text{pen}(\beta)$$

Prior belief that β is Gaussian with zero-mean biases solution to “small” β

Ridge Regression:
$$\text{pen}(\beta) = \|\beta\|_2^2$$

Prior belief that β is Laplace with zero-mean biases solution to “small” β

Lasso:
$$\text{pen}(\beta) = \|\beta\|_1$$

βs with constant $J(\beta)$ (level sets of $J(\beta)$)

βs with constant l_2 norm

βs with constant l_1 norm

Lasso (l_1 penalty) results in sparse solutions – vector with more zero coordinates
Good for high-dimensional problems – don’t have to store all coordinates!
Neural Networks

- Perceptron
 - Training: Gradient descent
 - Decision boundary?
 - Linear if using sigmoid.
 - Not true in general.

- Neural Networks
 - Highly expressive
 - Training:
 - Backpropagation
 - Minimizing sum of squared training errors
 - May stuck in local optimum
Learning Theory

- A lot of definitions...
- And theorems...

- **Definition:** The *Vapnik-Chervonenkis dimension*, \(VC(H) \), of hypothesis space \(H \) defined over instance space \(X \) is the size of the largest finite subset of \(X \) shattered by \(H \). If arbitrarily large finite sets of \(X \) can be shattered by \(H \), then \(VC(H) = \infty \).

Definition:
Given a set \(S = \{ x(1), \ldots, x(d) \} \) of points \(x(i) \in X \), we say that \(H \) shatters \(S \) if \(H \) can realize any labeling on \(S \).
Overfitting and Model Selection

- Training Error vs Testing Error
- Cross Validation
 - Enough to run it once?
- Regularization
 - L1, L2
- Feature Selection
 - Filter: direct feature ranking
 - Wrapper: determine feature based on performance under the learning algorithm
 - Simultaneous learning and feature selection
Clustering

- Unsupervised learning
- Various distance metrics
 - E.g. Euclidean distance, Manhattan distance ...
- Hierarchical clustering
 - Bottom-up
 - Top-down
- K-Means
 - Known to converge
 - Sensitive to initial points
Expectation
Maximization

- Why do we need it?
 - Used when there are hidden variables

- Complete log likelihood
 \[\ell_c(\theta; x, z) \]

- Incomplete log likelihood
 \[\ell_c(\theta; x) \]

- Lower bound
 \[F(q, \theta) = \sum_z q(z | x) \log \frac{p(x, z | \theta)}{q(z | x)} \leq \ell(\theta; x) \]

- Algorithm (May refer to the Bishop book for details)
 - E-step: filling in the latent variables using the best guess
 - M-step: updating the parameters based on this guess

- Local optimum

- A soft version of K-means
Hidden Markov Model

- Assumption
 - How many parameters needed?

\[
p(x, y) = p(x_1 \ldots x_T, y_1, \ldots, y_T) \quad \text{(Joint probability)}
\]
\[
= p(y_1) p(x_1 | y_1) p(y_2 | y_1) p(x_2 | y_2) \ldots p(y_T | y_{T-1}) p(x_T | y_T)
\]
\[
= p(y_1) P(y_2 | y_1) \ldots p(y_T | y_{T-1}) \times p(x_1 | y_1) p(x_2 | y_2) \ldots p(x_T | y_T)
\]
HMM

- **Forward**
 \[\alpha(y_t^k = 1) = \alpha_t^k = P(x_1, \ldots, x_t, y_t^k = 1) \]
 \[\alpha_t^k = p(x_t | y_t^k = 1) \sum_i \alpha_{t-1}^i a_{i,k} \]

- **Backward**
 \[\beta_t^k = P(x_{t+1}, \ldots, x_T | y_t^k = 1) \]
 \[\beta_t^k = \sum_i a_{k,i} p(x_{t+1} | y_{t+1}^i = 1) \beta_{t+1}^i \]

- **Viterbi**
 \[V_t^k = \max_{\{y_1, \ldots, y_{t-1}\}} P(x_1, \ldots, x_{t-1}, y_1, \ldots, y_{t-1}, x_t, y_t^k = 1) \]
 \[V_t^k = p(x_t | y_t^k = 1) \max_i a_{i,k} V_{t-1}^i \]

- **Learning**
 - Baum-Welch (EM)
 - Please refer to the paper if you are interested in knowing the details
Good Luck 😊