
Chapter 6 

NONPARAMETRIC DENSITY ESTIMATION 

So far we have been discussing the estimation of parameters. Thus, if 
we can assume we have a density function that can be characterized by a set of 
parameters, we can design a classifier using estimates of the parameters. 
Unfortunately, we often cannot assume a parametric form for the density func- 
tion, and in order to apply the likelihood ratio test we somehow have to esti- 
mate the density functions using an unstructured approach. This type of 
approach is called nonparametric estimation, while the former is called 
parametric estimation. Since, in nonparametric approaches, the density func- 
tion is estimated locally by a small number of neighboring samples, the esti- 
mate is far less reliable with larger bias and variance than the parametric coun- 
terpart. 

There are two kinds of nonparametric estimation techniques available: 
one i s  called the Par-zen density estimate and the other is the k-nearest neigh- 
bor- densiry estimate. They are fundamentally very similar, but exhibit some 
different statistical properties. Both are discussed in this chapter. 

It is extremely difficult to obtain an accurate density estimate non- 
parametrically, particularly in high-dimensional spaces. However, our goal 
here is not to get an accurate estimate. Our goal is, by using these estimates, 
to design a classifier and evaluate its performance. For this reason, the accu- 
racy of the estimate is not necessarily a crucial issue. Classification and 
performance evaluation will be discussed in Chapter 7. The intention of this 
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chapter is to make the reader familiar with the fundamental mathematical pro- 
perties related to nonparametric density estimation in preparation for the 
material presented in Chapter 7. 

6.1 Parzen Density Estimate 

Parzen Density Estimate 

In order to estimate the value of a density function at a point X, we may 
set up a small local region around X ,  L (X). Then, the probability coverage (or 
probability mass) of L(X) may be approximated by p(X)v where v is the 
volume of L(X). This probability may be estimated by drawing a large 
number of samples, N ,  from p(X),  counting the number of samples, k ,  falling 
in L (X), and computing k / N .  Equating these two probabilities, we may obtain 
an estimate of the density function as 

n n k(X) or p ( X ) =  - . k(X) p(X)v = - 
N Nv 

Note that, with a fixed v, k is a random variable and is dependent on X. A 
fixed v does not imply the same v throughout the entire space, and vv could still 
vary with X. However, v is a preset value and is not a random variable. 

Kernel expression: The estimate of (6.1) has another interpretation. 
Suppose that 3 samples, X3, X,, and X,,  are found in L(X) as shown in Fig. 
6-1. With I' and N given, i ( X )  becomes 3/Nv. On the other hand, if we set up 
a uniform kernel function, IC(.), with volume v and height l/v around all exist- 
ing samples, the average of the values of these kernel functions at X is also 
3/Nv. That is, [ 1-41 

n 

(6.2) 

As seen in Fig. 6-1, only the kernel functions around the 3 samples, 
X3,  X4, and X,,  contribute to the summation of (6.2). 

Once (6.2) is adopted, the shape of the kernel function could be selected 
more freely, under the condition K(X) dX = 1 .  For one-dimensional cases, 
we may seek optimality and select a complex shape. However, in a high- 
dimensional space, because of its complexity, the practical selection of the ker- 

l N  
N ; = I  

p (x )  = - K(X - x;) . 
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Fig. 6-1 Parzen kernel density estimate. 

ne1 function is very limited to either a normal or uniform kernel. In this book, 
we will use the following kernel which includes both normal and uniform ker- 
nels as special cases: 

where r(.) is the gamma function, and m is a parameter determining the shape 
of the kernel. It may be verified that, for any value of m, the covariance matrix 
of the kernel density (6.3) is r2A.  The parameter rn determines the rate at 
which the kernel function drops off. For m = 1, (6.3) reduces to a simple nor- 
mal kernel. As m becomes large, (6.3) approaches a uniform (hyperelliptical) 
kernel, always with a smooth roll-off. The matrix A determines the shape of 
the hyperellipsoid, and I' controls the size or volume of the kernel. Other 
coefficients are selected to satisfy the two conditions mentioned previously: 
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j ~ ( x ) d X  = 1 and Z, = r’A where C, is the covariance matrix of K(X). 

Convolution expression: Equation (6.2) can be rewritten in convolution 
form as 

where p,T is an impulsive density function with impulses at the locations of 
existing N samples. 

That is, the estimated density p(X) is obtained by feeding p,(X) through a 
linear (noncausal) filter whose impulse response is given by K(X). Therefore, 
p(X) is a smoothed version of p,(X). 

n 

Moments of p(X): The first and second order moments of (6.4) can be 
n 

easily computed. First, let us compute the expected value of p,(X) as 

(6.6) 

That is, p,(X) is an unbiased estimate of p ( X ) .  Then, the expected value of 
p(X) of (6.4) may be computed as 

I N  l N  
N,=I  N ;=, 

E(P,(X)J = -Zj6(X-Z)P(Z)dZ = -ZP(X)  = p ( X ) .  

Also, 
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Therefore, the variance of p(X) is 

Approximations of moments: In order to approximate the moments of 
p ( X ) ,  let us expand p ( Y )  around X by a Taylor series up to the second order 
terms as 

p ( ~ )  E ~ ( x )  + V~'(X)(Y-X) + -~~{v~~(x)(Y-x)(Y-x)'] . 

Then, p ( X ) * K ( X )  may be approximated by 

A 

(6.10) 
1 
2 

p ( X ) * K ( X )  = jp (Y)K(Y-x)dY 

gp  ( X ) j K ( Y - X ) d Y  

(6.1 1) + -tr{ v2p ( X ) j ( Y  - X ) ( Y  -X)'K(Y - X ) d Y  ) , 

where the first order term disappears because K(.) is a symmetric function. 
Since ~ K ( Y - x ) ~ Y  = 1 and ~ ( Y - x ) ( Y - x ) ' K ( Y - x ) ~ Y  = r . 2 ~  for K(.) of (6.3), 
(6.1 1) can be expressed by 

1 
2 

where 

(6.12) 

(6.13) 

Similarly, 

p ( X ) * d ( X )  E p ( X ) j t ? ( Y - X ) d Y  

(6.14) 

Although K(.) is a density function, K*(.) is not. Therefore, l d ( Y ) d Y  has a 
value not equal to 1. Let 

+ - ~ ~ ( v ~ ~ ( x ) ~ ( Y - x ) ( Y - x ) ~ ( Y - x ) ~ Y  1 1 . 
2 
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w =jl?(Y)dY.  

Then, $(.)/w becomes a density function. Therefore, (6.14) becomes 

where 

and r-'B is the covariance matrix of ?(X)/w. 

(6.15) 

(6.16) 

(6.17) 

Substituting (6.12) and (6.16) into (6.7) and (6.9), the moments of p(X) 
are approximated by 

1 
E ( & X )  } 'I- p (X)[1 + y a ( X ) r 2 ]  2nd order approximation 

P (X) 1st order approximation , (6.18) 

2nd order approximation 

(6.19) 1 
N E -[wp(X) - p2(X)]  1st order approximation . 

Note that the variance is proportional to 1/N and thus can be reduced by 
increasing the sample size. On the other hand, the bias is independent of N, 
and is determined by V 2 p  (X), A, and r 2 .  

Normal kernel: When the kernel function is normal with zero expected 
vector and covariance matrix r2A, N x ( 0 , r 2 A ) ,  $(X) becomes normal as 
cNx(0,r2A 12) where c = 2-"'2(2~)-"/2 IA l-"2r-". Therefore, 
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(6.20) 

Uniform kernel: For a uniform kernel with the covariance matrix r 2 A ,  

l l v  inside L ( X )  
0 outside L ( X )  . K(Y) = (6.22) 

where 

L ( X )  = ( Y :  ~ ( Y , x )  < r4n+2 1 , (6.23) 

d 2 ( Y , X )  = ( Y - X ) T A - ' ( Y - X ) ,  (6.24) 

and 

(6.25) 

Then, K ~ ( X )  is also uniform in L ( X )  with the height l l v 2 .  Therefore, 

w = [($Y)dY = - 1 
V 

(6.26) 

Also, since the covariance matrix of K(X) is r 2 A ,  the covariance matrix of 
d ( X ) l w  is also r 2 A  as 

1 [ (x , (Y  -X)(Y -X)'-dY = r 2 A  
v 

(6.27) 

Therefore, for the uniform distribution of (6.22), 

B = A  and p ( X )  = a ( X )  . (6.28) 

Note that w's for both normal and uniform kernels are proportional to 
I' -n or v-' . In particular, w = l / v  for the uniform kernel from (6.26). Using 
this relation, the first order approximation of the variance can be simplified 
further as follows: 
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r 1 

(6.29) 

where p 'I- k lNv  and N >>k are used. This suggests that the second term of 
(6.19) is much smaller than the first term, and can be ignored. Also, (6.29) 
indicates that k + w  is required along with N+- for the Parzen density esti- 
mate to be consistent. These are the known conditions for asymptotic unbias- 
ness and consistency [2]. 

Convolution of normal distributions: If p (X) is assumed to be normal 
and a normal kernel is selected for K(X), (6.7) and (6.9) become trivial to 
evaluate. When two normal densities Nx(O,A)  and Nx(O,B)  are convolved, the 
result is also a normal density of N x ( O , K ) ,  where 

In particular, if A = C and B = r 2 C  

K = (1  + r2)X 

(6.30) 

(6.31) 

Optimal Kernel Size 

Mean-square error criterion: In order to apply the density estimate of 
(6.1) (or (6.2) with the kernel function of (6.3)), we need to select a value for r 
[5-111. The optimal value of r may be determined by minimizing the mean- 
square error between p(X) and p (X) with respect to I-. 

.. 

MSE(P(X)J =El[P(X)-p(X)l21 . (6.32) 

This criterion is a function of X, and thus the optimal I' also must be a function 
of X. In order to make the optimal r independent of X, we may use the 
integral mean-square error 
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IMSE = JMSE { P(X) IdX . (6.33) 

Another possible criterion to obtain the globally optimal r is 
Ex{ MSE { &X)) } = jMSE{ f i ( X ) ) p  ( X ) d X .  The optimization of this criterion 
can be carried out in a similar way as the IMSE, and produces a similar but a 
slightly smaller I' than the IMSE. This criterion places more weight on the 
MSE in high density areas, where the locally optimal r's tend to be smaller. 

(6.19), M S E { ; ( X ) ]  may be expressed as 

n 

Since we have computed the bias and variance of p(X) in (6.18) and 

M S E { ~ % X ) J  = [ E ( P ( x ) I  - p ( x ) 1 2  + v a r { i ( x ) ~  . (6.34) 

In this section, only the uniform kernel function is considered. This is 
because the Parzen density estimate with the uniform kernel is more directly 
related to the k nearest neighbor density estimate, and the comparison of these 
two is easier. Since both normal and uniform kernels share similar first and 
second order moments of fi(X), the normal kernel function may be treated in 
the same way as the uniform kernel, and both produce similar results. 

When the first order approximation is used, & X )  is unbiased as in (6.18), 
and therefore MSE = Var = p I N v  - p 2 1 N  as in (6.29). This criterion value is 
minimized by selecting v = m for a given N and p. That is, as long as the den- 
sity function is linear in L ( X ) ,  the variance dominates the M S E  of the density 
estimate, and can be reduced by selecting larger v. However, as soon as L ( X )  
is expanded and picks up the second order term of (6.10), the bias starts to 
appear in the MSE and it grows with r2  (or v21n) as in (6.18). Therefore, in 
minimizing the MSE, we select the best compromise between the bias and the 
variance. In order to include the effect of the bias in our discussion, we have 
no choice but to seiect the second order approximation in (6.18). Otherwise, 
the MSE criterion does not depend on the bias term. On the other hand, the 
variance term is included in the MSE no matter which approximation of (6.19) 
is used, the first or second order. If the second order approximation is used, 
the accuracy of the variance may be improved. However, the degree of 
improvement may not warrant the extra complexity which the second order 
approximation brings in. Furthermore, it should be remembered that the 
optimal I' will be a function of p(X). Since we never know the true value of 
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p ( X )  accurately, it is futile to seek the more accurate but more complex 
expression for the variance. After all, what we can hope for is to get a rough 
estimate of I' to be used. 

Therefore, using the second order approximation of (6.18) and the first 
order approximation of (6.29) for simplicity, 

(6.35) 

Note that the first and second terms correspond to the variance and squared 
bias of p ( X ) ,  respectively. 

Minimization of MSE: Solving 3 M S E / &  = 0 [ 5 ] ,  the resulting optimal 
I- ,  I'*, is 

I 

(6.36) N l1+4 I" -7 n +2 
2 n u - )  

= [ 7 ~ " ~ ( n + 2 ) " ' ~ p  IA  I '12a2 

where 1' = CI'" and 

(6.37) 

The resulting mean-square error is obtained by substituting (6.36) into (6.35). 

When the integral mean-square error of (6.33) is computed, 1' and I' are 
supposed to be constant, being independent of X .  Therefore, from (6.35) 

1 1 
Nv 4 

IMSE = -jp ( X ) d X  + - r 4 j a 2 ( X ) p 2 ( X ) d X  



264 Introduction to Statistical Pattern Recognition 

1 1  
Nv 4 

= - + -r4ja2(X)p2(X)dX . 

Again, by solving alMSElar = 0 [ 5 ] ,  

(6.39) 

The resulting criterion value is obtained by substituting (6.40) into (6.39), 

Optimal Metric 

Another important question in obtaining a good density estimate is how 
to select the metric, A of (6.3). The discussion of the optimal A is very com- 
plex unless the matrix is diagonalized. Therefore, we first need to study the 
effect of linear transformations on the various functions used in the previous 
sections. 

Linear transformation: Let @ be a non-singular matrix used to define a 
linear transformation. This transformation consists of a rotation and a scale 
change of the coordinate system. Under the transformation, a vector and 
metric become 

z = a T x ,  
AZ = @'Ax@ . 

(6.42) 

(6.43) 

The distance of (6.24) is invariant since 

(Y-X)TAX'(Y-X) = (W-Z) 'AZ'(W-Z) ,  (6.44) 

where W = @'Y. The following is the list of effects of this transformation on 
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various functions. Proofs are not given but can be easily obtained by the 
reader. 

( 1 )  p,(Z) = I O I-lpx(X) [Jacobian] , (6.45) 

(2) V?p,(Z) = I O I -‘@-I V*p,(X)@T-’ 

[from (6.10),(6.42), and (6.45)] , (6.46) 

(3) r ( Z )  = r - ( X )  [from (6.44)] , (6.47) 

(4) v(Z) = IO Iv(X) [from (6.25),(6.43), and (6.47)] , (6.48) 

( 5 )  MSE {pz(Z) 1 = I O I-?MSE { px(X) 1 [from (6.32) and (6.45)] , (6.49) 

(6)  IMSE, = I @ I -I IMSEx [from (6.33) and (6.42)] . (6.50) 

Note that both MSE and IMSE depend on @. The mean-square error is a coor- 
dinate dependent criterion. 

Minimization of IMSE: We will now use the above results to optimize 
the integral mean-square error criterion with respect to the matrix A .  However, 
it  is impossible to discuss the optimization for a general p ( X ) .  We need to 
limit the functional form of p ( X ) .  Here, we choose the following form for 
P ( X ) :  

p ( X )  = IB I ~ ” ’ x ( ( X - M ) 7 B - I ( X - M ) )  , (6.5 I )  

where x(.) does not involve B or M .  The p ( X )  of (6.51) covers a large family 
of density functions including the ones in (6.3). The expected vector, M ,  can 
be assumed to be zero, since all results should be independent of a mean shift. 
Now, we still have the freedom to choose the matrix A in some optimum 
manner. We will manipulate the two matrices B and A to simultaneously diag- 
onalize each, thus making the analysis easier. That is, 

Q7BQ = I and @ ‘ A 0  = A (6.52) 

and 

p ( Z )  = R (Z’Z) 3 (6.53) 

where A is a diagonal matrix with components h , ,  . . . ,A,!, 
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In the transformed Z-space, IMSE$ of (6.41) becomes 

(6.54) 

where c 1  and c2  are positive constants. IMSE; can be minimized by minimiz- 
ing t? 1 .  with respect to A. Since A is normalized by I A I I" such that 

the sca 

(6.55) 

: of the matrix has no effect. Thus, we will minimize t?(.)  with 
respect to hi's with the constraint 

n 

i = l  
Ih l  = I l k j  = 1 

Now, tr( . ]  can be evaluated as 

(6.56) 

(6.57) 

where 

Thus, the criterion to be optimized is 

where p is a Lagrange multiplier. Taking the derivative of J with respect to hk 
and setting the result equal to zero, 
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or 
n 

hi + hk(Chi) = - P ( k  = 1 , .  . . ,n) . 
i = l  o2 

(6.60) 

(6.61) 

In order to satisfy (6.611, all hi's must be equal. Since IA I = 1, the solution 
of (6.61) must be 

A = I .  (6.62) 

That is, in the transformed Z-space, the optimal matrix A, is I for B,  = 1. 
Therefore, the optimal matrix A to use in the original X-space is identical to B 
of (6.51) [ 5 ] .  The neighborhoods should take the same ellipsoidal shape as the 
underlying distribution. For the normal distribution we see that the covariance 
matrix B = C is indeed optimal for A. 

It is important to notice that (6.62) is the locally optimal metric regard- 
less of the location, because IMSE* of (6.54) is minimized not after but before 
taking the integration. The same result can be obtained by minimizing MSE * 
of (6.38). 

Normal Case 

In order to get an idea of what kind of numbers should be used for I-, in 
this section let us compute the optimal I' for a normal distribution. The partial 
derivatives Vp (X) and V2p (X) for Nx(M, C) are 

Vp(X) = - p (x)C-'(x-M) , (6.63) 

v2p (X) = p (X)[C-' (X-M)(X-M)'C-' - C-'] . (6.64) 

For the simplest case in which M = 0 and I: = I, 

tr{V'p(X)) = ~ ( x ) ( x T x  - n) =P(x)(& - n) . (6.65) 

Note that the optimal A is also I in this case. It is easy to show that, if 
p (X) = Nx(OJ), then p2(X) = 2-"'2(2n)-"'2NX(0,1/2). Therefore, 

r = l  



268 Introduction to Statistical Pattern Recognition 

1 n(n+2) 
Jt?(V2p(X)}dX = 2"/2(27c)"/2 4 

Accordingly, from (6.40) 

* 
I ' =  

TABLE 6-1 

OPTIMAL r OF THE UNIFORM KERNEL FUNCTION 
FOR NORMAL DISTRIBUTIONS 

(6.66) 

(6.67) 

Table 6-1 shows these r*'s for various values of n. Remember that the above 
discussion is for the uniform kernel, and that the radius of the hyperellipsoidal 
region is I.= according to (6.23). Therefore, I-*='s are also presented 
to demonstrate how large the local regions are. 

6.2 k Nearest Neighbor Density Estimate 

Statistical Properties 

RNN density estimate: In the Parzen density estimate of (6.1), we fix v 
and let k be a random variable. Another possibility is to fix k and let v be a 
random variable [12-161. That is, we extend the local region around X until 
the kth nearest neighbor is found. The local region, then, becomes random, 
L(X), and the volume becomes random, v(X). Also, both are now functions of 
X. This approach is called the k nearest neighbor (kNN) density estimate. The 
kNN approach can be interpreted as the Parzen approach with a uniform kernel 
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function whose size is adjusted automatically, depending on the location. That 
is, with k fixed throughout the entire space, 1' becomes larger in low density 
areas and smaller in high density areas. The kNN density estimate may be 
rewritten from (6.1) as [12-14] 

(6.68) 

The reason why ( k - I )  is used instead of k will be discussed later. 

Density of coverage: Although the density function of v is not available, 
the density function of the coverage (the probability mass in the local region), 
u, may be obtained as follows [ 171. 

Let L ( X )  and AL ( X )  be defined by 

L ( X )  = { Y : d ( Y , X )  I E }  and AL ( X )  = { Y : ! < d ( Y , X )  I <+Ai} 

and 

(6.69) 

where d ' ( Y . X )  = ( Y - X ) ' A - ' ( Y - X ) .  Also, let two events G and H be defined 
as 

G = [ ( k - I )  samples in L ( X ) )  , 

H = ( 1 sample in A L ( X ) }  . 

(6.71) 

(6.72) 

Then, the probability of the h-th N N  in AL ( X )  is 

P r ( G  a n d H }  = P r { G ) P r ( H I G ) ,  (6.73) 

where 

(6.74) 

N 4. 

(6.75) 

Note that the coverage of A L ( X )  in the complementary domain of L ( X )  is 
Au/(l-u) .  Substituting (6.74) and (6.75) into (6.73) and using 
{ I -Au/(I -u)}  + 1 as Air + 0, the probability of (6.73) becomes the product 
of Au and a function of u, pl , (u) .  Therefore, p , , ( u )  should be the density 
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function of u, where u is the coverage of L ( X )  whose boundary is determined 
by the kth NN. 

(6.76) 

That is, p, (u)  is a Beta distribution Be(k ,N-k+l ) .  Also, note that the distribu- 
tion of u is independent of the underlying distribution, p (X). 

More generally, the joint density function of uI , . . . ,uk may be obtained 
1171 

(6.77) 

where ui is the coverage of Li(X),  the region extended until the ith NN is 
found. Note that the joint density depends on uk only. The marginal density 
of uk can be obtained by integrating (6.77) with respect to u I ,  . . . ,uk-l as 

N !  
(k  - 1 ) ! (N 4) ! 6"' . . . c 2 p  (u 1,  . . . ,uk)duI . . . duk-l = ut-'  ( I - u ~ ) ~ - ~  . (6.78) 

Equation (6.78) is the same as (6.76). 

over L ( X )  with respect to Y .  That is, 
The relationship between u and v may be obtained by integrating (6.10) 

1 
u(X) Z p ( X ) v ( X )  + 2 f r ( V 2 p ( X ) [  (Y-X)(Y-X)'dY} 

(X ) 

(6.79) 

where a is given in (6.13). Note that j (Y -X) (Y-X)TdY = vr2A from (6.27). 
The term [l+ar2/2] of (6.79) appeared in (6.18) in the Parzen case. Again, 
u =pv gives the first order approximation, and (6.79) is the second order 
approximation of u in terms of v.  

1 
2 

= p ( x ) v ( x ) [ 1  + - ~ ( x ) ~ . ~ ( x ) J  , 

Moments of p(X) :  When the first order approximation of u = pv is used, 
from (6.68) and (6.76) 

(6.80) 

where the following formula is used 
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(6.81) 

Equation (6.80) indicates that p = (k-I)/Nv is unbiased as long as u =pv 
holds. If k/Nv is used instead, the estimate becomes biased. This is the reason 
why (k-1) is used in (6.68) instead of k.  The variance of i(X) also can be 
computed under the approximation of u = pv as 

(6.82) 

Comparison of (6.29) and (6.82) shows that the variance of the kNN density 
estimate is larger than the one for the Parzen density estimate. Also, (6.82) 
indicates that, in the kNN density estimate, k must be selected larger than 2. 
Otherwise, a large variance may result. 

Second order approximation: When the second order approximation is 
needed, (6.79) must be used to relate u and v. However, since r2  and 1' are 
related by v = cr", it is difficult to solve (6.79) for v and a series of approxima- 
tions is necessary. Since p = (k-l)/Nv, the computation of the first and second 
order moments of i(X) requires E { v-' ] and E { v - ~  1. We start to derive v-l 
from (6.79) as 

A 

v-l - = p  [u-l + Lc1c-2,n 2/n - I  2 v u 1  

(6.83) 1 
2 

z p [u-1 + --a(cp)-2'""2"-'] , 

where the approximation of u =pv is applied to the second term to obtain the 
second line from the first. Note that the second term was ignored in the first 
order approximation and therefore is supposed to be much smaller than the first 
term. Thus, using u =pv to approximate the second term is justified. From 
(6.83) 
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for k-m > 0 T(k-m)T(N + 1 )  E{u-"] = 
T( k)T(N + 1 -m ) 

Therefore, 

N(N-1)  
( k  - 1 ) (k  -2) 

E(u-1) = - and E ( u - ~ }  = 
k-1 

and 

r(k- l+&)r(N+l)  N T(k-1+6) T ( N )  E { & ' }  = - 
T(k)T(N +6) k-I T(k-1) T(N+6) ' 

(6.85) 

(6.86) 

(6.87) 

(6.88) T(k-2+6)T(N+l) - N(N-1)  T(k-2+6) T(N-1) - 6 2  - 
E'u I-- T(k)T(N-1+6) (k-l)(k-2) T(k-2) T(N-1+6) 

where T(x+l )  = xT(x) is used. It is known that 

(6.89) 

is a good approximation for large x and small 6. Therefore, applying this 
approximation, 

k-1 N k-2 
N k-1 N-2 

E(u61} E(-)&' and E(&' ]  z -(-)&I 

Combining (6.83), (6.84), (6.86), and (6.90), 

k-1 1 k-1 
N 2 N 

E { f j ( X ) )  = -E(v-' 1 E ~ ( X ) [ 1 + - ~ ( X ) ( c p ( X ) ) - 2 " ' ( - ) 2 i ' ~ l  

(6.90) 

(6.91) 

k-1 k-2 
N N-1 

+ cL(cp)-2"-)(-)2",-1 
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where N >> k >> 1 is assumed. Therefore, the variance and mean-square error 
of &x) are 

(6.93) 

(6.94) 

Again, in (6.94) the first and second terms are the variance and the squared 
bias respectively. It must be pointed out that the series of approximations used 
to obtain (6.91)-(6.94) is valid only for large k .  For small k ,  different and more 
complex approximations for E { p(X)) and Var( p(X)] must be derived by using 
(6.87) and (6.88) rather than (6.90). As in the Parzen case, the second order 
approximation for the bias and the first order approximation for the variance 
may be used for simplicity. Also, note that the MSE of (6.94) becomes zero as 
k+-= and klN+O. These are the conditions for the kNN density estimate to be 
asymptotically unbiased and consistent [ 141. 

A A 

Optimal Number of Neighbors 

Optimal k: In order to apply the kNN density estimate of (6.68), we 
need to know what value to select for k.  The optimal k under the approxima- 
tion of 14 =PI’ is m, by minimizing (6.82) with respect to k.  That is, when 
L ( X )  is small and u =PI’  holds, the variance dominates the M S E  and can be 
reduced by selecting larger k or larger L ( X ) .  As L ( X )  becomes larger, the 
second order term produces the bias and the bias increases with L(X). The 
optimal k is determined by the rate of the variance decrease and the rate of bias 
increase. 
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The optimal k, k * ,  may be found by minimizing the mean-square error of 
(6.94). That is, solving aMSE lak = 0 for k yields [ 5 ]  

L J 

(6.95) 

As in the Parzen case, the optimal k is a function of X. Equation (6.95) indi- 
cates that k* is invariant under any non-singular transformation. That is, 

k * ( Z )  = k * ( X )  . (6.96) 

Also, k* and I-* of (6.36) are related by 

(6.97) 

This indicates that both the Parzen and kNN density estimates become optimal 
in the same local range of L ( X ) .  The resulting mean-square error is obtained 
by substituting (6.95) into (6.94). 

4 

MSE* { & X ) }  = . (6.98) - 
IA  1'' 

Note that (6.98) and (6.38) are identical. That is, both the Parzen (with the 
uniform kernel) and kNN density estimates produce the same optimal MSE. 

The globally optimal k may be obtained by minimizing the integral 
mean-square error criterion. From (6.94), with a fixed k, 

I 1 
IMSE = -Jp2(X)dX k + - ~ ~ ' " ( ~ ) ~ ' ~ ' ~ ~ ~ ( X ) p ~ ~ ' " ( X ) d x  4 N . (6.99) 
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Solving alMSEIak = 0 generates [5]  

4 -- 
x N  ’ l M  . 

(6.100) 

(6.101) 

It should be pointed out that E x  ( M S E  { p(X)} } can be minimized by a similar 
procedure to obtain the globally optimal k. The resulting k* is similar but 
slightly smaller than k* of (6.100). 

Optimal metric: The optimal metric also can be computed as in the Par- 
zen case. Again, a family of density functions with the form of (6.51) is stu- 
died with the metric of (6.24). In order to diagonalize both B and A to I and A 
respectively, X is linearly transformed to Z. In the transformed Z-space, 
IMSE; becomes, from (6.101) and (6.13), 

IMSE; = c I I c2jpP’”(Z)t? [ v2p~(Z)- A Idz]& , (6.102) 

where c I  and c2 are positive constants. IMSE; can be minimized with respect 
to A by minimizing 

n 

J = tr2(V2pZ(Z)A) - p( nh,-l) , (6.103) 
i = l  

which is identical to (6.59). 

Therefore, the optimal metric A for the kNN density estimate is identical 
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to B. Also, note that the same optimal metric is obtained by minimizing MSE* 
of (6.98), and thus the metric is optimal locally as well as globally. 

Normal example: The optimal k for a normal distribution can be com- 
puted easily. For a normal distribution with zero expected vector and identity 
covariance matrix, 

(6.104) 

(6.105) 

Substituting (6.104) and (6.105) into (6. loo), and noting that the optimal 
metric A is I in this case, 

4 

. (6.106) N ll+4 I;" - 

k* = 

TABLE 6-2 

OPTIMAL k FOR NORMAL DISTRIBUTIONS 

4 1 8 1 16 1 32 1 64 1 128 1 
0.75 N ' I 2  0.94N 0.62 N 0.34 N ' I 9  0.17 N " I 7  0.09 N 

for 4.4~10 1.5~10' 3 . 4 ~ 1 0 ~  3.2~10'" 9 . 2 ~ 1 0 ~ ~  3 . 8 ~ 1 0 ~ ~  
k*=5 

Table 6-2 shows k* for various values of n [ 5 ] .  Also, Table 6-2 shows how 
many samples are needed for k* to be 5. Note that N becomes very large after 
n = 16. This suggests how difficult it is to estimate a density function in a 
high-dimensional space, unless an extremely large number of samples is avail- 
able. 




