Chapter 6

NONPARAMETRIC DENSITY ESTIMATION

So far we have been discussing the estimation of parameters. Thus, if
we can assume we have a density function that can be characterized by a set of
parameters, we can design a classifier using estimates of the parameters.
Unfortunately, we often cannot assume a parametric form for the density func-
tion, and in order to apply the likelihood ratio test we somehow have to esti-
mate the density functions using an unstructured approach. This type of
approach is called nonparametric estimation, while the former is called
parametric estimation. Since, in nonparametric approaches, the density func-
tion is estimated locally by a small number of neighboring samples, the esti-
mate is far less reliable with larger bias and variance than the parametric coun-
terpart.

There are two kinds of nonparametric estimation techniques available:
one is called the Parzen density estimate and the other is the k-nearest neigh-
bor densiry estimate. They are fundamentally very similar, but exhibit some
different statistical properties. Both are discussed in this chapter.

It is extremely difficult to obtain an accurate density estimate non-
parametrically, particularly in high-dimensional spaces. However, our goal
here is not to get an accurate estimate. Our goal is, by using these estimates,
to design a classifier and evaluate its performance. For this reason, the accu-
racy of the estimate is not necessarily a crucial issue. Classification and
performance evaluation will be discussed in Chapter 7. The intention of this
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6 Nonparametric Density Estimation 255

chapter is to make the reader familiar with the fundamental mathematical pro-
perties related to nonparametric density estimation in preparation for the
material presented in Chapter 7.

6.1 Parzen Density Estimate

Parzen Density Estimate

In order to estimate the value of a density function at a point X, we may
set up a small local region around X, L (X). Then, the probability coverage (or
probability mass) of L(X) may be approximated by p(X)v where v is the
volume of L(X). This probability may be estimated by drawing a large
number of samples, N, from p(X), counting the number of samples, &, falling
in L (X), and computing k/N. Equating these two probabilities, we may obtain
an estimate of the density function as

~ _ kX) k(X)
pX)v = _N or (X) =Ny 6.1)

Note that, with a fixed v, k is a random variable and is dependent on X. A
fixed v does not imply the same v throughout the entire space, and v could still
vary with X. However, v is a preset value and is not a random variable.

Kernel expression: The estimate of (6.1) has another interpretation.
Suppose that 3 samples, X3, X4, and X5, are found in L (X) as shown in Fig.
6-1. With v and N given, ;;(X) becomes 3/Nv. On the other hand, if we set up
a uniform kernel function, x(-), with volume v and height 1/v around all exist-
ing samples, the average of the values of these kernel functions at X is also
3/Nv. That is, [1-4]

. N
pUO = - 3 =X 6.2)

As seen in Fig. 6-1, only the kemel functions around the 3 samples,
X3. X4. and X5, contribute to the summation of (6.2).

Once (6.2) is adopted, the shape of the kemnel function could be selected
more freely, under the condition IK(X) dX = 1. For one-dimensional cases,
we may seek optimality and select a complex shape. However, in a high-
dimensional space, because of its complexity, the practical selection of the ker-
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Fig. 6-1 Parzen kemnel density estimate.

nel function is very limited to either a normal or uniform kernel. In this book,
we will use the following kermel which includes both normal and uniform ker-
nels as special cases:

mI(Lyr2 A2
2 2m 1
K(X) = n x n |A | 112
n/2yni2+1 r
1" —_
(n) (Zm)
F(—";nz)
xexp |- 1 ——X"(r2A)"'X , (6.3)
(=)
2m

where I(-) is the gamma function, and m is a parameter determining the shape
of the kernel. It may be verified that, for any value of m, the covariance matrix
of the kernel density (6.3) is r’A. The parameter m determines the rate at
which the kernel function drops off. For m = 1, (6.3) reduces to a simple nor-
mal kemel. As m becomes large, (6.3) approaches a uniform (hyperelliptical)
kernel, always with a smooth roll-off. The matrix A determines the shape of
the hyperellipsoid, and r controls the size or volume of the kemel. Other
coefficients are selected to satisfy the two conditions mentioned previously:
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jK(X)dX =1 and I, = r2A where £, is the covariance matrix of k(X).

Convolution expression: Equation (6.2) can be rewritten in convolution
form as

PXX) = pX)+k(X) A [p (V)x(X—Y)aY , (6.4)

where p, is an impulsive density function with impulses at the locations of
existing N samples.

R N
p.() = - Z30X,) (6.5)
i=1

That is, the estimated density ;A)(X) is obtained by feeding ;A)S(X) through a
linear (noncausal) filter whose impulse response is given by x(X). Therefore,
p(X) is a smoothed version of p,(X).

Moments of f)(X ): The first and second order moments of (6.4) can be

easily computed. First, let us compute the expected value of [A)S(X) as

- N N
EIp.(X)) = - ZJoX-2)p 202 = - Tp(X) = p(X) 6.6)

i=l i=1

That is, [A)S(X) is an unbiased estimate of p(X). Then, the expected value of
p(X) of (6.4) may be computed as

Ep0)) = JE(p, () Ix(x ~Y)a¥

= .[I7 V)X -Y)dY = p(X)*K(X) . (6.7)

Also,

~2 1 NJ 20y _
Ef{p (X))} =7 DI (X=Z)p(Z)dZ
i=1

N N
+ 3 3 [fxx -vixex -2)p (V)p 2)dvaz
i=lj=1
izf
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= LX) + (1=0lp (s (6.8)
Therefore, the variance of f)(X ) is
Var pO0)) = 301p (000 = [p(X)w 00T (6.9)

Approximations of moments: In order to approximate the moments of

f)(X), let us expand p(Y) around X by a Taylor series up to the second order
terms as

p(Y)=pX)+Vp )Y -X) + %tr{vzp(X)(Y—X)(Y—X)T] . (6.10)
Then, p (X)*x(X) may be approximated by

pOwx(X) = Jp (¥ -X)ay

=p (X)Jx(¥ —X)dY

+ %tr{Vzp (X)_[(Y—X)(Y—X)TK(Y—X)dY} , (6.11)

where the first order term disappears because x(-) is a symmetric function.
Since [k(Y=X)dY = 1 and [(¥ =X)(Y=X)T(Y=X)dY = r?A for x(-) of (6.3),
(6.11) can be expressed by

pX)*xX) = p (X[ + %a(X)rz] , (6.12)
where
V3 (x) }
X)=tr{———=A . 13
o(X) r{ > (X) 6.13)
Similarly,

p X2 (X) =p X2 (Y -X)dY

+ —;—tr{ V2p ()| (¥ XYY =X )Y -X)dY } . (6.14)

Although «(-) is a density function, k*(-) is not. Therefore, _[KZ(Y)dY has a
value not equal to 1. Let
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w = [y . (6.15)

Then, Kz(-)/w becomes a density function. Thercfore, (6.14) becomes

P 0% 3 X) Zwp (X) + %lr{vzp (X)I(Y—X)(Y-X)T@dy}
= wp CO[ + B0 (6.16)
where
B(X) = lr{%B} 6.17)

and r2B is the covariance matrix of k¥2(X }/w.

Substituting (6.12) and (6.16) into (6.7) and (6.9), the moments of [;(X)
are approximated by

El[;(X)] =pX)H[1+ %a(X)rz] 2nd order approximation

= pX) 15t order approximation , (6.18)

Var(pOO)Z 2 bp COF 1+ 2BOF2] = p2001 1+ SoX0r? )

2nd order approximation

= #[wp (X) - p*(X)] st order approximation . (6.19)
Note that the variance is proportional to /N and thus can be reduced by
increasing the sample size. On the other hand, the bias is independent of N,
and is determined by V2p (X), A, and r2.

Normal kernel: When the kernel function is normal with zero expected
vector and covariance matrix r2A, NX(O,;'ZA), x*(X) becomes normal as
cNx(0,r2A/2) where ¢ = 272(2r)™""21A I7V2r" . Therefore,
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\
W= 211/2(210'1/2 1A | Il2'_n

, (6.20)
B(X) = %am . 6.21)

Uniform kernel: For a uniform kernel with the covariance matrix >4,

K(Y) = {l/v inside L(X)

6.22
0 outside L(X) . ( )
where
LX)={Y:d(¥.X)<rVn+2}, (6.23)
A X)=Y-X)’"A""(Y-X), (6.24)
and
ni2
v =J; dY = — 4 12Vne2y | (6.25)
X) F( n+ )
2
Then, k2(X) is also uniform in L (X) with the height 1/v2. Therefore,
" =J; QY)Y =L (6.26)
(X) Vv

Also, since the covariance matrix of K(X) is r2A, the covariance matrix of
K2 (X)/w is also %A as

1[ (¥ =X)Y =X Lay = 24 . 6.27)
x) v
Therefore, for the uniform distribution of (6.22),

B=A and BX)=aX). (6.28)

Note that w’s for both normal and uniform kernels are proportional to

or v~'. In particular, w = 1/v for the uniform kernel from (6.26). Using

this relation, the first order approximation of the variance can be simplified
further as follows:

r =-n
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it

Var|p(X)) = ;7 {&VX’ —pz(X)]

2 LSRN B IFURE- D B R
p(X){va(X) N}—p(X)[k N}

piX)
=

(6.29)

where p = k/Nv and N >>k are used. This suggests that the second term of
(6.19) is much smaller than the first term, and can be ignored. Also, (6.29)
indicates that k—eo is required along with N —ecc for the Parzen density esti-
mate to be consistent. These are the known conditions for asymptotic unbias-
ness and consistency [2].

Convolution of normal distributions: If p (X) is assumed to be normal
and a normal kemel is selected for x(X), (6.7) and (6.9) become trivial to
evaluate. When two normal densities Ny(0,A) and Ny (0,B) are convolved, the
result is also a normal density of Ny(0,K), where

K—l =B—I _B—I(B—l +A—l)—lB—l

=A7' A lAa + B HYAT (6.30)

In particular, if A =X and B = 2z

K=(+r)x. (6.31)

Optimal Kernel Size

Mean-square error criterion: In order to apply the density estimate of
(6.1) (or (6.2) with the kernel function of (6.3)), we need to select a value tor r
[5-11]. The optimal value of r may be determined by minimizing the mean-
square error between f)(X) and p (X) with respect to r.

MSE{p(X)} = E{[p(X) = p(X)12) . (6.32)

This criterion is a function of X, and thus the optimal » also must be a function
of X. In order 1o make the optimal r independent of X, we may use the
integral mean-square error
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IMSE = [MSE{p(X))aXx . (6.33)

Another possible criterion to obtain the globally optimal r s
E¢{MSE(p(X))} = [MSE{p(X)}p (X)dX. The optimization of this criterion
can be carried out in a similar way as the /MSE, and produces a similar but a
slightly smaller r than the /MSE. This criterion places more weight on the
MSE in high density areas, where the locally optimal r’s tend to be smaller.

Since we have computed the bias and variance of f)(X) in (6.18) and
(6.19), MSE {p(X)} may be expressed as

MSE{p(X)} = [E{p(X)} — p(X)]? + Var{p(X)} . (6.34)

In this section, only the uniform kernel function is considered. This is
because the Parzen density estimate with the uniform kernel is more directly
related to the & nearest neighbor density estimate, and the comparison of these
two is easier. Since both normal and uniform kemnels share similar first and
second order moments of f)(X ), the normal kernel function may be treated in
the same way as the uniform kernel, and both produce similar results.

When the first order approximation is used, f)(X) is unbiased as in (6.18),
and therefore MSE = Var = p/Nv — p%/N as in (6.29). This criterion value is
minimized by selecting v = for a given N and p. That is, as long as the den-
sity function is linear in L (X), the variance dominates the MSE of the density
estimate, and can be reduced by selecting larger v. However, as soon as L (X)
is expanded and picks up the second order term of (6.10), the bias starts to
appear in the MSE and it grows with r? (or v¥") as in (6.18). Therefore, in
minimizing the MSE, we select the best compromise between the bias and the
variance. In order to include the effect of the bias in our discussion, we have
no choice but to select the second order approximation in (6.18). Otherwise,
the MSE criterion does not depend on the bias term. On the other hand, the
variance term is included in the MSE no matter which approximation of (6.19)
is used, the first or second order. If the second order approximation is used,
the accuracy of the variance may be improved. However, the degree of
improvement may not warrant the extra complexity which the second order
approximation brings in. Furthermore, it should be remembered that the
optimal r will be a function of p(X). Since we never know the true value of
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p(X) accurately, it is futile to seek the more accurate but more complex
expression for the variance. After all, what we can hope for is to get a rough
estimate of r to be used.

Therefore, using the second order approximation of (6.18) and the first
order approximation of (6.29) for simplicity,

MSE (p(X)) = %’v{) + %otz(X)pz(X)r“ . (6.35)

Note that the first and second terms correspond to the variance and squared
bias of p(X), respectively.

Minimization of MSE: Solving oMSE /dr = 0 [5], the resulting optimal
ror, s

r 1

—_— |
- n+4 -
rX)y= C(:Zp <N n+4
B |
n+2 |
nC ) n+4 _
- 3 AN (6.36)
_T[]/Z(n +2)H/2p IA |112a2

where v = ¢r" and
ni2 ni2 1/2
= e (n+2)Y" 1A . 6.37)

2
1,,n+
(2)

The resulting mean-square error is obtained by substituting (6.36) into (6.35).

2 _n_ 4
oA r4/n n+ 2+4/na2 n+4 _
MSE*(poryy = 24 | TP N (6.38)

n(n+22m 1A 1%

When the integral mean-square error of (6.33) is computed, v and r are
supposed to be constant, being independent of X. Therefore, from (6.35)

IMSE = ﬁjp (X)dX + %r“j(xz(X)pz(X)dX
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S N Y o IR
=t fa200p20)dx . (6.39)

Again, by solving dIMSE /dr = 0 [5],

r 1

* + -+ _nl+4
"= Jeooprooa | N
B 1
"r(ﬂ+2) n+4 1
= 2 x N "4 (6.40)
7242y 1A 12 o2 (0p

The resulting criterion value is obtained by substituting (6.40) into (6.39),

n

s - nrt [T EES er00p20ax (77

4
x N " 6.41)

n(n+2)2m? 1A 13"

Optimal Metric

Another important question in obtaining a good density estimate is how
to select the metric, A of (6.3). The discussion of the optimal A is very com-
plex unless the matrix is diagonalized. Therefore, we first need to study the
effect of linear transformations on the various functions used in the previous
sections.

Linear transformation: Let ® be a non-singular matrix used to define a
linear transformation. This transformation consists of a rotation and a scale
change of the coordinate system. Under the transformation, a vector and
metric become

Z=0'X, (6.42)
A, =PTAD . (6.43)

The distance of (6.24) is invariant since
(Y=-X)A(Y -X)=(W=-2)TAZ' (W-2) , (6.44)

where W = ®7Y. The following is the list of effects of this transformation on
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various functions. Proofs are not given but can be easily obtained by the
reader.

(1) pAZ) = 1D 1" py(X) [Jacobian] , (6.45)

Q) Vp,(2) = 1®17' ' Vip(X)dT

[from (6.10),(6.42), and (6.45)] , (6.46)
3) r(Z)y=r(X) [from (6.44)] . (6.47)
@ v(Z)=1d1v(X) [from (6.25),(6.43), and (6.47)] , (6.48)

(5) MSE(p,(Z)) = |®172MSE {px(X)) [from (6.32) and (6.45)],  (6.49)

(6) IMSE, = |®|"'IMSEy |from (6.33) and (6.42)] . (6.50)

Note that both MSE and /MSE depend on ®. The mean-square error is a coor-
dinate dependent criterion.

Minimization of IMSE: We will now use the above results to optimize
the integral mean-square error criterion with respect to the matrix A. However,
it is impossible to discuss the optimization for a general p(X). We need to
limit the functional form of p(X). Here, we choose the following form for
p(X):

pX)=1B1""g((X-M)B~ " (X-M)) , (6.51)

where g(-) does not involve B or M. The p(X) of (6.51) covers a large family
of density functions including the ones in (6.3). The expected vector, M, can
be assumed to be zero, since all results should be independent of a mean shift.
Now, we still have the freedom to choose the matrix A in some optimum
manner. We will manipulate the two matrices B and A to simultaneously diag-
onalize each, thus making the analysis easier. That is,

O'BO =/ and OTAD=A (6.52)
and

[ IAEN IVAVAR (6.53)

where A is a diagonal matrix with components Ay, . . ., Ay
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In the transformed Z-space, IMSE} of (6.41) becomes

IMSES =¢, [Czjlrz[v PO }dz} S (6.54)

where ¢ and ¢, are positive constants. IMSES can be minimized by minimiz-
ing tr{-} with respect to A. Since A is normalized by | A1'" such that

A
'All/n

=1, (6.55)

the scale of the matrix has no effect. Thus, we will minimize tr2|~] with
respect to A;’s with the constraint

Al = 'ﬂl)\,- =1. (6.56)
Now, tr{-} can be evaluated as
tr{V2pz(Z)A} = ):x =0YA;, (6.57)

where

Ppi2) 3 {dg(zv) az'2) } _,d2(272)

6= Wl ol B a2 (6.58)
Thus, the criterion to be optimized is
7 =W V@] - (TR, - 1)
= Z)E)EAA —p(nx -1, (6.59)

i=lj=1

where { is a Lagrange multiplier. Taking the derivative of J with respect to A,
and setting the result equal to zero,
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a.l n u
_=92k+ A,'—_=O 6.60
an, - XM - (6.60)
or
x£+xk(§k,-)=§ G=1,....n). (6.61)
In order to satisfy (6.61), all A;'s must be equal. Since JA| = I, the solution
of (6.61) must be
A=1. (6.62)

That is, in the transformed Z-space, the optimal matrix A, is / for B, =1.
Therefore, the optimal matrix A to use in the original X-space is identical to B
of (6.51) [5]. The neighborhoods should take the same ellipsoidal shape as the
underlying distribution. For the normal distribution we see that the covariance
matrix B = X is indeed optimal for A.

It is important to notice that (6.62) is the locally optimal metric regard-
less of the location, because IMSE™ of (6.54) is minimized not after but before
taking the integration. The same result can be obtained by minimizing MSE”
of (6.38).

Normal Case

In order to get an idea of what kind of numbers should be used for r, in
this section let us compute the optimal » for a normal distribution. The partial
derivatives Vp (X) and V2p (X) for Ny(M,X) are

Vp(X)=-pX)Z(X-M) , (6.63)
Vip(X)=pX)E (X-M)X-M)'Z™' -] (6.64)

For the simplest case in which M =0 and £ =1,
W1V (X)) = p (XTX — 1) = pX)(Ex? = n) (6.65)

i=l

Note that the optimal A is also / in this case. It is easy to show that, if
p(X) = Ny(0,1), then p?(X) = 2772(2m)y™"2Ny(0,1/2). Therefore,
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2 _ | nn+2)
Ji?192p () 1ax = T (6.66)
Accordingly, from (6.40)
|
2 |\ 1
. 2"+2r _n+ n+4 -~
rt = =) xN " (6.67)
(” +2)n/2+l
TABLE 6-1

OPTIMAL r OF THE UNIFORM KERNEL FUNCTION
FOR NORMAL DISTRIBUTIONS

" 4 8 16 32 64 128
rt 094N 089N 12 [0.86 N0 |0.85N ¢ |0.85 N8 [0.85 NI
rNn+2 220N V812 8IN 1121366 N 120 [4.98 N1 6,92 v 108 9,70 N 112

Table 6-1 shows these r"'s for various values of n. Remember that the above
discussion is_for the uniform kernel, and that the radius of the hyperellipsoidal
region is r‘fnT2 according to (6.23). Therefore, r*m's are also presented
to demonstrate how large the local regions are.

6.2 k Nearest Neighbor Density Estimate

Statistical Properties

kNN density estimate: In the Parzen density estimate of (6.1), we fix v
and let k be a random variable. Another possibility is to fix & and let v be a
random variable [12-16]. That is, we extend the local region around X until
the kth nearest neighbor is found. The local region, then, becomes random,
L(X), and the volume becomes random, v(X). Also, both are now functions of
X. This approach is called the k nearest neighbor (kNN) density estimate. The
kNN approach can be interpreted as the Parzen approach with a uniform kernel
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function whose size is adjusted automatically, depending on the location. That
is, with & fixed throughout the entire space, v becomes larger in low density
areas and smaller in high density areas. The ANN density estimate may be
rewritten from (6.1) as [12-14]

k—1
Nv(X)

px) = (6.68)

The reason why (k—1) is used instead of £ will be discussed later.

Density of coverage: Although the density function of v is not available,
the density function of the coverage (the probability mass in the local region).
u, may be obtained as follows [17].

Let L (X) and AL (X) be defined by
LX)={Y:d(Y,X)<i}and AL(X) = {Y i<d(Y,X) < i+A’} (6.69)
and
1{ = d = 7
u Lx)p(Y)dY and  Au J;L(X)p(Y)dY , (6.70)
where d>(Y.X) = (Y=-X)TAT(Y-X). Also, let two events G and H be defined
as
G = {(k—1) samples in L(X)} ., (6.71)
H = {1 sample in AL(X)} . (6.72)

Then, the probability of the kth NN in AL (X) is

PriG and H) = Pr{G\PriHIGY , (6.73)
where
N
PriGi) = [k | W=V A (6.74)
N—k+1 au M
PrHHIG) = Au -2k (6.75)
| 1—u 1—u

Note that the coverage of AL(X) in the complementary domain of L(X) is
Au/(1-u).  Substituting (6.74) and (6.75) into (6.73) and using
{1-Awu/(1=1)} — 1 as Au — 0, the probability of (6.73) becomes the product
of Au and a function of u, p,(u). Therefore, p,(u«) should be the density
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function of u, where u is the coverage of L(X) whose boundary is determined
by the kth NN.
p.(u) = —ﬂ—u"-'(l—u)'v-“ 0<uc<l. (6.76)
“ k=DUN ~k)!
That is, p,(u) is a Beta distribution Be (k,N—k+1). Also, note that the distribu-
tion of u is independent of the underlying distribution, p (X).

More generally, the joint density function of u,, ... ,u; may be obtained
as [17]
- Nk
plUy, ..., u)= m(l —u)" T, 6.77)

where u; is the coverage of L;(X), the region extended until the ith NN is
found. Note that the joint density depends on u; only. The marginal density

of u; can be obtained by integrating (6.77) with respect to u, ... ,u;_, as
_L"‘ _L“Z (u w,)du du;_, = ——]l!——*uk"(l—u VA (6.78)
pluy, . ..U 1. AUy (k—l)’(N—k)' k L . .

Equation (6.78) is the same as (6.76).

The relationship between # and v may be obtained by integrating (6.10)
over L (X) with respect to Y. That is,

u(X) = p(X)v (X) + -;—tr[Vzp (X)LX)(Y—X)(Y—X)TdY}

=pX)vX)[l + —21—(1(X)1‘2(X)] , (6.79)

where o is given in (6.13). Note that J(¥=X)(Y=X)"dY = vr*A from (6.27).
The term [l+or2/2] of (6.79) appeared in (6.18) in the Parzen case. Again,
u = pv gives the first order approximation, and (6.79) is the second order
approximation of u in terms of v,

Moments of |;(X): When the first order approximation of u = pv is used,
from (6.68) and (6.76)

Etpe0) = [, i =p ), (6:80)

where the following formula is used
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L (=) dy = I'th+DI'(c+1)

I'(b+c+2) (6.81)

Equation (6.80) indicates that |;=(k—l)/Nv is unbiased as long as u =pv
holds. If k/Nv is used instead, the estimate becomes biased. This is the reason
why (k—1) is used in (6.68) instead of k. The variance of f)(X) also can be
computed under the approximation of u = pv as

s s [ k=D
Varlpoo) ) = [ EM Py oa - p?
2 1 1 J0.9)
= p2(X0)[——(1-—) = . .
POl (- J = (6.82)

Comparison of (6.29) and (6.82) shows that the variance of the ANN density
estimate is larger than the one for the Parzen density estimate. Also, (6.82)
indicates that, in the kVN density estimate, & must be selected larger than 2.
Otherwise, a large variance may result,

Second order approximation: When the second order approximation is
needed, (6.79) must be used to relate # and v. However, since r2 and v are
related by v = ¢r", it is difficult to solve (6.79) for v and a series of approxima-
tions is necessary. Since f) = (k—1)/Nv, the computation of the first and second
order moments of p(X) requires E{v"'} and E{v'2}. We start to derive v"'

from (6.79) as

- I _
| + iw 2/nv2/nu l]

=plu + %a(cp)_z" 2n-y (6.83)

where the approximation of « = pv is applied to the second term to obtain the
second line from the first. Note that the second term was ignored in the first
order approximation and therefore is supposed to be much smaller than the first

term. Thus, using u = pv to approximate the second term is justified. From
(6.83)

2

v EPZ[U—Z + (X(('p)_zl"UZ/'Hz

+ %az(cp)_‘””u‘””_zl ) (6.84)

On the other hand, from (6.76) and (6.81),
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Tk —m)[(N +1)

E{u™] = c — 0.
W= Ty o k>
Therefore,
a9, _ N 2, NWIN-D
Ef{u }——k_l and Ef{u }_—_(k—l)(k—2)
and

E{u&.]_r(k—1+5)r<N+1)_ N Tk-1+8) T(N)
T TKININ+8) k=1 T(k-1) T(N+8) '
Elu&zl_r(k-2+5)r(N+1)_ N(N-1) T(k-2+8) T(N-1)
T O TROTIN=148) — (k=1)(k=2) T(k=2) T(N-1+J)

where I'(x+1) = xI'(x) is used. It is known that

F(,\'+8) ~ “5
) ~°

(6.85)

(6.86)

(6.87)

(6.88)

(6.89)

is a good approximation for large x and small 8. Therefore, applying this

approximation,

k-1 N k=2
E 8-1 ~ 51 E &2 ~ &1
{u”) (N) and {u”} k—l(N—Z)

Combining (6.83), (6.84), (6.86), and (6.90),

- _k;l -1y ~ l —2n k;l 2n
E{pX)}) = N Elv }_p(X)[l+20t(X)(rp(X)) (N) ]

~ l —2/n LZ/H
= p O[5 0P EOT (0],
Ep ()= CHE?)

1 1.1 k=1, k=2
22 |4 l4——(1——)—— o\ 20 2n -}
=p { v A=) N}+a(cp) SvanlS vy

(6.90)

(6.91)
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l 2 N—d/n k-1 k=2 Ain-1
+ ) )

~__'pz (l+_ll‘_) + a((.p)fz/n(%)ﬂn + %al(cp)ﬂ!/n(%)d!u:\ . (692)

where N >> k>>1 is assumed. Therefore, the variance and mean-square error
of p(X) are

R 2
Var{px)) =222 (6.93)

X)
.

~ ~nl L i 20 a3 thln
MSE{p(X)) =p? | + pelepy ™ (™" | (6.94)

Again, in (6.94) the first and second terms are the variance and the squared
bias respectively. It must be pointed out that the series of approximations used
to obtain (6.91)-(6.94) is valid only for large k. For small k, different and more
complex approximations for EIf)(X)} and Var{f)(X)} must be derived by using
(6.87) and (6.88) rather than (6.90). As in the Parzen case, the second order
approximation for the bias and the first order approximation for the variance
may be used for simplicity. Also, note that the MSE of (6.94) becomes zero as
k—o0 and k/N—0. These are the conditions for the ANN density estimate to be
asymptotically unbiased and consistent [14].

Optimal Number of Neighbors

Optimal k: In order to apply the kNN density estimate of (6.68). we
need to know what value to select for k. The optimal & under the approxima-
tion of u =pv is e, by minimizing (6.82) with respect to k. That is, when
L(X) is small and u = pv holds, the variance dominates the MSE and can be
reduced by selecting larger k& or larger L(X). As L (X) becomes larger, the
second order term produces the bias and the bias increases with L(X). The
optimal k is determined by the rate of the variance decrease and the rate of bias
increasc.
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The optimal &, k", may be found by minimizing the mean-square error of
(6.94). That is, solving dMSE /ok = 0 for k yields [5]

II(CP)M" }m

K'(x)= |—&5— x N 1+

(12

n

n2tmptmia i |-
= P n+2 o2 x N+ (6.95)
2

As in the Parzen case, the optimal % is a function of X. Equation (6.95) indi-
cates that k” is invariant under any non-singular transformation. That is,

k*(Z)=k™(X) . (6.96)
Also, & and r” of (6.36) are related by

k(X)

X)= .
pX) Ner ' (X)

(6.97)

This indicates that both the Parzen and 4NN density estimates become optimal
in the same local range of L (X). The resulting mean-square error is obtained
by substituting (6.95) into (6.94).

2 ) L 4
L. r4/n n+ 2+4/na2 4+ _
Mse* (pooyy = 2 TP N (6.98)

n(n+2)°m 1A 12"

Note that (6.98) and (6.38) are identical. That is, both the Parzen (with the
uniform kernel) and kNN density estimates produce the same optimal MSE.

The globally optimal & may be obtained by minimizing the integral
mean-square error criterion. From (6.94), with a fixed &,

IMSE = /‘i [p2()ax + —4'—c*"’"(%)4"' [o200)p 7 (x)ax . (6.99)
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Solving dIMSE/dk = 0 generates [5]

. ne 4’"jp2(x X |wa
k = x N "+
jaZ(X)p2—4/II(X)dX
[ o
n(n+22m2 [p?(X)dx n+a 4
= x N (6.100)
l—\ﬂ/n( n'z"z )jaZ(X)p 2_"/"(X)dX

The resulting IMSE is

n

s 1 | TSR 0ax 1 forop>nax | e

n(n+2>*m21A 12"

3

xN "4 (6.101)

It should be pointed out that EXlMSE{f)(X)}l can be minimized by a similar
procedure to obtain the globally optimal k. The resulting &~ is similar but
slightly smaller than £~ of (6.100).

Optimal metric: The optimal metric also can be computed as in the Par-
zen case. Again, a family of density functions with the form of (6.51) is stu-
died with the metric of (6.24). In order to diagonalize both B and A to / and A
respectively, X is linearly transformed to Z. In the transformed Z-space,
IMSE, becomes, from (6.101) and (6.13),

"

. A n+4
IMSE, = ¢, cszi‘””(z)lrz {VZPZ(Z)I—/\—I‘7"_ }dZ . (6.102)

where ¢, and ¢, are positive constants. /MSE can be minimized with respect
to A by minimizing

J =12V (Z)A) - p(ﬁlx,—l) , (6.103)

which is identical to (6.59).

Therefore, the optimal metric A for the kNN density estimate is identical
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to B. Also, note that the same optimal metric is obtained by minimizing MSE”
of (6.98), and thus the metric is optimal locally as well as globally.

Normal example: The optimal & for a normal distribution can be com-

puted easily. For a normal distribution with zero expected vector and identity
covariance matrix,

]
2 R
[p2¢0)ax = e (6.104)
2-nj2  2+n/2 2_
[pm o (V2p () jax = T =bn+16) (6.105)

2:1(" _2)2+u/2

Substituting (6.104) and (6.105) into (6.100), and noting that the optimal
metric A is / in this case,

. (n +2)2(” _2)2+H/2 T"+4— 4

= n+4
k = l—-4/"( ”‘2"2 )n l+”/2(”2—6n+l6) x N . (6. 106)

TABLE 6-2
OPTIMAL k FOR NORMAL DISTRIBUTIONS

n 4 8 16 32 64 128
o] 075N | 094N | 0.62NY5 | 034N | 017NV | 0.09N

for 4.4x10 1.5x10% 3.4x10% 3.2x10"" | 9.2x10% 3.8x10%7

k=5

Table 6-2 shows k" for various values of n [5]. Also, Table 6-2 shows how
many samples are needed for &~ to be 5. Note that N becomes very large after
n =16. This suggests how difficull it is to estimate a density function in a

high-dimensional space, unless an extremely large number of samples is avail-
able.





